1
|
Matsuoka M, Soria SA, Pires JR, Sant'Ana ACP, Freire M. Natural and induced immune responses in oral cavity and saliva. BMC Immunol 2025; 26:34. [PMID: 40251519 PMCID: PMC12007159 DOI: 10.1186/s12865-025-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
This review comprehensively explores the intricate immune responses within the oral cavity, emphasizing the pivotal role of saliva in maintaining both oral and systemic health. Saliva, a complex biofluid, functions as a dynamic barrier against pathogens, housing diverse cellular components including epithelial cells, neutrophils, monocytes, dendritic cells, and lymphocytes, which collectively contribute to robust innate and adaptive immune responses. It acts as a physical and immunological barrier, providing the first line of defense against pathogens. The multifaceted protective mechanisms of salivary proteins, cytokines, and immunoglobulins, particularly secretory IgA (SIgA), are elucidated. We explore the natural and induced immune responses in saliva, focusing on its cellular and molecular composition. In addition to saliva, we highlight the significance of a serum-like fluid, the gingival crevicular fluid (GCF), in periodontal health and disease, and its potential as a diagnostic tool. Additionally, the review delves into the impact of diseases such as periodontitis, oral cancer, type 2 diabetes, and lupus on salivary immune responses, highlighting the potential of saliva as a non-invasive diagnostic tool for both oral and systemic conditions. We describe how oral tissue and the biofluid responds to diseases, including considerations to periodontal tissue health and in disease periodontitis. By examining the interplay between oral and systemic health through the oral-systemic axis, this review underscores the significance of salivary immune mechanisms in overall well-being and disease pathogenesis, emphasizing the importance of salivary mechanisms across the body.
Collapse
Affiliation(s)
- Michele Matsuoka
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Salim Abraham Soria
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Julien Rodrigues Pires
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, 17012-901, Brazil
| | | | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Mathews L, Appukuttan D, Victor DJ, Venkadassalapathy S, Subramanian S, Prakash PSG. Role of miRNA-155 in macrophage polarisation in stage III/IV periodontitis with type II diabetes mellitus: An analytical case-control study. Hum Immunol 2025; 86:111214. [PMID: 39667205 DOI: 10.1016/j.humimm.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
AIM To evaluate the role of miR-155 in macrophage polarisation in stage III/IV periodontitis with Type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Sixty four patients were recruited and categorized into Group I-systemically and Periodontally healthy (n = 16), Group II-systemically healthy with Stage III/IV Periodontitis(n = 16), Group III-Periodontally healthy with T2DM (n = 16) and Group IV- Stage III/IV Periodontitis with T2DM(n = 16).Gingival tissue samples were collected and Real time-PCR was carried out for microRNA-155, TNF- α(marker for M1 phenotype) and Arg-1(marker for M2 phenotype) gene expression. RESULTS Group IV showed the highest increase in miR-155 fold change (FC) (11.17 ± 10.44), followed by groups III and II(10.35 ± 15.87, 5.1 ± 5.17 respectively) when compared to Group I. Likewise, the highest FC for TNF-α expression was observed in the group IV (10.11 ± 12.14). Groups II and III showed an almost similar increase in the FC(4.36 ± 4.48 and 4.79 ± 6.91, respectively). Periodontally healthy subjects demonstrated higher levels of Arg-1 gene expression(4.41 ± 5.17), followed by reduced expression in the groups II and IV (2.46 ± 2.21 and 2.65 ± 3.25, respectively). The TNF-α:Arg-1 ratio indicated that group I had higher Arg-1 expression, while group III and IV individuals had higher TNF-α expression. Compared to miR-155 and Arg-1, which demonstrated poor Area under the curve(AUC), sensitivity and specificity, TNF-α was able to distinguish between the groups III & IV (AUC = 0.74, p = 0.02, sensitivity 92 %, specificity 83 %, cut off = 27.28) and I & IV (AUC = 0.6, p = 0.03, sensitivity 81 %, specificity 77 %, cut off = 26.04). CONCLUSION Dysregulated miR-155 contributes to hyperinflammatory state in T2DM associated periodontitis by favouring macrophage polarisation towards the M1 phenotype.However, the strength of this relationship and the association with severity of periodontal disease could not be confirmed in this study.
Collapse
Affiliation(s)
- Leya Mathews
- Postgraduate Student, Department of Periodontics, SRM Dental College, Bharathi Salai, Chennai, India.
| | - Devapriya Appukuttan
- Professor, Department of Periodontics, SRM Dental College, Bharathi Salai,Chennai, India.
| | - Dhayanand John Victor
- Professor and Head of the Department, Department of Periodontics, SRM Dental College, Bharathi Salai, Chennai, India
| | | | - Sangeetha Subramanian
- Professor, Department of Periodontics, SRM Dental College, Bharathi Salai,Chennai, India
| | - P S G Prakash
- Professor, Department of Periodontics, SRM Dental College, Bharathi Salai,Chennai, India
| |
Collapse
|
3
|
Pamuk F, Kantarci A. Inflammation as a link between periodontal disease and obesity. Periodontol 2000 2022; 90:186-196. [PMID: 35916870 DOI: 10.1111/prd.12457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrition plays a critical role in the homeostatic balance, maintenance of health, and longevity. There is a close link between inflammatory diseases and nutritional health. Obesity is a severe pathological process with grave implications on several organ systems and disease processes, including type 2 diabetes, cardiovascular disease, osteoarthritis, and rheumatoid arthritis. The impact of obesity on periodontal inflammation has not been fully understood; the association between nutritional balance and periodontal inflammation is much less explored. This review is focused on the potential mechanistic links between periodontal diseases and obesity and common inflammatory activity pathways that can be pharmacologically targeted.
Collapse
Affiliation(s)
- Ferda Pamuk
- Forsyth Institute, Cambridge, Massachusetts, USA.,Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
4
|
Larsson L, Garaicoa-Pazmino C, Asa'ad F, Castilho RM. Understanding the role of endotoxin tolerance in chronic inflammatory conditions and periodontal disease. J Clin Periodontol 2021; 49:270-279. [PMID: 34970759 DOI: 10.1111/jcpe.13591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This review aims to present the current understanding of endotoxin tolerance (ET) in chronic inflammatory diseases and explores the potential connection with periodontitis. SUMMARY Subsequent exposure to lipopolysaccharides (LPS) triggers ET, a phenomenon regulated by different mechanisms and pathways, including toll-like receptors (TLRs), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), apoptosis of immune cells, epigenetics, and microRNAs (miRNAs). These mechanisms interconnect ET with chronic inflammatory diseases that include periodontitis. While the direct correlation between ET and periodontal destruction has not been fully elucidated, emerging reports point towards the potential tolerization of human periodontal ligament cells (hPDLCs) and gingival tissues with a significant reduction of TLR levels. CONCLUSIONS There is a potential link between ET and periodontal diseases. Future studies should explore the crucial role of ET in the pathogenesis of periodontal diseases as evidence of a tolerized oral mucosa may represent an intrinsic mechanism capable of regulating the oral immune response. A clear understanding of this host immune regulatory mechanism might lead to effective and more predictable therapeutic strategies to treat chronic inflammatory diseases and periodontitis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontology Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carlos Garaicoa-Pazmino
- Department of Periodontics, University of Iowa, College of Dentistry and Dental Clinics, Iowa City, IA, USA.,School of Dentistry, Espíritu Santo University, Samborondon, Ecuador
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Oral Biochemistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Guo T, Gulati K, Arora H, Han P, Fournier B, Ivanovski S. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent Mater 2021; 37:816-831. [PMID: 33676764 DOI: 10.1016/j.dental.2021.02.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/03/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The success of a dental implant system not only depends on appropriate osseointegration at the bone-implant interface, but also on robust soft-tissue integration (STI)/muco-integration at the transmucosal region. However, numerous studies have reported that the STI quality of conventional smooth and bio-inert titanium-based transmucosal components is significantly inferior to that of natural teeth, which may compromise the long-term success of implant restorations. In this review article, we discuss the structural and histological characteristics of peri-implant tissues; compare the roles of various cells residing in the transmucosal region and explore the material-based challenges that must be addressed to achieve early establishment and long-term maintenance of STI. METHODS This extensive review article critically compares and contrasts the findings from articles published in the domain of 'soft-tissue integration around Ti dental implants'. RESULTS Histological characteristics, including poorer epithelial attachment and absence of direct collagen-implant/abutment integration, are responsible for the inferior STI strength around dental implants/abutments. Furthermore, various cellular functions during STI establishment and maturation at the abutment-mucosa interface must be modulated to achieve early STI. Moreover, we discuss and detail the challenges of achieving robust STI, including the presence of oral bacterial milieu, as well as material and corrosion related issues. Finally, research challenges towards achieving and maintaining robust STI are discussed, targeting the future directions to enhance the long-term survival of implant restorations. SIGNIFICANCE Based on its histological characteristics, STI on current implant/abutment surfaces is suboptimal compared to the periodontal attachment found at teeth, making implants potentially more susceptible to disease initiation and progression. To obtain stable STI at the trasmucosal region, it is essential for future studies to design customized implant systems, with enhanced surface bioactivity and tailorable therapeutic capacity, which can improve the long-term success of implant restorations, especially in compromised conditions.
