1
|
Onkoba N, Mumo RM, Ochanda H, Omwandho C, Ozwara HS, Egwang TG. Safety, immunogenicity, and cross-species protection of a plasmid DNA encoding Plasmodium falciparum SERA5 polypeptide, microbial epitopes and chemokine genes in mice and olive baboons. J Biomed Res 2017; 31:321-332. [PMID: 28808204 PMCID: PMC5548993 DOI: 10.7555/jbr.31.20160025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 12/29/2016] [Indexed: 11/03/2022] Open
Abstract
Incorporation of biomolecular epitopes to malarial antigens should be explored in the development of strain-transcending malarial vaccines. The present study sought to determine safety, immunogenicity and cross-species efficacy ofPlasmodium falciparum serine repeat antigen 5 polypeptide co-expressed with epitopes of Bacille-Calmette Guerin (BCG), tetanus toxoid (TT) and a chemokine gene. Olive baboons and BALB/c mice were randomly assigned into vaccine and control groups. The vaccine group animals were primed and boosted twice with pIRES plasmids encoding the SERA5+ BCG+ TT alone, or with either CCL5 or CCL20 and the control group with pIRES plasmid vector backbone. Mice and baboons were challenged withP. berghei ANKA and P. knowlesi H strain parasites, respectively. Safety was determined by observing for injection sites reactogenicities, hematology and clinical chemistry. Parasitaemia and survivorship profiles were used to determine cross-species efficacy, and T cell phenotypes, Th1-, Th2-type, T-regulatory immune responses and antibody responses were assessed to determine vaccine immunogenicity. The pSeBCGTT plasmid DNA vaccines were safe and induced Th1-, Th2-type, and T-regulatory responses vaccinated animals showed enhanced CD4+ (P<0.01), CD 8+ T cells (P<0.001) activation and IgG anti-SE36 antibodies responses (P<0.001) at week 4 and 8 post vaccination compared to the control group. Vaccinated mice had a 31.45-68.69% cumulative parasite load reduction and 60% suppression in baboons (P<0.05) and enhanced survivorship (P<0.001) with no clinical signs of malaria compared to the control group. The results showed that the vaccines were safe, immunogenic and conferred partial cross-species protection.
Collapse
Affiliation(s)
- Nyamongo Onkoba
- . Department of Tropical & Infectious Diseases, Institute of Primate Research, Nairobi P. O. Box 24481-00502, Kenya
- . School of Biological Sciences, University of Nairobi, Nairobi P. O. Box 30197-00100, Kenya
| | - Ruth M. Mumo
- . Department of Tropical & Infectious Diseases, Institute of Primate Research, Nairobi P. O. Box 24481-00502, Kenya
- . Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi P. O. Box 30197-00100, Kenya
| | - Horace Ochanda
- . School of Biological Sciences, University of Nairobi, Nairobi P. O. Box 30197-00100, Kenya
| | - Charles Omwandho
- . Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi P. O. Box 30197-00100, Kenya
- . Kirinyaga University College, Kerugoya P. O. Box 143-10300, Kenya
| | - Hastings S. Ozwara
- . Department of Tropical & Infectious Diseases, Institute of Primate Research, Nairobi P. O. Box 24481-00502, Kenya
| | | |
Collapse
|
2
|
Shah M, Umar S, Iqbal M, Rehman F, Qadri I, He N. RETRACTED ARTICLE: Recent developments in DNA vaccination approaches against poultry coccidiosis and its future endeavours. WORLD POULTRY SCI J 2014; 70:315-328. [DOI: 10.1017/s0043933914000336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/10/2013] [Indexed: 11/06/2022]
Affiliation(s)
- M.A.A. Shah
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Path biology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - S. Umar
- Department of Path biology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - M.F. Iqbal
- Department of Path biology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - F. Rehman
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - I. Qadri
