1
|
Guo J, He X, Bai Y, Sun H, Yang J. Virulence factors of Salmonella Typhi: interplay between the bacteria and host macrophages. Arch Microbiol 2025; 207:89. [PMID: 40095029 DOI: 10.1007/s00203-025-04297-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Salmonella Typhi (S. Typhi) is a Gram-negative bacterium that exclusively infects humans and causes typhoid fever- a major global public health concern responsible for approximately 9 million infections and 110,000 deaths annually. Macrophages, a key component of the innate immune system, play essential roles in pathogen clearance, antigen presentation, immune regulation, and tissue repair. As one of the primary targets of S. Typhi infection, macrophages significantly influence disease onset and progression. S. Typhi expresses a range of virulence factors, including the virulence-associated (Vi) capsule, outer membrane proteins (OMPs), flagella, fimbriae, type III secretion systems (T3SSs) and other genes encoded on Salmonella pathogenicity islands (SPIs), as well as toxins, regulatory factors, and virulence plasmids. These virulence factors facilitate S. Typhi's intracellular survival within macrophages by mediating processes such as adhesion, invasion, nutrient acquisition and immune evasion, ultimately enabling systemic infection. This review explores the role and molecular mechanisms of S. Typhi virulence factors in counteracting macrophage antimicrobial functions, providing insights for future research on typhoid pathogenesis and the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
2
|
Distinct Potentially Adaptive Accumulation of Truncation Mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Microbiol Spectr 2022; 10:e0196921. [PMID: 35467366 PMCID: PMC9241588 DOI: 10.1128/spectrum.01969-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene inactivation through the accumulation of truncation (or premature stop codon) mutations is a common mode of evolution in bacteria. It is frequently believed to result from reductive evolutionary processes allowing purging of superfluous traits. However, several works have demonstrated that, similar to the occurrences of inactivating nonsynonymous (i.e., amino acid replacement) mutations under positive selection pressures, truncation mutations can also be adaptive where specific traits deleterious in particular environmental conditions need to be inactivated for survival. Here, we performed a comparative analysis of genome-wide accumulation of truncation mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Considering the known convergent evolutionary trajectories in these two serovars, we expected a strong overlap of truncated genes in S. Typhi and S. Paratyphi A, emerging through either reductive or adaptive dynamics. However, we detected a distinct set of core truncated genes encoding different overrepresented functional clusters in each serovar. In 54% and 28% truncated genes in S. Typhi and S. Paratyphi A, respectively, inactivating mutations were acquired by only different subsets of isolates, instead of all isolates analyzed for that serovar. Importantly, 62% truncated genes (P < 0.001) in S. Typhi and S. Paratyphi A were also targeted by convergent amino acid mutations in different serovars, suggesting those genes to be under selection pressures. Our findings indicate significant presence of potentially adaptive truncation mutations in conjunction with the ones emerging due to reductive evolution. Further experimental and large-scale bioinformatic studies are necessary to better explore the impact of such adaptive footprints of truncation mutations in the evolution of bacterial virulence. IMPORTANCE Detecting the adaptive mutations leading to gene inactivation or loss of function is crucial for understanding their contribution in the evolution of bacterial virulence and antibiotic resistance. Such inactivating mutations, apart from being of nonsynonymous (i.e., amino acid replacement) nature, can also be truncation mutations, abruptly trimming the length of encoded proteins. Importantly, the notion of reductive evolutionary dynamics is primarily accepted toward the accumulation of truncation mutations. However, our case study on S. Typhi and S. Paratyphi A, two human-restricted systemically invasive pathogens exerting similar clinical manifestations, indicated that a significant proportion of truncation mutations emerge from positive selection pressures. The candidate genes from our study will enable directed functional assays for deciphering the adaptive role of truncation mutations in S. Typhi and S. Paratyphi A pathogenesis. Also, our genome-level analytical approach will pave the way to understand the contribution of truncation mutations in the adaptive evolution of other bacterial pathogens.