Collapse
Affiliation(s)
- Tianqi Guo
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Karan Gulati
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| | - Himanshu Arora
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Pingping Han
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia; Universite de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral and Dental Rare Diseases, Paris, France; Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, INSERM UMRS 1138, Molecular Oral Pathophysiology, Paris, France
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| |
Collapse
|
6
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
7
|
Behm C, Blufstein A, Abhari SY, Koch C, Gahn J, Schäffer C, Moritz A, Rausch-Fan X, Andrukhov O. Response of Human Mesenchymal Stromal Cells from Periodontal Tissue to LPS Depends on the Purity but Not on the LPS Source. Mediators Inflamm 2020; 2020:8704896. [PMID: 32714091 PMCID: PMC7352132 DOI: 10.1155/2020/8704896] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Human periodontal ligament stromal cells (hPDLSCs) and gingival mesenchymal stromal cells (hGMSCs) are resident mesenchymal stromal cells (MSCs) of the periodontal tissue. The lipopolysaccharide (LPS) from Porphyromonas gingivalis is structurally distinct from that of other Gram-negative bacteria, and earlier studies linked this structural difference to a distinct virulence activity and the ability to activate toll-like receptor 2 (TLR-2), besides TLR-4 as commonly occurring upon LPS challenge. Later studies, in contrast, argue that TLR-2 activation by P. gingivalis LPS is due to lipoprotein contamination. In the present study, we aimed to define the influence of structure versus purity of P. gingivalis LPS on the immune response of hPDLSCs and hGMSCs. Cells were stimulated with commercially available "standard" P. gingivalis LPS, "ultrapure" P. gingivalis LPS, or "ultrapure" Escherichia coli LPS, and the expression of interleukin- (IL-) 8, IL-6, monocyte chemoattractant protein- (MCP-) 1, TLR-2, and TLR-4 was evaluated. The contribution of TLR-4 to the LPS-induced response was assessed using the specific TLR-4 inhibitor TAK-242. "Standard" P. gingivalis LPS induced significantly higher IL-8, IL-6, and MCP-1 production compared to the "ultrapure" LPS preparations, with no significant difference detectable for "ultrapure" LPS from P. gingivalis and E. coli. By using TAK-242, the response of hPDLSCs and hGMSCs to "ultrapure" LPS preparations was effectively inhibited to the levels comparable to those of nonstimulated controls. In contrast, high levels of response to "standard" LPS were observed, even in the presence of TAK-242. Our data show that the response of MSCs from periodontal tissue to LPS depends more on the purity of the LPS preparation than on the LPS source. Even a small amount of contaminating lipoproteins can drastically enhance the hPDLSCs' and hGMSCs; responsiveness to P. gingivalis LPS, which might also contribute to the progression of periodontal disease.
Collapse
Affiliation(s)
- Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Setareh Younes Abhari
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christoph Koch
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology/NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Keong JY, Low LW, Chong JM, Ong YY, Pulikkotil SJ, Singh G, Nagendrababu V, Banavar SR, Khoo SP. Effect of lipopolysaccharide on cell proliferation and vascular endothelial growth factor secretion of periodontal ligament stem cells. Saudi Dent J 2020; 32:148-154. [PMID: 32180672 PMCID: PMC7063416 DOI: 10.1016/j.sdentj.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/20/2019] [Accepted: 08/18/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Periodontal ligament stem cells (PDLSCs) have considerable potential for use as a means of achieving periodontal regeneration due to their noteworthy proliferative properties and secretory functions. In particular, PDLSCs secrete vascular endothelial growth factor (VEGF) which enhances angiogenesis and osteogenesis. The resulting repair and development of blood vessels and hard tissues which would occur in the presence of these cells could be central to an effective periodontal regeneration procedure.The bacterial biofilm of tooth surface related to the periodontium might provide either an inhibition or a stimulus to different factors involved in a regenerative process. Cell culture experiments have been investigated in vitro by adding lipopolysaccharide (LPS) to the culture medium but the effect of various concentration of LPS in these circumstances has not been investigated. Therefore, this study aimed to investigate the effect of LPS concentrations on proliferation of PDLSCs in vitro and on their secretion of VEGF. MATERIALS AND METHODS PDLSCs were treated with 0, 5, 10 and 20 µg/mL of Escherichia coli LPS. At 48 and 96 h, total cell numbers of control and LPS treated PDLSCs were counted by haemocytometer under a microscope. The VEGF concentration in the conditioned media of the PDLSCs was measured by ELISA. RESULTS Rate of cell proliferation of PDLSCs decreased significantly in all LPS treated groups at both 48 h and 96 h except for the group treated with 5 µg/mL of LPS at 48 h. At both 48 and 96 h, VEGF secretion from PDLSCs was reduced significantly at all three LPS concentrations. There was no statistically significant difference in cell proliferation and the amount of VEGF secretion of PDLSCs among the groups treated with different LPS concentrations. No statistically significant change was found in cell proliferation of LPS treated PDLSCs over time, whereas VEGF secretion of PDLSCs was found to have increased significantly with time despite the LPS treatment. CONCLUSIONS LPS reduced cell proliferation and VEGF secretion of PDLSCs, suggesting that periodontal pathogens might reduce the capability of PDLSCs in periodontal regeneration. Yet, LPS treated PDLSCs remained viable and VEGF secretion increased significantly over time. Further research is needed to study the potential use of PDLSCs in periodontal regeneration and the relationship of biofilm LPS accumulations.
Collapse
Affiliation(s)
- Jia Yee Keong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Li Wei Low
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Jean Mun Chong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Yan Yi Ong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Shaju Jacob Pulikkotil
- Department of Periodontology and Implantology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Gurbind Singh
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Venkateshbabu Nagendrababu
- Department of Endodontics, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Spoorthi Ravi Banavar
- Department of Oral Medicine and Pathology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Department of Oral Medicine and Pathology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Muthukuru M. Commentary: Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Front Immunol 2020; 10:2932. [PMID: 31921186 PMCID: PMC6931266 DOI: 10.3389/fimmu.2019.02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manoj Muthukuru
- Health Sciences Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Muthukuru M. Towards endotoxin tolerance or not? Implications from localized odontogenic periodontitis to systemic septic shock syndrome. Med Hypotheses 2019; 134:109418. [PMID: 31622923 DOI: 10.1016/j.mehy.2019.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Manoj Muthukuru
- Rajan Dental Institute, Chennai Dental Research Foundation, India.
| |
Collapse
|
11
|
Altered Toll-Like Receptor Signalling in Children with Down Syndrome. Mediators Inflamm 2019; 2019:4068734. [PMID: 31611734 PMCID: PMC6757445 DOI: 10.1155/2019/4068734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are the key in initiating innate immune responses. TLR2 is crucial in recognising lipopeptides from gram-positive bacteria and is implicated in chronic inflammation. Children with Down syndrome (DS) are prone to infections from these pathogens and have an increased risk of autoimmunity. Sparstolonin B (SsnB) is a TLR antagonist which attenuates cytokine production and improves outcomes in sepsis. We hypothesised that TLR signalling may be abnormal in children with DS and contribute to their clinical phenotype. We evaluated TLR pathways in 3 ways: determining the expression of TLR2 on the surface of neutrophils and monocytes by flow cytometry, examining the gene expression of key regulatory proteins involved in TLR signal propagation, MyD88, IRAK4, and TRIF, by quantitative PCR, and lastly determining the cytokine production by ELISA following immunomodulation with proinflammatory stimuli (lipopolysaccharide (LPS), Pam3Csk4) and the anti-inflammatory agent SsnB. We report TLR2 expression being significantly increased on neutrophils, total monocytes, and intermediate and nonclassical monocytes in children with DS (n = 20, mean age 8.8 ± SD 5.3 years, female n = 11) compared to controls (n = 15, mean age 6.2 ± 4.2 years, female n = 5). At baseline, the expression of MyD88 was significantly lower, and TRIF significantly raised in children with DS. The TLR antagonist SsnB was effective in reducing TLR2 and CD11b expression and abrogating cytokine production in both cohorts. We conclude that TLR signalling and the TLR2 pathway are dysregulated in DS, and this disparate innate immunity may contribute to chronic inflammation in DS. SsnB attenuates proinflammatory mediators and may be of therapeutic benefit.
