1
|
Hashizume-Takizawa T, Ando T, Urakawa A, Aoki K, Senpuku H. Cell wall glycosyltransferase of Streptococcus mutans impacts its dissemination to murine organs. Infect Immun 2025; 93:e0009724. [PMID: 39976456 PMCID: PMC11895454 DOI: 10.1128/iai.00097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/22/2025] [Indexed: 03/12/2025] Open
Abstract
Streptococcus mutans, a cariogenic bacterium in humans, is associated with systemic disorders. Its cariogenic factors include glucosyltransferases (GTFs) and the glycosyltransferase rhamnose-glucose polysaccharide I (RgpI), which is involved in cell wall synthesis. However, the potential roles of these enzymes in systemic disorders remain unclear. We constructed a luciferase-tagged S. mutans UA159 mutant strain that lacked rgpI to explore the involvement of this enzyme in the systemic pathogenicity of S. mutans. We also employed the luciferase-tagged S. mutans UA159 variant, which exhibited reduced GTF production and therefore had a low glucan synthesis ability. We intravenously inoculated these luciferase-tagged mutants and parent strains into 12-week-old male BALB/c mice to evaluate their distribution to organs. Strong luminescence was noted in the spleen and kidneys, indicating that S. mutans was disseminated to these organs. Several organs collected from mice inoculated with the luciferase-tagged parent strain emitted a signal, and inflammatory cytokine production was detected in the blood. The luminescence intensity was lower in the kidneys of mice challenged with the mutant strain, which has a low glucan synthesis ability. Conversely, challenge with the rgpI deletion mutant strain resulted in the lowest number of luminescent organs, with a lower intensity and attenuated inflammation. Furthermore, all the mice inoculated with the rgpI deletion mutant strain survived, whereas not all the mice inoculated with the parent strain survived. Collectively, these results suggest that RgpI is involved in the systemic pathogenicity of S. mutans UA159.
Collapse
Affiliation(s)
- Tomomi Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Taiki Ando
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayaka Urakawa
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedenobu Senpuku
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
2
|
Fang Y, Chen X, Chu CH, Yu OY, He J, Li M. Roles of Streptococcus mutans in human health: beyond dental caries. Front Microbiol 2024; 15:1503657. [PMID: 39749137 PMCID: PMC11693680 DOI: 10.3389/fmicb.2024.1503657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Streptococcus mutans (S. mutans) is the main pathogenic bacterium causing dental caries, and the modes in which its traits, such as acid production, acid tolerance, and adhesion that contribute to the dental caries process, has been clarified. However, a growing number of animal experiments and clinical revelations signify that these traits of S. mutans are not restricted to the detriment of dental tissues. These traits can assist S. mutans in evading the immune system within body fluids; they empower S. mutans to adhere not merely to the surface of teeth but also to other tissues such as vascular endothelium; they can additionally trigger inflammatory reactions and inflict damage on various organs, thereby leading to the occurrence of systemic diseases. These traits mostly originate from some correlative findings, lacking a comprehensive evaluation of the impact of S. mutans on systemic diseases. Therefore, this review mainly centers on the dissemination route of S. mutans: "Entering the blood circulation - Occurrence of tissue adhesion - Extensive possible proinflammatory mechanisms - Concentration in individual organs" and analyses the specific effects and possible mechanisms of S. mutans in systemic diseases such as cerebral hemorrhage, inflammatory bowel disease, tumors, and infective endocarditis that have been identified hitherto.
Collapse
Affiliation(s)
- Yanke Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
4
|
Hsu CC, Hsu RB, Oon XH, Chen YT, Chen JW, Hsu CH, Kuo YM, Shih YH, Chia JS, Jung CJ. Streptococcus mutans PrsA mediates AtlA secretion contributing to extracellular DNA release and biofilm formation in the pathogenesis of infective endocarditis. Virulence 2022; 13:1379-1392. [PMID: 35876630 PMCID: PMC9377233 DOI: 10.1080/21505594.2022.2105351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of secretion chaperone-regulated virulence proteins in the pathogenesis of infective endocarditis (IE) induced by viridans streptococci such as Streptococcus mutans is unclear. In this study, we investigated the contribution of the foldase protein PrsA, a putative parvulin-type peptidyl-prolyl isomerase, to the pathogenesis of S. mutans-induced IE. We found that a prsA-deficient strain had reduced virulence in terms of formation of vegetation on damaged heart valves, as well as reduced autolysis activity, eDNA release and biofilm formation capacity. The secretion and surface exposure of AtlA in vitro was reduced in the prsA-deficient mutant strain, and complementation of recombinant AtlA in the culture medium restored a wild type biofilm phenotype of the prsA-deficient mutant strain. This result suggests that secretion and surface localization of AtlA is regulated by PrsA during biofilm formation. Together, these results demonstrate that S. mutans PrsA could regulate AtlA-mediated eDNA release to contribute to biofilm formation in the pathogenesis of IE.