Collapse
|
3
|
Goncheva MI, Chin D, Heinrichs DE. Nucleotide biosynthesis: the base of bacterial pathogenesis. Trends Microbiol 2022; 30:793-804. [PMID: 35074276 DOI: 10.1016/j.tim.2021.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
Most free-living organisms require the synthesis and/or acquisition of purines and pyrimidines, which form the basis of nucleotides, to survive. In most bacteria, the nucleotides are synthesized de novo and the products are used in many cell functions, including DNA replication, energy storage, and as signaling molecules. Due to their central role in the metabolism of bacteria, both nucleotide biosynthesis pathways have strong links with the virulence of opportunistic and bona fide bacterial pathogens. Recent findings have established a new, shared link in the control of nucleotide biosynthesis and the production of virulence factors. Furthermore, targeting of these pathways forms the basis of interspecies competition and can provide an open source for new antimicrobial compounds. Here, we highlight the contribution of nucleotide biosynthesis to bacterial pathogenesis in a plethora of different diseases and speculate on how they can be targeted by intervention strategies.
Collapse
Affiliation(s)
- Mariya I Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Denny Chin
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
4
|
Díaz-Yáñez F, Álvarez R, Calderón IL, Fuentes JA, Gil F. CdsH Contributes to the Replication of Salmonella Typhimurium inside Epithelial Cells in a Cysteine-Supplemented Medium. Microorganisms 2020; 8:microorganisms8122019. [PMID: 33348574 PMCID: PMC7767077 DOI: 10.3390/microorganisms8122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Salmonella Typhimurium is a facultative, intracellular pathogen whose products range from self-limited gastroenteritis to systemic diseases. Food ingestion increases biomolecules' concentration in the intestinal lumen, including amino acids such as cysteine, which is toxic in a concentration-dependent manner. When cysteine's intracellular concentration reaches toxic levels, S. Typhimurium expresses a cysteine-inducible enzyme (CdsH), which converts cysteine into pyruvate, sulfide, and ammonia. Despite this evidence, the biological context of cdsH's role is not completely clear, especially in the infective cycle. Since inside epithelial cells both cdsH and its positive regulator, ybaO, are overexpressed, we hypothesized a possible role of cdsH in the intestinal phase of the infection. To test this hypothesis, we used an in vitro model of HT-29 cell infection, adding extra cysteine to the culture medium during the infective process. We observed that, at 6 h post-invasion, the wild type S. Typhimurium proliferated 30% more than the ΔcdsH strain in the presence of extra cysteine. This result shows that cdsH contributes to the bacterial replication in the intracellular environment in increased concentrations of extracellular cysteine, strongly suggesting that cdsH participates by increasing the bacterial fitness in the intestinal phase of the S. Typhimurium infection.
Collapse
Affiliation(s)
- Fernando Díaz-Yáñez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
- ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, 8370186 Santiago, Chile
| | - Ricardo Álvarez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
| | - Iván L. Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile;
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile
- Correspondence: (J.A.F.); (F.G.); Tel.: +56-2-2661-8373 (J.A.F.); +56-2-2770-3065 (F.G.)
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
- ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, 8370186 Santiago, Chile
- Correspondence: (J.A.F.); (F.G.); Tel.: +56-2-2661-8373 (J.A.F.); +56-2-2770-3065 (F.G.)
| |
Collapse
|
5
|
Carneiro DG, Almeida FA, Aguilar AP, Vieira NM, Pinto UM, Mendes TAO, Vanetti MCD. Salmonella enterica Optimizes Metabolism After Addition of Acyl-Homoserine Lactone Under Anaerobic Conditions. Front Microbiol 2020; 11:1459. [PMID: 32849316 PMCID: PMC7401450 DOI: 10.3389/fmicb.2020.01459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/04/2020] [Indexed: 01/01/2023] Open
Abstract
Acyl-homoserine lactones (AHLs) are quorum sensing (QS) signaling molecules that mediate cell-to-cell communication in Gram-negative bacteria. Salmonella does not produce AHL, however, it can recognize AHLs produced by other species through SdiA protein modulating important cellular functions. In this work, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on glucose consumption, metabolic profile, and gene expression of Salmonella throughout the cultivation time in Tryptic Soy Broth (TSB) under anaerobic conditions was evaluated. Analysis of the supernatant culture in high-performance liquid chromatography (HPLC) revealed lower glucose uptake after 4 and 6 h of the addition of C12-HSL. Gas chromatography-mass spectrometry (GC-MS) based analysis of the intracellular metabolites revealed C12-HSL perturbation in the abundance levels of metabolites related to the metabolic pathways of glycerolipids, purines, amino acids, and aminoacyl-tRNA biosynthesis. The real-time quantitative PCR (RT-qPCR) indicated that Salmonella increase expression of genes associated with nucleoside degradation and quantification of metabolites supported the induction of pentose phosphate pathway to ensure growth under lower glucose consumption. The obtained data suggest an important role of C12-HSL in the optimization of metabolism at a situation of high population densities.