Collapse
|
12
|
The maintenance of an oral epithelial barrier. Life Sci 2019; 227:129-136. [PMID: 31002922 DOI: 10.1016/j.lfs.2019.04.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 02/05/2023]
Abstract
Oral epithelial barrier consists of closely controlled structure of the stratified squamous epithelium, which is the gateway to human bodies and encounters a huge burden of microbial, airborne and dietary antigens, as well as masticatory damage. Once this barrier is destroyed, it will trigger bone loss, tissue damage and microbial dysbiosis and lead to diseases, such as periodontitis, oral mucosal diseases and oral cancer. Recently, increasing evidences showed that different factors including microorganism, saliva, proteins and immune components have been considered to play a critical role in the disruption of oral epithelial barrier. Herein, we discussed mechanisms governing the maintenance of oral epithelial barrier. Besides, the role of oral epithelial barrier failure in oral carcinogenesis will also be talked about.
Collapse
|
13
|
Mathews J, Patel M. Bacterial endotoxins and microorganisms in the oral cavities of patients on cancer therapy. Microb Pathog 2018; 123:190-195. [PMID: 30016679 DOI: 10.1016/j.micpath.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/28/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES This study investigated the presence of Streptococci, Staphylococci, aerobic gram negative bacteria (AGNB), Candida and bacterial endotoxins in the oral cavities of patients receiving chemo- and/or radiotherapy for cancer. METHODS Samples of oral cavity rinse were collected from 100 patients on cancer treatment and 70 healthy individuals. Demographic and clinical data were recorded. Samples were cultured onto various agar plates for qualitative and quantitative analysis and tested for the presence of endotoxin. Results were analysed using the Mann-Whitney and chi-square tests. RESULTS In cancer patients, S. aureus counts were high and 66.7% of patients on chemo- and radiotherapy carried these bacteria (p=<0.05). The Candida carrier rate was significantly (p < 0.01) high in cancer patients (54%). No significant difference was found in the carrier rate of Streptococci and AGNB between the healthy and cancer group as well as between the cancer patients with chemo and radio- and chemotherapy alone. No significant difference was found in the level of endotoxin between the cancer patients and healthy individuals, and cancer patients with and without AGNB. CONCLUSIONS No differences in the prevalence of bacteria and bacterial endotoxins were found between the cancer patients and healthy individuals. Oral cavity endotoxins did not correlate with the carriage of AGNB. However, due to the high prevalence in cancer patients, the role of Candida species and S. aureus in the pathology may not be excluded.
Collapse
Affiliation(s)
- J Mathews
- Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - M Patel
- Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
14
|
Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: A literature review. Complement Ther Med 2018; 38:11-18. [DOI: 10.1016/j.ctim.2018.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/26/2018] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
|
15
|
Belfield LA, Bennett JH, Abate W, Jackson SK. Exposure to Porphyromonas gingivalis LPS during macrophage polarisation leads to diminished inflammatory cytokine production. Arch Oral Biol 2017; 81:41-47. [DOI: 10.1016/j.archoralbio.2017.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|
16
|
Compromised inflammatory cytokine response to P. gingivalis LPS by fibroblasts from inflamed human gingiva. Clin Oral Investig 2017; 22:919-927. [DOI: 10.1007/s00784-017-2171-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
|
17
|
Schueller K, Riva A, Pfeiffer S, Berry D, Somoza V. Members of the Oral Microbiota Are Associated with IL-8 Release by Gingival Epithelial Cells in Healthy Individuals. Front Microbiol 2017; 8:416. [PMID: 28360899 PMCID: PMC5350107 DOI: 10.3389/fmicb.2017.00416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
The triggers for the onset of oral diseases are still poorly understood. The aim of this study was to characterize the oral bacterial community in healthy humans and its association with nutrition, oral hygiene habits, and the release of the inflammatory marker IL-8 from gingival epithelial cells (GECs) with and without stimulation by bacterial endotoxins to identify possible indicator operational taxonomic units (OTUs) associated with inflammatory marker status. GECs from 21 healthy participants (13 females, 8 males) were incubated with or without addition of bacterial lipopolysaccharides (LPSs), and the oral microbiota was profiled using 16S rRNA gene-targeted sequencing. The basal IL-8 release after 6 h was between 9.9 and 98.2 pg/ml, and bacterial communities were characteristic for healthy oral microbiota. The composition of the oral microbiota was associated with basal IL-8 levels, the intake of meat, tea, white wine, sweets and the use of chewing gum, as well as flossing habits, allergies, gender and body mass index. Additionally, eight OTUs were associated with high basal levels of IL-8 and GEC response to LPS, with high basal levels of IL-8, and 1 with low basal levels of IL8. The identification of indicator bacteria in healthy subjects with high levels of IL-8 release is of importance as they may be promising early warning indicators for the possible onset of oral diseases.
Collapse
Affiliation(s)
- Katharina Schueller
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of ViennaVienna, Austria
- Research Network “Chemistry Meets Microbiology”, University of ViennaVienna, Austria
| | - Alessandra Riva
- Department of Health Sciences, Università degli Studi di MilanoMilan, Italy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Stefanie Pfeiffer
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of ViennaVienna, Austria
| | - David Berry
- Research Network “Chemistry Meets Microbiology”, University of ViennaVienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of ViennaVienna, Austria
- Research Network “Chemistry Meets Microbiology”, University of ViennaVienna, Austria
- Christian Doppler Laboratory for Bioactive Aroma Compounds, University of ViennaVienna, Austria
| |
Collapse
|
18
|
Heron SE, Elahi S. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation. Front Immunol 2017; 8:241. [PMID: 28326084 PMCID: PMC5339276 DOI: 10.3389/fimmu.2017.00241] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to “inflammaging” that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Samantha E Heron
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Heron SE, Elahi S. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation. Front Immunol 2017; 8:241. [PMID: 28326084 DOI: 10.3389/fimmu.2017.00241doi|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 05/25/2023] Open
Abstract
Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to "inflammaging" that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Samantha E Heron
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
El-Awady AR, Arce RM, Cutler CW. Dendritic cells: microbial clearance via autophagy and potential immunobiological consequences for periodontal disease. Periodontol 2000 2017; 69:160-80. [PMID: 26252408 PMCID: PMC4530502 DOI: 10.1111/prd.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Dendritic cells are potent antigen‐capture and antigen‐presenting cells that play a key role in the initiation and regulation of the adaptive immune response. This process of immune homeostasis, as maintained by dendritic cells, is susceptible to dysregulation by certain pathogens during chronic infections. Such dysregulation may lead to disease perpetuation with potentially severe systemic consequences. Here we discuss in detail how intracellular pathogens exploit dendritic cells and escape degradation by altering or evading autophagy. This novel mechanism explains, in part, the chronic, persistent nature observed in several immuno‐inflammatory diseases, including periodontal disease. We also propose a hypothetical model of the plausible role of autophagy in the context of periodontal disease. Promotion of autophagy may open new therapeutic strategies in the search of a ‘cure’ for periodontal disease in humans.
Collapse
|
21
|
Porphyromonas gingivalis-stimulated macrophage subsets exhibit differential induction and responsiveness to interleukin-10. Arch Oral Biol 2017; 73:282-288. [DOI: 10.1016/j.archoralbio.2016.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
|
22
|
Walker J, Imboeck JM, Walker JM, Maitra A, Haririan H, Rausch-Fan X, Dodds M, Inui T, Somoza V. Magnolia officinalis L. Fortified Gum Improves Resistance of Oral Epithelial Cells Against Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1167-1185. [PMID: 27627917 DOI: 10.1142/s0192415x16500658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammatory diseases of the periodontal tissues are known health problems worldwide. Therefore, anti-inflammatory active compounds are used in oral care products to reduce long-term inflammation. In addition to inducing inflammation, pathogen attack leads to an increased production of reactive oxygen species (ROS), which may lead to oxidative damage of macromolecules. Magnolia officinalis L. bark extract (MBE) has been shown to possess antioxidant and anti-inflammatory potential in vitro. In the present study, the influence of MBE-fortified chewing gum on the resistance against lipopolysaccharide (LPS)-induced inflammation and oxidative stress of oral epithelial cells was investigated in a four-armed parallel designed human intervention trial with 40 healthy volunteers. Ex vivo stimulation of oral epithelial cells with LPS from Porphyromonas gingivalis for 6[Formula: see text]h increased the mRNA expression and release of the pro-inflammatory cytokines IL-1[Formula: see text], IL-[Formula: see text], IL-8, MIP-1[Formula: see text], and TNF[Formula: see text]. Chewing MBE-fortified gum for 10[Formula: see text]min reduced the ex vivo LPS-induced increase of IL-8 release by 43.8 [Formula: see text] 17.1% at the beginning of the intervention. In addition, after the two-week intervention with MBE-fortified chewing gum, LPS-stimulated TNF[Formula: see text] release was attenuated by 73.4 [Formula: see text] 12.0% compared to chewing regular control gum. This increased resistance against LPS-induced inflammation suggests that MBE possesses anti-inflammatory activity in vivo when added to chewing gum. In contrast, the conditions used to stimulate an immune response of oral epithelial cells failed to induce oxidative stress, measured by catalase activity, or oxidative DNA damage.