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - N. He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Malu DT, Bélanger B, Desautels F, Kelendji K, Dalko E, Sanchez-Dardon J, Leng L, Bucala R, Satoskar AR, Scorza T. Macrophage migration inhibitory factor: a downregulator of early T cell-dependent IFN-gamma responses in Plasmodium chabaudi adami (556 KA)-infected mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:6271-9. [PMID: 21518974 DOI: 10.4049/jimmunol.1003355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutralization of macrophage migration inhibitory factor (MIF) increases anti-tumor cytotoxic T cell responses in vivo and IFN-γ responses in vitro, suggesting a plausible regulatory role for MIF in T cell activation. Considering that IFN-γ production by CD4(+) T cells is pivotal to resolve murine malaria and that secretion of MIF is induced by Plasmodium chabaudi adami parasites, we investigated the effect of MIF deficiency on the infection with this pathogen. Infections with P. c. adami 556 KA parasites were more efficiently controlled in MIF-neutralized and MIF-deficient (knockout [KO]) BALB/c mice. The reduction in parasitemia was associated with reduced production of IL-4 by non-T/non-B cells throughout patent infection. At day 4 postinfection, higher numbers of activated CD4(+) cells were measured in MIF KO mice, which secreted more IFN-γ, less IL-4, and less IL-10 than did CD4(+) T cells from wild-type mice. Enhanced IFN-γ and decreased IL-4 responses also were measured in MIF KO CD4(+) T cells stimulated with or without IL-12 and anti-IL-4 blocking Ab to induce Th1 polarization. However, MIF KO CD4(+) T cells efficiently acquired a Th2 phenotype when stimulated in the presence of IL-4 and anti-IL-12 Ab, indicating normal responsiveness to IL-4/STAT6 signaling. These results suggest that by promoting IL-4 responses in cells other than T/B cells during early P. c. adami infection, MIF decreases IFN-γ secretion in CD4(+) T cells and, additionally, has the intrinsic ability to render CD4(+) T cells less capable of acquiring a robust Th1 phenotype when stimulated in the presence of IL-12.
Collapse
Affiliation(s)
- Diane Tshikudi Malu
- Département des Sciences Biologiques, Université du Québec à Montréal, Québec H3B 3H5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Synthetic Plasmodium-like hemozoin activates the immune response: a morphology - function study. PLoS One 2009; 4:e6957. [PMID: 19742308 PMCID: PMC2734055 DOI: 10.1371/journal.pone.0006957] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 08/03/2009] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence points to an important role for hemozoin (HZ), the malaria pigment, in the immunopathology related to this infection. However, there is no consensus as to whether HZ exerts its immunostimulatory activity in absence of other parasite or host components. Contamination of native HZ preparations and the lack of a unified protocol to produce crystals that mimic those of Plasmodium HZ (PHZ) are major technical limitants when performing functional studies with HZ. In fact, the most commonly used methods generate a heterogeneous nanocrystalline material. Thus, it is likely that such aggregates do not resemble to PHZ and differ in their inflammatory properties. To address this issue, the present study was designed to establish whether synthetic HZ (sHZ) crystals produced by different methods vary in their morphology and in their ability to activate immune responses. We report a new method of HZ synthesis (the precise aqueous acid-catalyzed method) that yields homogeneous sHZ crystals (Plasmodium-like HZ) which are very similar to PHZ in their size and physicochemical properties. Importantly, these crystals are devoid of protein and DNA contamination. Of interest, structure-function studies revealed that the size and shape of the synthetic crystals influences their ability to activate inflammatory responses (e.g. nitric oxide, chemokine and cytokine mRNA) in vitro and in vivo. In summary, our data confirm that sHZ possesses immunostimulatory properties and underline the importance of verifying by electron microscopy both the morphology and homogeneity of the synthetic crystals to ensure that they closely resemble those of the parasite. Periodic quality control experiments and unification of the method of HZ synthesis are key steps to unravel the role of HZ in malaria immunopathology.