Collapse
Affiliation(s)
- Deisy G Carneiro
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Felipe A Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Ananda P Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nívea M Vieira
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Uelinton M Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago A O Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
6
|
Tang Y, Davies R, Petrovska L. Identification of Genetic Features for Attenuation of Two Salmonella Enteritidis Vaccine Strains and Differentiation of These From Wildtype Isolates Using Whole Genome Sequencing. Front Vet Sci 2019; 6:447. [PMID: 31921908 PMCID: PMC6930191 DOI: 10.3389/fvets.2019.00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella Enteritidis is a major cause of salmonellosis worldwide and more than 80% of outbreaks investigated in Europe have been associated with the consumption of poorly cooked eggs or foods containing raw eggs. Vaccination has been proven to be one of the most important measures to control Salmonella Enteritidis infections in poultry farms as it can decrease colonization of the reproductive organs and intestinal tract of laying hens, thereby reducing egg contamination. Differentiation of live vaccine from field or wild type S. Enteritidis isolates in poultry is essential for monitoring of veterinary isolates and targetting control actions. Due to decreasing costs, whole genome sequencing (WGS) is becoming a key tool for characterization of Salmonella isolates, including vaccine strains. Using WGS we described the genetic changes in the live attenuated Salmovac 440 and AviPro SALMONELLA VAC E vaccine strains and developed a method for differentiation from the wildtype S. Enteritidis strains. SNP analysis confirmed that streptomycin resistance was associated with a Lys43Arg missense mutation in the rpsL gene whilst 3 missense mutations in acrB and 1 missense mutation in acrA confer erythromycin sensitivity in AviPro SALMONELLA VAC E. Further mutations Arg242His in purK and Gly236Arg in the hisB gene were related to adenine and histidine dependencies in Salmovac 440. Unique SNPs were used to construct a database of variants for differentiation of vaccine from the wildtype isolates. Two fragments from each vaccine were represented in the database to ensure high accuracy. Each of the two selected Salmovac 440 fragments differed by 6 SNPs from the wildtype and the AviPro SALMONELLA VAC E fragments differed by 4 and 6 SNPs, respectively. CD-hit software was applied to cluster similar fragments that produced the best fit output when searched with SRST2. The developed vaccine differentiation method was tested with 1,253 genome samples including field isolates of Salmovac 440 (n = 51), field isolates of AviPro SALMONELLA VAC E (n = 13), S. Gallinarum (n = 19), S. Pullorum (n = 116), S. Enteritidis (n = 244), S. Typhimurium (n = 810) and achieved 100% sensitivity and specificity.
Collapse
Affiliation(s)
- Yue Tang
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Liljana Petrovska
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
7
|
Kang JG, Lee HW, Ko S, Chae JS. Comparative proteomic analysis of outer membrane protein 43 ( omp43)-deficient Bartonella henselae. J Vet Sci 2018; 19:59-70. [PMID: 28693313 PMCID: PMC5799401 DOI: 10.4142/jvs.2018.19.1.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
Outer membrane proteins (OMPs) of Gram-negative bacteria constitute the first line of defense protecting cells against environmental stresses including chemical, biophysical, and biological attacks. Although the 43-kDa OMP (OMP43) is major porin protein among Bartonella henselae-derived OMPs, its function remains unreported. In this study, OMP43-deficient mutant B. henselae (Δomp43) was generated to investigate OMP43 function. Interestingly, Δomp43 exhibited weaker proliferative ability than that of wild-type (WT) B. henselae. To study the differences in proteomic expression between WT and Δomp43, two-dimensional gel electrophoresis-based proteomic analysis was performed. Based on Clusters of Orthologus Groups functional assignments, 12 proteins were associated with metabolism, 7 proteins associated with information storage and processing, and 3 proteins associated with cellular processing and signaling. By semi-quantitative reverse transcriptase polymerase chain reaction, increases in tldD, efp, ntrX, pdhA, purB, and ATPA mRNA expression and decreases in Rho and yfeA mRNA expression were confirmed in Δomp43. In conclusion, this is the first report showing that a loss of OMP43 expression in B. henselae leads to retarded proliferation. Furthermore, our proteomic data provide useful information for the further investigation of mechanisms related to the growth of B. henselae.