Collapse
Affiliation(s)
- Jessica Walker
- * Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Julia Maria Imboeck
- * Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Joel Michael Walker
- * Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Hady Haririan
- ‡ Competence Center for Oral Biology and Immunology, Bernhard Gottlieb University, Clinic of Dentistry, Sensengasse 2a, 1090 Vienna, Austria
| | - Xiaohui Rausch-Fan
- ‡ Competence Center for Oral Biology and Immunology, Bernhard Gottlieb University, Clinic of Dentistry, Sensengasse 2a, 1090 Vienna, Austria
| | | | - Taichi Inui
- † Wm. Wrigley Jr. Company, Chicago, IL 60611, USA
| | - Veronika Somoza
- * Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
23
|
Zhu XQ, Lu W, Chen Y, Cheng XF, Qiu JY, Xu Y, Sun Y. Effects of Porphyromonas gingivalis LipopolysaccharideTolerized Monocytes on Inflammatory Responses in Neutrophils. PLoS One 2016; 11:e0161482. [PMID: 27536946 PMCID: PMC4990254 DOI: 10.1371/journal.pone.0161482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/06/2016] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by bacteria. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, which is termed endotoxin tolerance. The role and mechanism of lipopolysaccharide (LPS)–tolerized monocytes in inflammatory responses in neutrophils are currently unclear. Here, conditioned supernatants were collected from THP-1 cells treated with or without repeated 1 μg/ml Porphyromonas gingivalis (P.gingivalis) LPS. The chemotactic response of freshly isolated neutrophils recruited by supernatants was determined by a transwell migration assay, which demonstrated a reduced migration of neutrophils stimulated with supernatants from tolerized THP-1 cells in comparison to non-tolerized THP-1 cells. In addition, there was a marked increase in reactive oxygen species (ROS) generation and a significant decrease in Caspase 3 activities in neutrophils treated with supernatants from THP-1 cells that were treated repeatedly with P.gingivalis LPS in comparison to single treatment. A cytokine antibody array was then used to assess cytokine expression patterns in THP-1 cells. In tolerized THP-1 cells, 43 cytokine (43/170) expression levels were decreased, including chemokine ligand 23 (CCL23) and IFN-γ, while 11 cytokine (11/170) expression levels were increased, such as death receptor 6 (DR6). Furthermore, there was decreased production of IFN-γ and epithelial neutrophil activating peptide-78 (ENA-78) in THP-1 cells after stimulation with repeated P. gingivalis LPS in comparison to single challenge, which was confirmed by ELISA. Therefore, P.gingivalis LPS- tolerized THP-1 cells were able to depress neutrophil chemotaxis and apoptosis, and contribute to respiratory burst, which might be related to the changes in cytokine expression patterns in THP-1 cells.
Collapse
Affiliation(s)
- Xiang-qing Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing First Hospital, Nanjing, China
| | - Wei Lu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xiao-fan Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jia-ying Qiu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ying Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
24
|
Gaurilcikaite E, Renton T, Grant AD. The paradox of painless periodontal disease. Oral Dis 2016; 23:451-463. [PMID: 27397640 DOI: 10.1111/odi.12537] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
Abstract
Periodontal diseases, primarily gingivitis and periodontitis, are characterised by progressive inflammation and tissue destruction. However, they are unusual in that they are not also accompanied by the pain commonly seen in other inflammatory conditions. This suggests that interactions between periodontal bacteria and host cells create a unique environment in which the pro-algesic effects of inflammatory mediators and factors released during tissue damage are directly or indirectly inhibited. In this review, we summarise the evidence that periodontal disease is characterised by an accumulation of classically pro-algesic factors from bacteria and host cells. We then discuss several mechanisms by which inflammatory sensitisation of nociceptive fibres could be prevented through inactivation or inhibition of these factors. Further studies are necessary to fully understand the molecular processes underlying the endogenous localised hypoalgesia in human periodontal disease. This knowledge might provide a rational basis to develop future therapeutic interventions, such as host modulation therapies, against a wide variety of other human pain conditions.
Collapse
Affiliation(s)
- E Gaurilcikaite
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - T Renton
- Department of Oral Surgery, Dental Institute, King's College London, London, UK
| | - A D Grant
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
25
|
Ilango P, Mahalingam A, Parthasarathy H, Katamreddy V, Subbareddy V. Evaluation of TLR2 and 4 in Chronic Periodontitis. J Clin Diagn Res 2016; 10:ZC86-9. [PMID: 27504418 DOI: 10.7860/jcdr/2016/18353.8027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periodontal disease is the major cause of adult tooth loss and is commonly characterized by a chronic inflammation caused by infection due to oral bacteria. Members of Toll-Like Receptor (TLR) family recognize conserved microbial structures, such as bacterial lipopolysaccharides and activate signalling pathways that result in immune responses against microbial infections. AIM The aim of the present study was to assess the mRNA expression of Toll-Like Receptor 2 and 4 in tissues with or without chronic periodontitis. MATERIALS AND METHODS Gingival tissue samples were collected from controls (30 subjects with healthy periodontal tissues) and experimental group (30 subjects with chronic periodontitis). Total RNA was extracted and RT-PCR was done for evaluation of TLR-2 and TLR-4. Mann Whitney U-test, Pearson Chi-square Test was used for statistics. RESULTS The results showed that there is a significant (p-value= 0.004) association between TLR-4 and the experimental group comprising of chronic periodontitis patients in comparison to the insignificant (p-value= 0.085) TLR-2 expression. CONCLUSION This study concludes that TLR-2 and TLR-4 expressed in the gingival tissues recognize different bacterial cell wall components thus helping us to associate its potential in diagnosing periodontal disease. Hence, in the future, these scientific findings can pave the way in using TLR as a diagnostic biomarker for periodontal disease.
Collapse
Affiliation(s)
- Paavai Ilango
- Reader, Department of Periodontology, Priyadarshini Dental College and Hospital , Pandur, Tamil Nadu, India
| | - Arulpari Mahalingam
- Reader, Department of Pedodontics, Thai Moogambigai Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Harinath Parthasarathy
- Professor, Department of Periodontology, SRM Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Vineela Katamreddy
- Reader, Department of Periodontology, Indira Gandhi Institute of Dental Sciences , Pondicherry, Tamil Nadu, India
| | - Venkat Subbareddy
- Reader, Department of Periodontology, CKS Teja Dental College and Hospital , Tirupathi, Andhra Pradesh, India
| |
Collapse
|
26
|
Na HS, Park MH, Song YR, Kim S, Kim HJ, Lee JY, Choi JI, Chung J. Elevated MicroRNA-128 in Periodontitis Mitigates Tumor Necrosis Factor-α Response via p38 Signaling Pathway in Macrophages. J Periodontol 2016; 87:e173-82. [PMID: 27240473 DOI: 10.1902/jop.2016.160033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease resulting from an inflammatory response to subgingival plaque bacteria, including Porphyromonas gingivalis. MicroRNA (miRNA) is a current focus in regulating the inflammatory processes. In this study, the inflammatory miRNA expression in gingival tissues of patients with periodontitis and of healthy individuals is compared, and its role in regulating the inflammatory response is examined. METHODS Gingival tissues from patients with periodontitis and healthy individuals were collected for miRNA microarray. THP-1 and CA9-22 cells were challenged with P. gingivalis, and miRNA expression was determined by real-time polymerase chain reaction. Target genes for miRNA were predicted using TargetScanHuman database, and miRNA gene expressions were reviewed using public databases. For the functional study, THP-1 cells were transfected with a miRNA-128 mimic, and target gene expression was compared with THP-1 cells challenged with P. gingivalis. For the tolerance test, THP-1 cells transfected with miRNA-128 mimic were treated with phorbol 12-myristate 13-acetate (PMA) or paraformaldehyde (PFA)-fixed Escherichia coli. Tumor necrosis factor (TNF)-α production was determined by enzyme-linked immunosorbent assay, and mitogen-activated protein kinase (MAPK) protein phosphorylation was determined by Western blot. RESULTS Gingival tissues from patients with periodontitis showed increased expression of miRNA-128, miRNA-34a, and miRNA-381 and decreased expression of miRNA-15b, miRNA-211, miRNA-372, and miRNA-656. THP-1 cells and CA9-22 cells challenged with P. gingivalis showed increased miRNA-128 expression. Among the predicted miRNA-128 target genes, several genes that are involved in MAPK signaling pathway showed similar gene expression pattern between P. gingivalis challenge and miRNA-128 mimic transfection. In THP-1 cells transfected with miRNA-128 mimic, TNF-α production was lower, and phosphorylation of p38 was inhibited when challenged with PMA or PFA-fixed E. coli. CONCLUSION miRNA-128 may be involved in mitigating the inflammatory response induced by P. gingivalis in periodontitis.