Collapse
Affiliation(s)
- Chih-Chieh Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ron-Bin Hsu
- Department of Surgery, Division of Cardiovascular Surgery, National Taiwan University Hospital , College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xoong-Harng Oon
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Tang Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan
| | - Jeng-Wei Chen
- Department of Surgery, Division of Cardiovascular Surgery, National Taiwan University Hospital , College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Hao Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan
| | - Yu-Min Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsien Shih
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jean-San Chia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiau-Jing Jung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Lerche CJ, Schwartz F, Pries-Heje MM, Fosbøl EL, Iversen K, Jensen PØ, Høiby N, Hyldegaard O, Bundgaard H, Moser C. Potential Advances of Adjunctive Hyperbaric Oxygen Therapy in Infective Endocarditis. Front Cell Infect Microbiol 2022; 12:805964. [PMID: 35186793 PMCID: PMC8851036 DOI: 10.3389/fcimb.2022.805964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Patients with infective endocarditis (IE) form a heterogeneous group by age, co-morbidities and severity ranging from stable patients to patients with life-threatening complications with need for intensive care. A large proportion need surgical intervention. In-hospital mortality is 15-20%. The concept of using hyperbaric oxygen therapy (HBOT) in other severe bacterial infections has been used for many decades supported by various preclinical and clinical studies. However, the availability and capacity of HBOT may be limited for clinical practice and we still lack well-designed studies documenting clinical efficacy. In the present review we highlight the potential beneficial aspects of adjunctive HBOT in patients with IE. Based on the pathogenesis and pathophysiological conditions of IE, we here summarize some of the important mechanisms and effects by HBOT in relation to infection and inflammation in general. In details, we elaborate on the aspects and impact of HBOT in relation to the host response, tissue hypoxia, biofilm, antibiotics and pathogens. Two preclinical (animal) studies have shown beneficial effect of HBOT in IE, but so far, no clinical study has evaluated the feasibility of HBOT in IE. New therapeutic options in IE are much needed and adjunctive HBOT might be a therapeutic option in certain IE patients to decrease morbidity and mortality and improve the long-term outcome of this severe disease.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Virus and Microbiology Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Christian Johann Lerche,
| | - Franziska Schwartz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Liu Y, Huang Y, Fan C, Chi Z, Bai M, Sun L, Yang L, Yu C, Song Z, Yang X, Yi J, Wang S, Liu L, Wang G, Zheng L. Ursolic Acid Targets Glucosyltransferase and Inhibits Its Activity to Prevent Streptococcus mutans Biofilm Formation. Front Microbiol 2021; 12:743305. [PMID: 34646258 PMCID: PMC8503646 DOI: 10.3389/fmicb.2021.743305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans (S. mutans), the prime pathogen of dental caries, can secrete glucosyltransferases (GTFs) to synthesize extracellular polysaccharides (EPSs), which are the virulence determinants of cariogenic biofilms. Ursolic acid, a type of pentacyclic triterpene natural compound, has shown potential antibiofilm effects on S. mutans. To investigate the mechanisms of ursolic acid-mediated inhibition of S. mutans biofilm formation, we first demonstrated that ursolic acid could decrease the viability and structural integrity of biofilms, as evidenced by XTT, crystal violet, and live/dead staining assays. Then, we further revealed that ursolic acid could compete with the inherent substrate to occupy the catalytic center of GTFs to inhibit EPS formation, and this was confirmed by GTF activity assays, computer simulations, site-directed mutagenesis, and capillary electrophoresis (CE). In conclusion, ursolic acid can decrease bacterial viability and prevent S. mutans biofilm formation by binding and inhibiting the activity of GTFs.