Collapse
Affiliation(s)
- Jun-Gu Kang
- Laboratory of Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hee-Woo Lee
- Laboratory of Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sungjin Ko
- Laboratory of Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Rojas J, Castillo G, Leiva LE, Elgamal S, Orellana O, Ibba M, Katz A. Codon usage revisited: Lack of correlation between codon usage and the number of tRNA genes in enterobacteria. Biochem Biophys Res Commun 2018; 502:450-455. [PMID: 29859934 DOI: 10.1016/j.bbrc.2018.05.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023]
Abstract
It is widely believed that if a high number of genes are found for any tRNA in a rapidly replicating bacteria, then the cytoplasmic levels of that tRNA will be high and an open reading frame containing a higher frequency of the complementary codon will be translated faster. This idea is based on correlations between the number of tRNA genes, tRNA concentration and the frequency of codon usage observed in a limited number of strains as well as from the fact that artificially changing the number of tRNA genes alters translation efficiency and consequently the amount of properly folded protein synthesized. tRNA gene number may greatly vary in a genome due to duplications, deletions and lateral transfer which in turn would alter the levels and functionality of many proteins. Such changes are potentially deleterious for fitness and as a result it is expected that changes in tRNA gene numbers should be accompanied by a modification of the frequency of codon usage. In contrast to this model, when comparing the number of tRNA genes and the frequency of codon usage of several Salmonella enterica and Escherichia coli strains we found that changes in the number of tRNA genes are not correlated to changes in codon usage. Furthermore, these changes are not correlated with a change in the efficiency of codon translation. These results suggest that once a genome gains or loses tRNA genes, it responds by modulating the concentrations of tRNAs rather than modifying its frequency of codon usage.
Collapse
Affiliation(s)
- Joaquín Rojas
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Gabriel Castillo
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Lorenzo Eugenio Leiva
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Omar Orellana
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile.
| |
Collapse
|
9
|
Genome-based Definition of an Inflammatory Bowel Disease-associated Adherent-Invasive Escherichia coli Pathovar. Inflamm Bowel Dis 2016; 22:1-12. [PMID: 26444104 DOI: 10.1097/mib.0000000000000574] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mucosal-associated Escherichia coli are commonly found in inflamed tissues during inflammatory bowel disease (IBD). These bacteria often possess an adherent and invasive phenotype but lack virulence-associated features of well-described intestinal E. coli pathogens, and are of diverse serology and phylotypes, making it difficult to correlate strain characteristics with exacerbations of disease. METHODS The genome sequences of 14 phenotypically assigned adherent-invasive Escherichia coli (AIEC) isolates obtained from intestinal biopsies of patients with IBD were compared with the genome sequences of 37 other pathogenic and commensal E. coli available from public databases. RESULTS Core genome-based phylogenetic analyses and genome-wide comparison of genetic content established the existence of a closely related cluster of AIEC strains with 3 distinct genetic insertions differentiating them from commensal E. coli. These strains are of the B2 phylotype have a variant type VI secretion system (T6SS-1), and are highly related to extraintestinal pathogenic E. coli, suggesting that these 2 clinically distinct pathovars have common virulence strategies. Four other mucosally adherent E. coli strains from patients with IBD were of diverse phylogenetic origins and lacked the 3 genetic features, suggesting that they are not related to the B2 AIEC cluster. Although AIEC are often considered as having a unique association with Crohn's disease, isolates from Crohn's disease and ulcerative colitis were genetically indistinguishable. CONCLUSIONS B2 AIEC thus represent a closely related cluster of IBD-associated E. coli strains that are distinct from normal commensal isolates, and which should be considered separately from the phenotypically similar but genetically distinct non-B2 AIEC strains when considering their association with intestinal pathogenesis.