Collapse
Affiliation(s)
- Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Mi Hee Park
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Yu Ri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Seyeon Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hyung-Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University
| | - Ju Youn Lee
- Department of Periodontics, School of Dentistry, Pusan National University
| | - Jeom-Il Choi
- Department of Periodontics, School of Dentistry, Pusan National University
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
27
|
Song B, Zhang YL, Chen LJ, Zhou T, Huang WK, Zhou X, Shao LQ. The role of Toll-like receptors in periodontitis. Oral Dis 2016; 23:168-180. [PMID: 26923115 DOI: 10.1111/odi.12468] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 12/14/2022]
Abstract
Periodontitis is a common infectious disease. Recent studies have indicated that the progression of periodontitis may be regulated by interactions between host immunity and periodontopathic bacteria. Although periodontopathic bacteria can destroy periodontal tissue, a dysfunctional host immune response triggered by the bacteria can lead to more severe and persistent destruction. Toll-like receptors (TLRs), a type of pattern recognition receptor (PRR) that recognizes pathogens, have been implicated in host innate immune responses to periodontopathic bacteria and in the activation of adaptive immunity. TLR-targeted drugs may hold promise to treat periodontal disease. This review summarizes recent studies on the role of TLRs in periodontitis and discusses areas needing further research. We believe TLRs may be an effective biomarker for the prevention, diagnosis, and treatment of periodontitis in the near future.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y L Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L J Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W K Huang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - X Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Albiero ML, Amorim BR, Martins L, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern. J Appl Oral Sci 2015; 23:145-52. [PMID: 26018305 PMCID: PMC4428458 DOI: 10.1590/1678-775720140334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix.
Collapse
Affiliation(s)
- Mayra Laino Albiero
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Bruna Rabelo Amorim
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Luciane Martins
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Márcio Zaffalon Casati
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Enilson Antonio Sallum
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Francisco Humberto Nociti
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Karina Gonzales Silvério
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
29
|
Inflammatory Mediators of Leprosy Reactional Episodes and Dental Infections: A Systematic Review. Mediators Inflamm 2015; 2015:548540. [PMID: 26339136 PMCID: PMC4539113 DOI: 10.1155/2015/548540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/19/2015] [Indexed: 11/17/2022] Open
Abstract
Reactional episodes in leprosy are a result of complex interactions between the immune system, Mycobacterium leprae, and predisposing factors, including dental infections. To determine the main inflammatory mediators in the immunopathological process of dental infections and leprosy reactions, we conducted a systematic review of primary literature published between 1996 and 2013. A three-stage literature search was performed (Stage I, "leprosy reactions" and "inflammatory mediators"; Stage II, "dental infections" and "inflammatory mediators"; and Stage III, "leprosy reactions," "dental infections," and "inflammatory mediators"). Of the 911 eligible publications, 10 were selected in Stage I, 68 in Stage II, and 1 in Stage III. Of the 27 studied inflammatory mediators, the main proinflammatory mediators were IL-6, IFN-γ, TNF-α, IL-1β, and IL-17; the main anti-inflammatory mediators were IL-10 and IL-4. Serum IL-6 and TNF-α concentrations were significant during periodontal and reactional lesion evolution; IFN-γ and IL-1β were associated with types 1 and 2 reactions and chronic periodontal disease. The proinflammatory mediators in dental infections and leprosy reactions, especially IL-6 and TNF-α, were similar across studies, regardless of the laboratory technique and sample type. IFN-γ and IL-1β were significant for leprosy reactions and periodontal diseases. This pattern was maintained in serum.
Collapse
|
30
|
The effect of immune status, age and genetic background on induction of oral tolerance to Actinomyces viscosus in mice. Biomed Pharmacother 2015; 70:294-8. [PMID: 25776514 DOI: 10.1016/j.biopha.2014.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/30/2014] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to determine the effect of immune status, age and genetic background on the induction of oral tolerance to Actinomyces viscosus. Suppression of delayed type hypersensitivity (DTH) response and antigen-specific serum antibody levels could be induced in DBA/2 mice intragastrically and systemically immunized with A. viscocus, suggesting the induction of oral tolerance. In contrast, this immune suppression could be abrogated if the animals had been systemically immunized prior to the induction of oral tolerance with the same bacterium. Long-term systemic immunization prior to intragastric immunization with A. viscocus suppressed DTH response only. Cell transfer of this group of animals also suppressed DTH response in the donors, indicating the action of suppressor cells for inhibition of DTH response. Furthermore, oral tolerance to A. viscocus failed to occur in mice aged at 3 days and 1, 2, 4, 6 and 36 weeks old. Mice bearing H-2(d) haplotype were the most susceptible to oral tolerization, followed by H-2(b) and H-2(k). Therefore, the results of the presence study suggest that the induction of oral tolerance to A. viscosus in mice may be dependence on the immune status and genetic background but not age.
Collapse
|
31
|
Endotoxin tolerance induction in human periodontal ligament fibroblasts stimulated with different bacterial lipopolysaccharides. Arch Oral Biol 2015; 60:463-70. [DOI: 10.1016/j.archoralbio.2014.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/20/2014] [Accepted: 10/26/2014] [Indexed: 02/07/2023]
|
32
|
Amar S, Engelke M. Periodontal innate immune mechanisms relevant to atherosclerosis. Mol Oral Microbiol 2014; 30:171-85. [PMID: 25388989 DOI: 10.1111/omi.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2014] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a common cardiovascular disease in the USA where it is a leading cause of illness and death. Atherosclerosis is the most common cause for heart attack and stroke. Most commonly, people develop atherosclerosis as a result of diabetes, genetic risk factors, high blood pressure, a high-fat diet, obesity, high blood cholesterol levels, and smoking. However, a sizable number of patients suffering from atherosclerosis do not harbor the classical risk factors. Ongoing infections have been suggested to play a role in this process. Periodontal disease is perhaps the most common chronic infection in adults with a wide range of clinical variability and severity. Research in the past decade has shed substantial light on both the initiating infectious agents and host immunological responses in periodontal disease. Up to 46% of the general population harbors the microorganism(s) associated with periodontal disease, although many are able to limit the progression of periodontal disease or even clear the organism(s) if infected. In the last decade, several epidemiological studies have found an association between periodontal infection and atherosclerosis. This review focuses on exploring the molecular consequences of infection by pathogens that exacerbate atherosclerosis, with the focus on infections by the periodontal bacterium Porphyromonas gingivalis as a running example.
Collapse
Affiliation(s)
- S Amar
- Center for Anti-inflammatory Therapeutics, School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
33
|
Abstract
Inflammatory cytokines activate tissue collagenases such as matrix metalloproteinases (MMPs). MMPs are antagonized by tissue inhibitors of metalloproteinases (TIMPs) that attempt to regulate excessive collagenase activity during inflammatory conditions. During chronic inflammatory conditions, induction of endotoxin tolerance negatively regulates the cytokine response in an attempt to curtail excessive host tissue damage. However, little is known about how downregulation of inflammatory cytokines during endotoxin tolerance regulates MMP activities. In this study, human monocyte-derived macrophages were either sensitized or further challenged to induce tolerance with lipopolysaccharide (LPS) from Porphyromonas gingivalis (PgLPS) or Escherichia coli (EcLPS). Inflammatory cytokines, such as TNF-α and IL-1β, and levels of MMP9 and TIMP1 were analyzed by a combination of cytometric bead array, western blot/gelatin zymography and real-time RT-PCR. Functional blocking with anti-TLR4 but not with anti-TLR2 significantly downregulated TNF-α and IL-1β. However, MMP9 levels were not inhibited by toll-like receptor (TLR) blocking. Interestingly, endotoxin tolerance significantly upregulated TIMP1 relative to MMP9 and downmodulated MMP9 secretion and its enzymatic activity. These results suggest that regulatory mechanisms such as induction of endotoxin tolerance could inhibit MMP activities and could facilitate restoring host tissue homeostasis.