Collapse
Affiliation(s)
- Yucui Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanxin Huang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Cong Fan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Zhongmei Chi
- Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Luguo Sun
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Li Yang
- Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaoguang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
7
|
Sabella FM, de Feiria SNB, Ribeiro ADA, Theodoro LH, Höfling JF, Parisotto TM, Duque C. Exploring the Interplay Between Oral Diseases, Microbiome, and Chronic Diseases Driven by Metabolic Dysfunction in Childhood. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.718441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral childhood diseases, such as caries and gingivitis, have much more than a local impact on the dentition and tooth surrounding tissues, which can affect systemic conditions. While the mouth is frequently exposed to microbial stressors that can contribute to an inflammatory state in the entire body, chronic disorders can also interfere with oral health. Sharing common risk factors, a dynamic interplay can be driven between 1. dental caries, gingivitis, and type I diabetes mellitus, 2. early childhood caries and obesity, and 3. caries and cardiovascular diseases. Considering that there are ~2.2 billion children worldwide and that childhood provides unique opportunities for intervention targeting future health promotion, this review is of prime importance and aimed to explore the relationship between the oral microbiome and oral chronic diseases driven by metabolic dysfunction in childhood.
Collapse
|
8
|
Jung CJ, Hsu CC, Chen JW, Cheng HW, Yuan CT, Kuo YM, Hsu RB, Chia JS. PspC domain-containing protein (PCP) determines Streptococcus mutans biofilm formation through bacterial extracellular DNA release and platelet adhesion in experimental endocarditis. PLoS Pathog 2021; 17:e1009289. [PMID: 33577624 PMCID: PMC7906467 DOI: 10.1371/journal.ppat.1009289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/25/2021] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
Bacterial extracellular DNA (eDNA) and activated platelets have been found to contribute to biofilm formation by Streptococcus mutans on injured heart valves to induce infective endocarditis (IE), yet the bacterial component directly responsible for biofilm formation or platelet adhesion remains unclear. Using in vivo survival assays coupled with microarray analysis, the present study identified a LiaR-regulated PspC domain-containing protein (PCP) in S. mutans that mediates bacterial biofilm formation in vivo. Reverse transcriptase- and chromatin immunoprecipitation-polymerase chain reaction assays confirmed the regulation of pcp by LiaR, while PCP is well-preserved among streptococcal pathogens. Deficiency of pcp reduced in vitro and in vivo biofilm formation and released the eDNA inside bacteria floe along with reduced bacterial platelet adhesion capacity in a fibrinogen-dependent manner. Therefore, LiaR-regulated PCP alone could determine release of bacterial eDNA and binding to platelets, thus contributing to biofilm formation in S. mutans-induced IE.
Collapse
Affiliation(s)
- Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chieh Hsu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Jeng-Wei Chen
- Division of Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Wei Cheng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Min Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ron-Bin Hsu
- Division of Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jean-San Chia
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Grimm I, Weinstock M, Birschmann I, Dreier J, Knabbe C, Vollmer T. Strain-dependent interactions of Streptococcus gallolyticus subsp. gallolyticus with human blood cells. BMC Microbiol 2017; 17:210. [PMID: 29078765 PMCID: PMC5658974 DOI: 10.1186/s12866-017-1116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus) is the causative pathogen in up to 20% of streptococcal-induced infective endocarditis (IE) cases. However, the underlying mechanisms of pathogenesis in S. gallolyticus have not yet been solved. Pathogens causing IE need to employ virulent strategies to initiate and establish infections, such as escape the bloodstream, invade the host-cell, and persist intracellularly. In this study, we examined the induction of inflammation by different S. gallolyticus strains in relation to their survival in whole blood and cell culture models as well as their ability to induce platelet aggregation. Phagocytosis of these bacteria by macrophages, followed by intracellular survival, was also quantified. METHODS In whole blood and THP-1 cell culture assays bacterial growth kinetics was determined by plating, followed by colony counting. Induction of interleukin (IL)-6 expression in whole blood of three healthy volunteers, caused by different strains, was quantified by ELISA. Gene expression of cytokines (IL1B, IL6 and IL8) was quantified by real-time PCR after stimulating THP-1 monocytes with bacteria. Induction of platelet aggregation was analyzed by light transmission aggregometry using the BORN method. A macrophage model was used to analyze phagocytosis of strains and their survival in macrophages within 48 h. RESULTS Strains promoted IL-6 secretion in a time-dependent fashion. For example, DSM16831 induced IL-6 secretion in whole blood earlier than other isolates, and was eliminated in the whole blood of one volunteer, whereas UCN34 could grow. Platelet aggregation depended on the different isolates used and on the individual platelet donor. Two strains (AC1181 and 010672/01) induced cytokine gene expression in THP-1 monocytes only marginally, compared to other strains. The phagocytosis rate of S. gallolyticus isolates differed significantly, and the isolates UCN34 and BAA-2069 could persist for a considerable time in the phagocytes. CONCLUSION The strain-dependent differences of S. gallolyticus isolates, observed during interaction with human blood cells, support the hypotheses that divergences in individual virulence factors determine a distinct pathogenicity of the isolates. These data constitute an additional step towards the elucidation of mechanisms in the complex, multifactorial pathogenesis of this IE pathogen.