Collapse
|
10
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
11
|
Molecular detection of the index case of a subclinical Salmonella Kentucky epidemic on a dairy farm. Epidemiol Infect 2015; 143:682-6. [PMID: 25703396 DOI: 10.1017/s0950268814001289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Salmonella enterica commonly colonizes the intestinal tract of cattle and is a leading cause of foodborne illness. A previously described investigation into the prevalence of S. enterica on a dairy farm revealed an 8-year-long asymptomatic S. enterica epidemic caused by serotypes Cerro and Kentucky in the lactating herd. To investigate the source of the S. Kentucky strains, the genomes of two S. Kentucky isolates were sequenced; one collected prior to the epidemic (2004) and one collected during the epidemic (2010). Comparative genomic analysis demonstrated significant polymorphisms between the two strains. PCR primers targeting unique and strain-specific regions were developed, and screening of the archived isolates identified the index case of the asymptomatic S. Kentucky epidemic as a heifer that was raised off-site and transported onto the study farm in 2005. Analysis of isolates collected from all heifers brought onto the farm demonstrated frequent re-introduction of clones of the epidemic strain suggesting transmission of pathogens between farms might occur repeatedly.
Collapse
|
12
|
Draft Genome Sequence of Salmonella enterica Serovar Typhi Strain STH2370. GENOME ANNOUNCEMENTS 2014; 2:2/1/e00104-14. [PMID: 24558245 PMCID: PMC3931366 DOI: 10.1128/genomea.00104-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Salmonella enterica serovar Typhi strain STH2370, isolated from a typhoid fever patient in Santiago, Chile. This clinical isolate has been used as the reference wild-type strain in numerous studies conducted in our laboratories during the last 15 years.
Collapse
|
13
|
Rodas PI, Trombert AN, Mora GC. A holin remnant protein encoded by STY1365 is involved in envelope stability of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 2011; 321:58-66. [PMID: 21592194 DOI: 10.1111/j.1574-6968.2011.02310.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We characterized STY1365, a small ORF of Salmonella enterica serovar Typhi. This 174-bp ORF encodes a putative product of 57 amino acid residues with a premature stop codon. Nevertheless, bioinformatic analyses revealed that the predicted product of STY1365 has similarity to putative holin genes of Escherichia coli and bacteriophage ΦP27. STY1365 showed a high-level expression at the early log phase and a small corresponding protein product was detected mainly in the inner membrane fraction. Cloning of STY1365 in pSU19 mid-copy-vector produced retardation in S. Typhi growth, increased cell permeability to crystal violet and altered the inner membrane protein profile. Similar results were obtained when STY1365 was induced with isopropyl-β-d-thio-galactoside in pCC1(™) single-copy vector. Our results support the fact that S. Typhi STY1365 encodes a holin remnant protein that is involved in the stability of the bacterial envelope.
Collapse
Affiliation(s)
- Paula I Rodas
- Programa de Doctorado en Bioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
14
|
Abstract
Inducible gene expression based upon Tet repressor (tet regulation) is a broadly applied tool in molecular genetics. In its original environment, Tet repressor (TetR) negatively controls tetracycline (tc) resistance in bacteria. In the presence of tc, TetR is induced and detaches from its cognate DNA sequence tetO, so that a tc antiporter protein is expressed. In this article, we provide a comprehensive overview about tet regulation in bacteria and illustrate the parameters of different regulatory architectures. While some of these set-ups rely on natural tet-control regions like those found on transposon Tn10, highly efficient variations of this system have recently been adapted to different Gram-negative and Gram-positive bacteria. Novel tet-controllable artificial or hybrid promoters were employed for target gene expression. They are controlled by regulators expressed at different levels either in a constitutive or in an autoregulated manner. The resulting tet systems have been used for various purposes. We discuss integrative elements vested with tc-sensitive promoters, as well as tet regulation in Gram-negative and Gram-positive bacteria for analytical purposes and for protein overproduction. Also the use of TetR as an in vivo biosensor for tetracyclines or as a regulatory device in synthetic biology constructs is outlined. Technical specifications underlying different regulatory set-ups are highlighted, and finally recent developments concerning variations of TetR are presented, which may expand the use of prokaryotic tet systems in the future.