Collapse
Affiliation(s)
- Manoj Muthukuru
- Department of periodontics, School of Dentistry, West Virginia University, One Medical Center Drive, PO Box 9448, Morgantown, WV 26506, USA
| | - Christopher W Cutler
- Department of periodontics, College of Dental Medicine, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
34
|
TLR signaling that induces weak inflammatory response and SHIP1 enhances osteogenic functions. Bone Res 2014; 2:14031. [PMID: 26273527 PMCID: PMC4472124 DOI: 10.1038/boneres.2014.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/12/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor (TLR)-mediated inflammatory response could negatively affect bone metabolism. In this study, we determined how osteogenesis is regulated during inflammatory responses that are downstream of TLR signaling. Human primary osteoblasts were cultured in collagen gels. Pam3CSK4 (P3C) and Escherichia coli lipopolysaccharide (EcLPS) were used as TLR2 and TLR4 ligand respectively. Porphyromonas gingivalis LPS having TLR2 activity with either TLR4 agonism (Pg1690) or TLR4 antagonism (Pg1449) and mutant E. coli LPS (LPxE/LPxF/WSK) were used. IL-1β, SH2-containing inositol phosphatase-1 (SHIP1) that has regulatory roles in osteogenesis, alkaline phosphatase and mineralization were analyzed. 3α-Aminocholestane (3AC) was used to inhibit SHIP1. Our results suggest that osteoblasts stimulated by P3C, poorly induced IL-1β but strongly upregulated SHIP1 and enhanced osteogenic mediators. On the contrary, EcLPS significantly induced IL-1β and osteogenic mediators were not induced. While Pg1690 downmodulated osteogenic mediators, Pg1449 enhanced osteogenic responses, suggesting that TLR4 signaling annuls osteogenesis even with TLR2 activity. Interestingly, mutant E. coli LPS that induces weak inflammation upregulated osteogenesis, but SHIP1 was not induced. Moreover, inhibiting SHIP1 significantly upregulated TLR2-mediated inflammatory response and downmodulated osteogenesis. In conclusion, these results suggest that induction of weak inflammatory response through TLR2 (with SHIP1 activity) and mutant TLR4 ligands could enhance osteogenesis.
Collapse
|
35
|
Deschner J, Eick S, Damanaki A, Nokhbehsaim M. The role of adipokines in periodontal infection and healing. Mol Oral Microbiol 2014; 29:258-69. [PMID: 25052571 DOI: 10.1111/omi.12070] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
Abstract
Periodontitis is a chronic inflammatory disease of the periodontium, which is caused by pathogenic bacteria in combination with other risk factors. The bacteria induce an immunoinflammatory host response, which can lead to irreversible matrix degradation and bone resorption. Periodontitis can be successfully treated. To achieve regenerative periodontal healing, bioactive molecules, such as enamel matrix derivative (EMD), are applied during periodontal surgery. Recently, it has been shown that obesity is associated with periodontitis and compromised healing after periodontal therapy. The mechanisms underlying these associations are not well understood so far, but adipokines may be a pathomechanistic link. Adipokines are bioactive molecules that are secreted by the adipose tissue, and that regulate insulin sensitivity and energy expenditure, but also inflammatory and healing processes. It has also been demonstrated that visfatin and leptin increase the synthesis of proinflammatory and proteolytic molecules, whereas adiponectin downregulates the production of such mediators in periodontal cells. In addition, visfatin and leptin counteract the beneficial effects of EMD, whereas adiponectin enhances the actions of EMD on periodontal cells. Since visfatin and leptin levels are increased and adiponectin levels are reduced in obesity, these adipokines could be a pathomechanistic link whereby obesity and obesity-related diseases enhance the risk for periodontitis and compromised periodontal healing. Recent studies have also revealed that adipokines, such as visfatin, leptin and adiponectin, are produced in periodontal cells and regulated by periodontopathogenic bacteria. Therefore, adipokines may also represent a mechanism whereby periodontal infections can impact on systemic diseases.
Collapse
Affiliation(s)
- J Deschner
- Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany; Clinical Research Unit 208, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
36
|
Vidya R, Paria A, Deepika A, Sreedharan K, Makesh M, Purushothaman CS, Chaudhari A, Gireesh Babu P, Rajendran KV. Toll-like receptor of mud crab, Scylla serrata: molecular characterisation, ontogeny and functional expression analysis following ligand exposure, and bacterial and viral infections. Mol Biol Rep 2014; 41:6865-77. [DOI: 10.1007/s11033-014-3572-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
|
37
|
The landscape of protein biomarkers proposed for periodontal disease: markers with functional meaning. BIOMED RESEARCH INTERNATIONAL 2014; 2014:569632. [PMID: 25057495 PMCID: PMC4099050 DOI: 10.1155/2014/569632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/07/2014] [Indexed: 12/12/2022]
Abstract
Periodontal disease (PD) is characterized by a deregulated inflammatory response which fails to resolve, activating bone resorption. The identification of the proteomes associated with PD has fuelled biomarker proposals; nevertheless, many questions remain. Biomarker selection should favour molecules representing an event which occurs throughout the disease progress. The analysis of proteome results and the information available for each protein, including its functional role, was accomplished using the OralOme database. The integrated analysis of this information ascertains if the suggested proteins reflect the cell and/or molecular mechanisms underlying the different forms of periodontal disease. The evaluation of the proteins present/absent or with very different concentrations in the proteome of each disease state was used for the identification of the mechanisms shared by different PD variants or specific to such state. The information presented is relevant for the adequate design of biomarker panels for PD. Furthermore, it will open new perspectives and help envisage future studies targeted to unveil the functional role of specific proteins and help clarify the deregulation process in the PD inflammatory response.
Collapse
|
38
|
Zhu M, Nikolajczyk BS. Immune cells link obesity-associated type 2 diabetes and periodontitis. J Dent Res 2014; 93:346-52. [PMID: 24393706 DOI: 10.1177/0022034513518943] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The clinical association between obesity-associated type 2 diabetes (T2D) and periodontitis, coupled with the increasing prevalence of these diseases, justifies studies to identify mechanisms responsible for the vicious feed-forward loop between systemic and oral disease. Changes in the immune system are critical for both obesity-associated T2D and periodontitis and therefore may link these diseases. Recent studies at the intersection of immunology and metabolism have greatly advanced our understanding of the role the immune system plays in the transition between obesity and obesity-associated T2D and have shown that immune cells exhibit similar functional changes in obesity/T2D and periodontitis. Furthermore, myeloid and lymphoid cells likely synergize to promote obesity/T2D-associated periodontitis despite complexities introduced by disease interaction. Thus the groundwork is being laid for researchers to exploit existing models to understand immune cell dysfunction and break the devastating relationship between obesity-associated T2D and oral disease.
Collapse
Affiliation(s)
- M Zhu
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
39
|
Wang L, Yang H, Sun Y, Yu FSX, Wu X. Signaling mechanism for Aspergillus fumigatus tolerance in corneal fibroblasts induced by LPS pretreatment. Innate Immun 2013; 20:563-73. [PMID: 24045340 DOI: 10.1177/1753425913502098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/28/2013] [Indexed: 12/17/2022] Open
Abstract
TLRs, particularly TLR2 and TLR4, play primary roles in inflammatory responses triggered by Aspergillus fumigatus and lead to the activation of signaling pathways that initiate host defense responses. We previously demonstrated that LPS, a ligand of TLR4, can induce tolerance of A. fumigatus hyphae in telomerase-immortalized human stroma fibroblasts (THSFs). In the present study we investigated the role of TLR4, TLR2 and their downstream signaling pathways in this activity. The THSFs were pretreated with low-dose LPS and then exposed to A. fumigatus hyphae. It was demonstrated that enhanced expression of TLR4, but not of TLR2, was associated with LPS pretreatment. Inhibition of TLR4 with monoclonal Ab prevented reduction of pro-inflammatory cytokine secretion in LPS-pretreated THSFs. Pretreatment of THSFs with low-dose LPS caused an impaired response of the MyD88-dependent classical and MAPK signaling pathway upon subsequent A. fumigatus challenge, while expression of signaling molecules in the MyD88-independent Toll-IL-1 receptor domain-containing adaptor inducing IFN-β pathway was increased in THSFs pretreated with LPS. These results indicated that TLR4 mediates attenuated cytokine production induced by LPS pretreatment, and regulation of MyD88-dependent and MyD88-independent pathways may contribute to the development of A. fumigatus hyphae tolerance in LPS-pretreated THSFs.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Hongling Yang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yuan Sun
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Fu-Shin X Yu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
40
|
Myneni SR, Settem RP, Sharma A. Bacteria take control of tolls and T cells to destruct jaw bone. Immunol Invest 2013; 42:519-31. [DOI: 10.3109/08820139.2013.822761] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Amar S, Leeman S. Periodontal innate immune mechanisms relevant to obesity. Mol Oral Microbiol 2013; 28:331-41. [PMID: 23911141 DOI: 10.1111/omi.12035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 01/08/2023]
Abstract
Obesity affects over 35% of the adult population of the USA, and obesity-related illnesses have emerged as the leading cause of preventable death worldwide, according to the World Health Organization. Obesity's secondary morbidities include increased risk of cardiovascular disease, type II diabetes, and cancer, in addition to increased occurrence and severity of infections. Sedentary lifestyle and weight gain caused by consumption of a high-fat diet contribute to the development of obesity, with individuals having a body mass index (BMI) score > 30 being considered obese. Genetic models of obesity (ob/ob mice, db/db mice, and fa/fa rats) have been insufficient to study human obesity because of the overall lack of genetic causes for obesity in human populations. To date, the diet-induced obese (DIO) mouse model best serves research studies relevant to human health. Periodontal disease presents with a wide range of clinical variability and severity. Research in the past decade has shed substantial light on both the initiating infectious agents and host immunological responses in periodontal disease. Up to 46% of the general population harbors the microorganism(s) associated with periodontal disease, although many are able to limit the progression of periodontal disease or even clear the organism(s) if infected. In the last decade, several epidemiological studies have found an association between obesity and increased incidence of periodontal disease. This review focuses on exploring the immunological consequences of obesity that exacerbate effects of infection by pathogens, with focus on infection by the periodontal bacterium Porphyromonas gingivalis as a running example.