Collapse
Affiliation(s)
- Imke Grimm
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Melanie Weinstock
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ingvild Birschmann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Jens Dreier
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tanja Vollmer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
10
|
AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis. Infect Immun 2017; 85:IAI.00252-17. [PMID: 28674029 DOI: 10.1128/iai.00252-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis.
Collapse
|
11
|
Abstract
Endocarditis remains a devastating disease with a high mortality despite timely diagnosis and treatment. The mainstays of treatment include appropriate antibiotics and when indicated, removal of the septic focus. This sounds extremely simple and belies the necessity for a sophisticated multidisciplinary approach to its treatment, the success of which depends not just on the right antibiotic at the right dosage via the right portal, but also on a profound understanding of the inflammatory and infective pathophysiology at work. This review aims at assisting both the clinician and the lab-based physician in the task.
Collapse
Affiliation(s)
- E. Deviri
- Department of Cardiothoracic Surgery, Hadassah University Hospital, Jerusalem, Israel
| | - B.E. Glenville
- Department of Cardiothoracic Surgery, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
12
|
Freires IA, Avilés-Reyes A, Kitten T, Simpson-Haidaris PJ, Swartz M, Knight PA, Rosalen PL, Lemos JA, Abranches J. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence. Virulence 2016; 8:18-29. [PMID: 27260618 DOI: 10.1080/21505594.2016.1195538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.
Collapse
Affiliation(s)
- Irlan A Freires
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , SP , Brazil.,b Center for Oral Biology, University of Rochester Medical Center , Rochester , NY , USA
| | - Alejandro Avilés-Reyes
- c Department of Oral Biology , University of Florida College of Dentistry , Gainesville , FL , USA
| | - Todd Kitten
- d Philips Institute for Oral Health Research, Virginia Commonwealth University , Richmond , VA , USA
| | - P J Simpson-Haidaris
- e Department of Medicine/Hematology-Oncology Division and Department of Pathology and Laboratory Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Michael Swartz
- f Department of Surgery , Cardiac Division, University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Peter A Knight
- f Department of Surgery , Cardiac Division, University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Pedro L Rosalen
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , SP , Brazil
| | - José A Lemos
- c Department of Oral Biology , University of Florida College of Dentistry , Gainesville , FL , USA
| | - Jacqueline Abranches
- c Department of Oral Biology , University of Florida College of Dentistry , Gainesville , FL , USA
| |
Collapse
|
13
|
Activated human valvular interstitial cells sustain interleukin-17 production to recruit neutrophils in infective endocarditis. Infect Immun 2015; 83:2202-12. [PMID: 25776751 DOI: 10.1128/iai.02965-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/05/2015] [Indexed: 12/07/2022] Open
Abstract
The mechanisms that underlie valvular inflammation in streptococcus-induced infective endocarditis (IE) remain unclear. We previously demonstrated that streptococcal glucosyltransferases (GTFs) can activate human heart valvular interstitial cells (VIC) to secrete interleukin-6 (IL-6), a cytokine involved in T helper 17 (Th17) cell differentiation. Here, we tested the hypothesis that activated VIC can enhance neutrophil infiltration through sustained IL-17 production, leading to valvular damage. To monitor cytokine and chemokine production, leukocyte recruitment, and the induction or expansion of CD4(+) CD45RA(-) CD25(-) CCR6(+) Th17 cells, primary human VIC were cultured in vitro and activated by GTFs. Serum cytokine levels were measured using an enzyme-linked immunosorbent assay (ELISA), and neutrophils and Th17 cells were detected by immunohistochemistry in infected valves from patients with IE. The expression of IL-21, IL-23, IL-17, and retinoic acid receptor-related orphan receptor C (Rorc) was upregulated in GTF-activated VIC, which may enhance the proliferation of memory Th17 cells in an IL-6-dependent manner. Many chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), were upregulated in GTF-activated VIC, which might recruit neutrophils and CD4(+) T cells. Moreover, CXCL1 production in VIC was induced in a dose-dependent manner by IL-17 to enhance neutrophil chemotaxis. CXCL1-expressing VIC and infiltrating neutrophils could be detected in infected valves, and serum concentrations of IL-17, IL-21, and IL-23 were increased in patients with IE compared to healthy donors. Furthermore, elevated serum IL-21 levels have been significantly associated with severe valvular damage, including rupture of chordae tendineae, in IE patients. Our findings suggest that VIC are activated by bacterial modulins to recruit neutrophils and that such activities might be further enhanced by the production of Th17-associated cytokines. Together, these factors can amplify the release of neutrophilic contents in situ, which might lead to severe valvular damage.