Collapse
Affiliation(s)
- Ralph Bertram
- Lehrbereich Mikrobielle Genetik, Eberhard Karls Universität Tübingen, Waldhäuserstr. 70/8, 72076 Tübingen, Germany.
| | | |
Collapse
|
15
|
Rodas PI, Contreras I, Mora GC. Salmonella enterica serovar Typhi has a 4.1 kb genetic island inserted within the sapABCDF operon that causes loss of resistance to the antimicrobial peptide protamine. J Antimicrob Chemother 2010; 65:1624-30. [PMID: 20551214 DOI: 10.1093/jac/dkq197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To investigate the association between the presence of a genetic island inserted within the sapABCDF operon of Salmonella Typhi and the susceptibility to antimicrobial peptides. METHODS Genetics and bioinformatics approaches were used to study the genomic organization of the sap operon of Salmonella Typhi and several serovars of Salmonella enterica. PCR was used to confirm the information obtained from these analyses. Deletion of the entire genetic island of Salmonella Typhi was achieved by the red swap method. RT-PCR amplification and antimicrobial peptide susceptibility tests were used to evaluate expression of the sap genes and bacterial resistance to protamine. RESULTS Inspection of the genomes of Salmonella Typhi and 10 serovars of Salmonella enterica showed an insertion of a genetic island located between the sapB and sapC genes of the sap operon. This genetic element was referred to as GICT18/1. Unlike Salmonella Typhimurium, the bacterial susceptibility to protamine is increased in Salmonella Typhi wild-type. Deletion of GICT18/1 resulted in protamine susceptibility levels similar to those of Salmonella Typhimurium, suggesting that restoration of the sap operon occurred in the Salmonella Typhi Delta GICT18-1 mutant strain. RT-PCR experiments supported this assumption because an amplicon containing a fragment of sapD-sapF was detected in Salmonella Typhi Delta GICT18/1, whereas it was not detected in Salmonella Typhi wild-type. CONCLUSIONS The presence of GICT18/1 seems to be a natural feature of Salmonella Typhi. This genetic island is found only in 10 out of 32 Salmonella enterica serovars included in this study. Removal of GICT18/1 has an impact in the susceptibility of Salmonella Typhi to the antimicrobial peptide protamine.
Collapse
Affiliation(s)
- Paula I Rodas
- Programa de Doctorado en Bioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
16
|
Retamal P, Castillo-Ruiz M, Villagra NA, Morgado J, Mora GC. Modified intracellular-associated phenotypes in a recombinant Salmonella Typhi expressing S. Typhimurium SPI-3 sequences. PLoS One 2010; 5:e9394. [PMID: 20195364 PMCID: PMC2827545 DOI: 10.1371/journal.pone.0009394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 02/05/2010] [Indexed: 11/19/2022] Open
Abstract
A bioinformatics comparison of Salmonella Pathogenicity Island 3 sequences from S. Typhi and S. Typhimurium serovars showed that ten genes are highly conserved. However three of them are pseudogenes in S. Typhi. Our aim was to understand what functions are lost in S. Typhi due to pseudogenes by constructing a S. Typhi genetic hybrid carrying the SPI-3 region of S. Typhimurium instead of its own SPI-3. We observed that under stressful conditions the hybrid strain showed a clear impairment in resistance to hydrogen peroxide and decreased survival within U937 culture monocytes. We hypothesized that the marT-fidL operon, encoded in SPI-3, was responsible for the new phenotypes because marT is a pseudogen in S. Typhi and has a demonstrated role as a transcriptional regulator in S. Typhimurium. Therefore we cloned and transferred the S. Typhimurium marT-fidL operon into S. Typhi and confirmed that invasion of monocytes was dramatically decreased. Finally, our findings suggest that the genomic and functional differences between SPI-3 sequences have implications in the host specificity of Typhi and Typhimurium serovars.