Collapse
Affiliation(s)
- S Amar
- Center for Anti-inflammatory Therapeutics, Boston University, School of Dental Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
42
|
Foey AD, Crean S. Macrophage subset sensitivity to endotoxin tolerisation by Porphyromonas gingivalis. PLoS One 2013; 8:e67955. [PMID: 23869208 PMCID: PMC3711904 DOI: 10.1371/journal.pone.0067955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023] Open
Abstract
Macrophages (MΦs) determine oral mucosal responses; mediating tolerance to commensal microbes and food whilst maintaining the capacity to activate immune defences to pathogens. MΦ responses are determined by both differentiation and activation stimuli, giving rise to two distinct subsets; pro-inflammatory M1- and anti-inflammatory/regulatory M2- MΦs. M2-like subsets predominate tolerance induction whereas M1 MΦs predominate in inflammatory pathologies, mediating destructive inflammatory mechanisms, such as those in chronic P.gingivalis (PG) periodontal infection. MΦ responses can be suppressed to benefit either the host or the pathogen. Chronic stimulation by bacterial pathogen associated molecular patterns (PAMPs), such as LPS, is well established to induce tolerance. The aim of this study was to investigate the susceptibility of MΦ subsets to suppression by P. gingivalis. CD14hi and CD14lo M1- and M2-like MΦs were generated in vitro from the THP-1 monocyte cell line by differentiation with PMA and vitamin D3, respectively. MΦ subsets were pre-treated with heat-killed PG (HKPG) and PG-LPS prior to stimulation by bacterial PAMPs. Modulation of inflammation was measured by TNFα, IL-1β, IL-6, IL-10 ELISA and NFκB activation by reporter gene assay. HKPG and PG-LPS differentially suppress PAMP-induced TNFα, IL-6 and IL-10 but fail to suppress IL-1β expression in M1 and M2 MΦs. In addition, P.gingivalis suppressed NFκB activation in CD14lo and CD14hi M2 regulatory MΦs and CD14lo M1 MΦs whereas CD14hi M1 pro-inflammatory MΦs were refractory to suppression. In conclusion, P.gingivalis selectively tolerises regulatory M2 MΦs with little effect on pro-inflammatory CD14hi M1 MΦs; differential suppression facilitating immunopathology at the expense of immunity.
Collapse
Affiliation(s)
- Andrew D Foey
- School of Biomedical and Biological Sciences, University of Plymouth, Plymouth, United Kingdom.
| | | |
Collapse
|
43
|
Promsudthi A, Poomsawat S, Limsricharoen W. The role of Toll-like receptor 2 and 4 in gingival tissues of chronic periodontitis subjects with type 2 diabetes. J Periodontal Res 2013; 49:346-54. [PMID: 23844856 DOI: 10.1111/jre.12112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Diabetes is one important risk factor of chronic periodontitis. However, the roles of toll-like receptor (TLR) 2 and TLR4, which are implicated in the inflammatory process in both chronic periodontitis and diabetes, have not been studied. This study aimed to determine whether TLR2 and TLR4 might be involved in the relationship between chronic periodontitis and diabetes by examining TLR2 and TLR4 expression in gingival tissues from subjects with chronic periodontitis without diabetes (CP) and with diabetes (CP+DM) and from periodontally healthy subjects without diabetes (PH) and with diabetes (PH+DM). MATERIAL AND METHODS Gingival tissues were collected from 23 CP subjects, 21 CP+DM subjects, 22 PH subjects and 20 PH+DM subjects. The expression of TLR2 and TLR4 in gingival tissues was determined using an immunohistochemical method. In gingival epithelium, staining patterns and intensity levels of TLR2 and TLR4 expression were studied. In connective tissues, the percentages of TLR2- and TLR4-positive cells were calculated. The intensity levels and the percentages of positive cells were statistically analyzed. RESULTS Chronic periodontitis or diabetes showed no significant effect on TLR2 expression in the oral epithelium. However, diabetes increased the expression of TLR2 in sulcular epithelium and changed the pattern of TLR2 expression in gingival epithelium. Chronic periodontitis decreased the expression of TLR4 in gingival epithelium. In connective tissue under sulcular epithelium, CP+DM subjects showed statistically significant higher percentages of TLR2- and TLR4-positive cells compared with PH and PH+DM subjects. CONCLUSION Our results suggest that hyperglycemia and chronic periodontitis had effects on TLR2 and TLR4 expression in gingival tissue. The differences in TLR2 and TLR4 expression could contribute to a greater inflammatory response, leading to periodontal disease initiation and progression.
Collapse
Affiliation(s)
- A Promsudthi
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
44
|
Wara-aswapati N, Chayasadom A, Surarit R, Pitiphat W, Boch JA, Nagasawa T, Ishikawa I, Izumi Y. Induction of Toll-Like Receptor Expression by Porphyromonas gingivalis. J Periodontol 2013; 84:1010-8. [DOI: 10.1902/jop.2012.120362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Sahingur SE, Xia XJ, Voth SC, Yeudall WA, Gunsolley JC. Increased nucleic Acid receptor expression in chronic periodontitis. J Periodontol 2013; 84:e48-57. [PMID: 23646855 DOI: 10.1902/jop.2013.120739] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nucleic acid sensing has emerged as one of the important components of the immune system triggering inflammation. The aim of this study is to determine the expression of bacterial DNA sensors, including Toll-like receptor 9 (TLR-9), DNA-dependent activator of interferon-regulatory factors (DAI), and absent in melanoma 2 (AIM2) in chronic periodontitis (CP versus healthy) (H) tissues. METHODS Thirty-five CP and 27 H gingival biopsies were included. Real-time quantitative polymerase chain reaction was performed to determine mRNA levels of AIM2, DAI, and TLRs (TLR-1 through TLR-9). The difference in gene expression for each sensor between CP and H tissues was calculated using analysis of covariance. The Spearman test was used to determine correlations among innate receptors. The expression of TLR-9, AIM2, and DAI in gingival tissues was further confirmed using immunohistochemistry. RESULTS The present results reveal statistically significant upregulation of TLR-9 (P <0.006), DAI (P <0.001), and TLR-8 (P <0.01) in CP tissues compared to H sites. Although mRNA expression was not changed significantly between groups for other receptors, the present results reveal significant correlations between receptors (P <0.05), suggesting that cooperation between multiple components of the host immune system may influence the overall response. Immunohistochemistry further confirmed expression of TLR-9, AIM2, and DAI in gingival tissues. CONCLUSIONS This study highlights a possible role for nucleic acid receptors in periodontal inflammation. Future investigations will determine whether cytoplasmic receptors and their ligands can be targeted to improve clinical outcomes in periodontitis.