Collapse
|
5
|
Danquah MK, Liu S, Ho J, Forde GM, Wang L, Coppel RL. Rapid production of a plasmid DNA encoding a malaria vaccine candidate via amino-functionalized poly(GMA-co-EDMA) monolith. AIChE J 2008. [DOI: 10.1002/aic.11595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Induced immune response of DNA vaccine encoding an association MSP1a, MSP1b, and MSP5 antigens of Anaplasma marginale. Vaccine 2008; 26:3522-7. [DOI: 10.1016/j.vaccine.2008.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 04/01/2008] [Accepted: 04/09/2008] [Indexed: 11/21/2022]
|
7
|
Yanow SK, Purcell LA, Pradel G, Sato A, Rodriguez A, Lee M, Spithill TW. Potent antimalarial and transmission-blocking activities of centanamycin, a novel DNA-binding agent. J Infect Dis 2008; 197:527-34. [PMID: 18275274 DOI: 10.1086/526788] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Most treatments for malaria target the blood stage of infection in the human host, although few can also block transmission of the parasite to the mosquito. We show here that the compound centanamycin is very effective against blood-stage malarial infections in vitro and in vivo and has profound effects on sexual differentiation of the parasites in mosquitoes. After drug treatment, parasite development is arrested within the midguts of mosquitoes, failing to produce the infective forms that migrate to the salivary glands. The mechanism of parasite death is associated with modification of Plasmodium genomic DNA. We detected DNA damage in parasites isolated from mice 24 h after treatment with centanamycin, and, importantly, we also detected this DNA damage in parasites within mosquitoes that had fed on these mice 10 days earlier. This demonstrates that damage to parasite DNA during blood-stage infection persists from the vertebrate to the mosquito host and provides a novel biochemical strategy to block malaria transmission.
Collapse
Affiliation(s)
- Stephanie K Yanow
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste. Anne-de-Bellevue, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
8
|
Scorza T, Grubb K, Cambos M, Santamaria C, Tshikudi Malu D, Spithill TW. Vaccination with a Plasmodium chabaudi adami multivalent DNA vaccine cross-protects A/J mice against challenge with P. c. adami DK and virulent Plasmodium chabaudi chabaudi AS parasites. Int J Parasitol 2007; 38:819-27. [PMID: 18062974 DOI: 10.1016/j.ijpara.2007.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/13/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
Abstract
A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31-40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30-39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-gamma production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.
Collapse
Affiliation(s)
- T Scorza
- Department of Biological Sciences, Université du Québec à Montréal, Case postale 8888, Succursale Centre-Ville, Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Crampton A, Vanniasinkam T. Parasite vaccines: The new generation. INFECTION GENETICS AND EVOLUTION 2007; 7:664-73. [PMID: 17702669 DOI: 10.1016/j.meegid.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 12/24/2022]
Abstract
Parasites cause some of the most devastating and prevalent diseases in humans and animals. Moreover, parasitic infections increase mortality rates of other serious non-parasitic infections caused by pathogens such as HIV-1. The impact of parasitic diseases in both industrialised and developing countries is further exacerbated by the resistance of some parasites to anti-parasitic drugs and the absence of efficacious parasite vaccines. Despite years of research, much remains to be done to develop effective vaccines against parasites. This review focuses on the more recent vaccine strategies such as DNA and viral vector-based vaccines that are currently being used to develop vaccines against parasites. Obstacles yet to be overcome and possible advantages and disadvantages of these vaccine modalities are also discussed.
Collapse
Affiliation(s)
- A Crampton
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 678, Wagga Wagga, NSW 2650, Australia
| | | |
Collapse
|
10
|
Carter KC, Henriquez FL, Campbell SA, Roberts CW, Nok A, Mullen AB, McFarlane E. Natural history and surgical treatment of brown tumor lesions at various sites in refractory primary hyperparathyroidism. Eur J Med Res 2007; 25:4502-9. [PMID: 17418459 DOI: 10.1016/j.vaccine.2007.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/25/2007] [Accepted: 03/05/2007] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Nowadays, the occurrence of brown tumor lesions or osteitis fibrosa cystica caused by long-lasting primary hyperparathyroidism are very rare, since measuring serum calcium became available routinely in the mid-1970s. It is a tumor-like lesion that may affect the entire skeleton, often presenting with diffuse focal bone pain or by pathological fracture. METHODS We describe our experience of brown tumor lesions at different skeletal sites that were treated at our trauma centre within the last two years. This included surgical therapy for the indications (i) pain at the pelvis, (ii) increased risk for pathological fracture at the tibia and (iii) acute radicular symptoms at the lumbar spine. The literature was reviewed for the current understanding of the pathophysiology as well as therapy of brown tumor lesions in primary hyperparathyroidism. RESULTS Curettage of a left-sided iliac crest brown tumor terminated focal pain. A less invasive stabilisation system and bone cement decreased both patient pain and the fracture risk of brown tumor lesion sites of the shinbone; and internal fixator including laminectomy at the lumbar spine ended radicular symptoms. CONCLUSION Patients with refractory primary hyperparathyroidism should be monitored closely by endocrinologists and the patient's serum calcium level should be adjusted as far as possible. Radiography is required only if focal bone pain or pathological fractures or radicular symptoms occur. Surgery should be considered if large bone defects with spontaneous fracture risk or increasing pain are present. Tumor curettage, Palacos plombage and less invasive stabilisation systems have proved to be acceptable surgical options.