Collapse
Affiliation(s)
- Patricio Retamal
- Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Mario Castillo-Ruiz
- Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Nicolás A. Villagra
- Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Juan Morgado
- Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Guido C. Mora
- Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
17
|
Retamal P, Castillo-Ruiz M, Mora GC. Characterization of MgtC, a virulence factor of Salmonella enterica Serovar Typhi. PLoS One 2009; 4:e5551. [PMID: 19436747 PMCID: PMC2677668 DOI: 10.1371/journal.pone.0005551] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/20/2009] [Indexed: 11/19/2022] Open
Abstract
The MgtC is a virulence factor in Salmonella Typhimurium that is required for growth at low-Mg2+ concentrations and intramacrophage survival. This gene is codified in a conserved region of the Salmonella pathogenicity island 3 (SPI-3), and is also present in the chromosome of other Salmonella serovars. In this study we characterized the MgtC factor in S. Typhi, a human specific pathogen, by using mgtC and SPI-3 mutant strains. We found that MgtC is the most important factor codified in the SPI-3 of S. Typhi for growth in low-Mg2+ media and survival within human cells. In addition, by using reporter genes we determined that the low-Mg2+ concentration, acidic media and PhoP regulator induce mgtC expression in S. Typhi. We suggest that MgtC is the most important virulence factor codified in the SPI-3 of S. Typhi.
Collapse
Affiliation(s)
- Patricio Retamal
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
- Programa de Doctorado Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Castillo-Ruiz
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Guido C. Mora
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
18
|
Comparative proteomic analysis of the Haemophilus ducreyi porin-deficient mutant 35000HP::P2AB. J Bacteriol 2008; 191:2144-52. [PMID: 19103932 DOI: 10.1128/jb.01487-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Haemophilus ducreyi is an obligate human pathogen and the causative agent of the sexually transmitted, genital ulcerative disease chancroid. The genome of strain 35000HP contains two known porin proteins, OmpP2A and OmpP2B. Loss of OmpP2A and OmpP2B expression in the mutant 35000HP::P2AB resulted in no obvious growth defect or phenotype. Comparison of outer membrane profiles indicated increased expression of the 58.5-kDa chaperone, GroEL, in the porin-deficient mutant. A proteomics-based comparison resulted in the identification of 231 proteins present in membrane-associated protein samples, of which a subset of 56 proteins was differentially expressed at a level of 1.5-fold or greater in the porin-deficient strain 35000HP::P2AB relative to that in 35000HP. Twenty of the differentially expressed proteins were selected for real-time PCR, resulting in the validation of 90% of the selected subgroup. Proteins identified in these studies suggested a decreased membrane stability phenotype, which was verified by disk diffusion assay. Loss of OmpP2A and OmpP2B resulted in global protein expression changes which appear to compensate for the absence of porin expression in 35000HP::P2AB.
Collapse
|
19
|
Bucarey SA, Villagra NA, Fuentes JA, Mora GC. The cotranscribed Salmonella enterica sv. Typhi tsx and impX genes encode opposing nucleoside-specific import and export proteins. Genetics 2006; 173:25-34. [PMID: 16489221 PMCID: PMC1461456 DOI: 10.1534/genetics.105.054700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Salmonella enterica tsx gene encodes a nucleoside-specific outer membrane channel. The Tsx porin is essential for the prototrophic growth of S. enterica sv. Typhi in the absence of nucleosides. RT-PCR analysis shows that the tsx gene is cotranscribed with an open reading frame unique to S. enterica, impX (STY0450), which encodes an inner membrane protein 108 amino acids in length, which is predicted to have only two transmembrane alpha-helices. Fusions of the lacZ gene to both tsx and impX reveal that the transcription of both genes is induced in the presence of adenosine. A null mutation in the S. Typhi impX gene suppresses the induced auxotrophy for adenosine or thymidine resulting from a tsx mutation and confers sensitivity to high concentrations of adenosine or thymidine. The ImpX protein, when tagged with a 3xFLAG epitope, is functional and associates with the inner membrane; impX mutants are defective in the export of 3H-radiolabeled thymidine. Taken together, these and other results suggest that the S. Typhi Tsx porin and ImpX inner membrane protein facilitate competing mechanisms of thymidine influx and efflux, respectively, to maintain the steady-state levels of internal nucleoside pools.
Collapse
Affiliation(s)
- Sergio A Bucarey
- Programa Doctorado de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|