Collapse
Affiliation(s)
- S Esra Sahingur
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | | | | | | | | |
Collapse
|
46
|
Chatzivasileiou K, Lux CA, Steinhoff G, Lang H. Dental follicle progenitor cells responses to Porphyromonas gingivalis LPS. J Cell Mol Med 2013; 17:766-73. [PMID: 23560719 PMCID: PMC3823180 DOI: 10.1111/jcmm.12058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/15/2013] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is a bacterially induced chronic inflammatory disease. Dental follicle progenitor cells (DFPCs) have been proposed as biological graft for periodontal regenerative therapies. The potential impact of bacterial toxins on DFPCs properties is still poorly understood. The aim of this study was to investigate whether DFPCs are able to sense and respond to lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major periopathogenic bacterium. Specifically, we hypothesized that LPS could influence the migratory capacity and IL-6 secretion of DFPCs. DFPCs properties were compared to bone marrow mesenchymal stem cells (BMSCs), a well-studied class of adult stem cells. The analysis by flow cytometry indicated that DFPCs, similar to BMSCs, expressed low levels of both toll-like receptor (TLR) 2 and 4. The TLR4 mRNA expression was down-regulated in response to LPS in both cell populations, while on protein level TLR4 was significantly up-regulated on BMSCs. The TLR2 expression was not influenced by the LPS treatment in both DFPCs and BMSCs. The migratory efficacy of LPS-treated DFPCs was evaluated by in vitro scratch wound assays and found to be significantly increased. Furthermore, we assayed the secretion of interleukin-6 (IL-6), a potent stimulator of cell migration. Interestingly, the levels of IL-6 secretion of DFPCs and BMSCs remained unchanged after the LPS treatment. Taken together, these results suggest that DFPCs are able to sense and respond to P. gingivalis LPS. Our study provides new insights into understanding the physiological role of dental-derived progenitor cells in sites of periodontal infection.
Collapse
Affiliation(s)
- Kyriaki Chatzivasileiou
- Department of Conservative Dentistry and Periodontology, University of Rostock, Rostock, Germany.
| | | | | | | |
Collapse
|
47
|
A novel class of lipoprotein lipase-sensitive molecules mediates Toll-like receptor 2 activation by Porphyromonas gingivalis. Infect Immun 2013; 81:1277-86. [PMID: 23381996 DOI: 10.1128/iai.01036-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by the chronic periodontitis-associated pathogen Porphyromonas gingivalis activates a Toll-like receptor 2 (TLR2) response that triggers inflammation in the host but also promotes bacterial persistence. Our aim was to define ligands on the surfaces of intact P. gingivalis cells that determine its ability to activate TLR2. Molecules previously reported as TLR2 agonists include lipopolysaccharide (LPS), fimbriae, the lipoprotein PG1828, and phosphoceramides. We demonstrate that these molecules do not comprise the major factors responsible for stimulating TLR2 by whole bacterial cells. First, P. gingivalis mutants devoid of the reported protein agonists, PG1828 and fimbriae, activate TLR2 as strongly as the wild type. Second, two-phase extraction of whole bacteria resulted in a preponderance of TLR2 agonist activity partitioning to the hydrophilic phase, demonstrating that phosphoceramides are not a major TLR2 ligand. Third, analysis of LPS revealed that TLR2 activation is independent of lipid A structural variants. Instead, activation of TLR2 and TLR2/TLR1 by LPS is in large part due to copurifying molecules that are sensitive to the action of the enzyme lipoprotein lipase. Strikingly, intact P. gingivalis bacterial cells treated with lipoprotein lipase were attenuated in their ability to activate TLR2. We propose that a novel class of molecules comprised by lipoproteins constitutes the major determinants that confer to P. gingivalis the ability to stimulate TLR2 signaling.
Collapse
|
48
|
Papadopoulos G, Weinberg EO, Massari P, Gibson FC, Wetzler LM, Morgan EF, Genco CA. Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. THE JOURNAL OF IMMUNOLOGY 2012; 190:1148-57. [PMID: 23264656 DOI: 10.4049/jimmunol.1202511] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator. In this study, we show that TNF-deficient (Tnf(-/-)) mice are resistant to alveolar bone loss following oral infection with P. gingivalis, and thus establish a central role for TNF in experimental periodontal disease. Using bone marrow-derived macrophages (BMDM) from wild-type and gene-specific knockout mice, we demonstrate that the initial inflammatory response to P. gingivalis in naive macrophages is MyD88 dependent and requires cooperative signaling of TLR2 and TLR4. The ability of P. gingivalis to activate cells via TLR2 or TLR4 was confirmed in TLR2- or TLR4-transformed human embryonic kidney cells. Additional studies using bacterial mutants demonstrated a role for fimbriae in the modulation of TLR-mediated activation of NF-κB. Whereas both TLR2 and TLR4 contributed to TNF production in naive macrophages, P. gingivalis preferentially exploited TLR2 in endotoxin-tolerant BMDM to trigger excessive TNF production. We found that TNF induced surface TLR2 expression and augmented TLR-induced cytokine production in P. gingivalis-stimulated BMDM, establishing a previously unidentified TNF-dependent feedback loop. Adoptive transfer of TLR2-expressing macrophages to TLR2-deficient mice restored the ability of P. gingivalis to induce alveolar bone loss in vivo. Collectively, our results identify a TLR2- and TNF-dependent macrophage-specific mechanism underlying pathogen-induced inflammatory bone loss in vivo.
Collapse
Affiliation(s)
- George Papadopoulos
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Jiao PR, Wei LM, Cheng YQ, Yuan RY, Han F, Liang J, Liu WL, Ren T, Xin CA, Liao M. Molecular cloning, characterization, and expression analysis of the Muscovy duck Toll-like receptor 3 (MdTLR3) gene. Poult Sci 2012; 91:2475-81. [PMID: 22991530 DOI: 10.3382/ps.2012-02394] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is an important membrane-bound receptor for recognizing double-stranded RNA in innate immunity. In this study, we described the cloning and characterization of the Muscovy duck TLR3 (MdTLR3) gene. The full-length MdTLR3 cDNA (2,836 bp) encoded a polypeptide of 895 amino acids. The deduced amino acid sequence contained 4 main structural domains: a signal peptide, an extracellular leucine rich repeats domain, a transmembrane domain, and a Toll/IL-1 receptor domain. Quantitative real-time PCR analysis indicated that MdTLR3 mRNA was constitutively expressed in all sampled tissues of uninfected Muscovy duck except muscle. Expression of MdTLR3 in brain was significantly upregulated at 24 h (1.94-fold, P < 0.05), reached a peak at 48 h (4.64-fold, P < 0.05), and recovered to normal levels at 72 h postinfection with the H5N1 highly pathogenic avian influenza virus. In contrast, MdTLR3 expression was downregulated during the test period in spleen and lung. These results implicated MdTLR3 was a novel member of the TLR family, which is involved in the early stage of antiviral innate immunity.
Collapse
Affiliation(s)
- P R Jiao
- South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Carrion J, Scisci E, Miles B, Sabino GJ, Zeituni AE, Gu Y, Bear A, Genco CA, Brown DL, Cutler CW. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. THE JOURNAL OF IMMUNOLOGY 2012; 189:3178-87. [PMID: 22891282 DOI: 10.4049/jimmunol.1201053] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The low-grade oral infection chronic periodontitis (CP) has been implicated in coronary artery disease risk, but the mechanisms are unclear. In this study, a pathophysiological role for blood dendritic cells (DCs) in systemic dissemination of oral mucosal pathogens to atherosclerotic plaques was investigated in humans. The frequency and microbiome of CD19(-)BDCA-1(+)DC-SIGN(+) blood myeloid DCs (mDCs) were analyzed in CP subjects with or without existing acute coronary syndrome and in healthy controls. FACS analysis revealed a significant increase in blood mDCs in the following order: healthy controls < CP < acute coronary syndrome/CP. Analysis of the blood mDC microbiome by 16S rDNA sequencing showed Porphyromonas gingivalis and other species, including (cultivable) Burkholderia cepacia. The mDC carriage rate with P. gingivalis correlated with oral carriage rate and with serologic exposure to P. gingivalis in CP subjects. Intervention (local debridement) to elicit a bacteremia increased the mDC carriage rate and frequency in vivo. In vitro studies established that P. gingivalis enhanced by 28% the differentiation of monocytes into immature mDCs; moreover, mDCs secreted high levels of matrix metalloproteinase-9 and upregulated C1q, heat shock protein 60, heat shock protein 70, CCR2, and CXCL16 transcripts in response to P. gingivalis in a fimbriae-dependent manner. Moreover, the survival of the anaerobe P. gingivalis under aerobic conditions was enhanced when within mDCs. Immunofluorescence analysis of oral mucosa and atherosclerotic plaques demonstrate infiltration with mDCs, colocalized with P. gingivalis. Our results suggest a role for blood mDCs in harboring and disseminating pathogens from oral mucosa to atherosclerosis plaques, which may provide key signals for mDC differentiation and atherogenic conversion.
Collapse
Affiliation(s)
- Julio Carrion
- School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|