Collapse
Affiliation(s)
- K C Carter
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Yero D, Pajón R, Pérez Y, Fariñas M, Cobas K, Diaz D, Solis RL, Acosta A, Brookes C, Taylor S, Gorringe A. Identification by genomic immunization of a pool of DNA vaccine candidates that confer protective immunity in mice against Neisseria meningitidis serogroup B. Vaccine 2007; 25:5175-88. [PMID: 17544180 DOI: 10.1016/j.vaccine.2007.04.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 04/26/2007] [Accepted: 04/28/2007] [Indexed: 11/19/2022]
Abstract
We have shown previously that expression library immunization is viable alternative approach to induce protective immunity against Neisseria meningitidis serogroup B. In this study we report that few rounds of library screening allow identification of protective pools of defined antigens. A previously reported protective meningococcal library (L8, with 600 clones) was screened and two sub-libraries of 95 clones each were selected based on the induction of bactericidal and protective antibodies in BALB/c mice. After sequence analysis of each clone within these sub-libraries, we identified a pool of 20 individual antigens that induced protective immune responses in mice against N. meningitidis infection, and the observed protection was associated with the induction of bactericidal antibodies. Our studies demonstrate for the first time that ELI combined with sequence analysis is a powerful and efficient tool for identification of candidate antigens for use in a meningococcal vaccine.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bacteremia/immunology
- Bacteremia/prevention & control
- Blotting, Western
- DNA, Bacterial/genetics
- DNA, Bacterial/immunology
- Enzyme-Linked Immunosorbent Assay
- Genomic Library
- Immune Sera/administration & dosage
- Immune Sera/immunology
- Male
- Meningococcal Infections/immunology
- Meningococcal Infections/prevention & control
- Meningococcal Vaccines/administration & dosage
- Meningococcal Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Microbial Viability/drug effects
- Neisseria meningitidis, Serogroup B/drug effects
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Plasmids/genetics
- Rats
- Survival Analysis
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Ave 27, La Lisa, Habana 11600, Cuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Richie T. High road, low road? Choices and challenges on the pathway to a malaria vaccine. Parasitology 2007; 133 Suppl:S113-44. [PMID: 17274843 DOI: 10.1017/s0031182006001843] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Malaria causes much physical and economic hardship in endemic countries with billions of people at risk. A vaccine would clearly benefit these countries, reducing the requirement for hospital care and the economic impact of infection. Successful immunization with irradiated sporozoites and the fact that repeated exposure to malaria induces partial immunity to infection and high levels of protection against the clinical manifestations, suggest that a vaccine is feasible. Numerous candidate antigens have been identified but the vaccine, which has been promised to be 'just round the corner' for many years, remains elusive. The factors contributing to this frustratingly slow progress are discussed including gaps in the knowledge of host/parasite biology, methods to induce potent cell-mediated immune responses, the difficulties associated with defining immune correlates of protection and antigen production and delivery. Finally, the use of attenuated organism vaccines is discussed.
Collapse
Affiliation(s)
- T Richie
- Malaria Program, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, Maryland 20910-7500, USA.
| |
Collapse
|