Collapse
|
14
|
Jung CJ, Yeh CY, Hsu RB, Lee CM, Shun CT, Chia JS. Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets. Circulation 2014; 131:571-81. [PMID: 25527699 DOI: 10.1161/circulationaha.114.011432] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Endocarditis-inducing streptococci form multilayered biofilms in complex with aggregated platelets on injured heart valves, but the host factors that interconnect and entrap these bacteria-platelet aggregates to promote vegetation formation were unclear. METHODS AND RESULTS In a Streptococcus mutans endocarditis rat model, we identified layers of neutrophil extracellular traps interconnecting and entrapping bacteria-platelet aggregates inside vegetation that could be reduced significantly in size along with diminished colonizing bacteria by prophylaxis with intravascular DNase I alone. The combination of activated platelets and specific immunoglobulin G-adsorbed bacteria are required to induce the formation of neutrophil extracellular traps through multiple activation pathways. Bacteria play key roles in coordinating the signaling through spleen tyrosine kinase, Src family kinases, phosphatidylinositol-3-kinase, and p38 mitogen-activated protein kinase pathways to upregulate the expression of P-selectin in platelets, while inducing reactive oxygen species-dependent citrullination in the arm of neutrophils. Neutrophil extracellular traps in turn serve as the scaffold to further enhance and entrap bacteria-platelet aggregate formation and expansion. CONCLUSIONS Neutrophil extracellular traps promote and expand vegetation formation through enhancing and entrapping bacteria-platelet aggregates on the injured heart valves.
Collapse
Affiliation(s)
- Chiau-Jing Jung
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Chiou-Yueh Yeh
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Ron-Bin Hsu
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Chii-Ming Lee
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Chia-Tung Shun
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.)
| | - Jean-San Chia
- From the Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-J.J., J.-S.C.); Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan (C.-Y.Y., J.-S.C.); Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (R.-B.H.); Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-M.L.); and Department of Forensic Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (C.-T.S.).
| |
Collapse
|
15
|
Genetic variants in genes of the inflammatory response in association with infective endocarditis. PLoS One 2014; 9:e110151. [PMID: 25299518 PMCID: PMC4192365 DOI: 10.1371/journal.pone.0110151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022] Open
Abstract
Aims Inflammation in infective endocarditis (IE) is a complex network including interactions of inflammatory cytokines and other components of host response. Certainly, any variation in this network could influence susceptibility or disease progression of IE. In this study, 14 single nucleotide variants (SNVs) in genes coding for interleukin-1β, interleukin-6, interleukin-10, toll–like receptor-4, tumor necrosis factor-α, selectin E and intercellular adhesion molecule-1 were analyzed for an association with susceptibility to IE and correlated with disease-related laboratory parameters. Furthermore, the occurrence of SNVs was examined to elucidate pathogen-dependent associations. Methods and Results The distribution of SNVs was determined in IE-patients and healthy blood donors by RFLP analysis. White blood cells (WBC) were counted using flow cytometry, concentration of C-reactive protein and procalcitonin was measured immunologically. Interleukin-6 c.471+870G>A genotypes differed significantly between IE patients and controls. The frequency of the heterozygote genotype GA was considerably higher in the patient group (68.9% vs. 43.8%, Pc<0.0003). Interleukin-6 c.-237 minor allele frequency was increased in patients, although not statistically significant. Additionally, we detected a potential relation between interleukin-1β c.315C>T and IE. Pathogen-dependent analysis showed no significantly associated subgroup in relation to IE susceptibility, but gave hints towards alterations regarding Enterococcus-caused IE cases. Patients with genotype selectin-E c.-19 GT tend to have higher preoperative WBC counts than patients with genotype GG. We further showed an association between two interleukin-1β SNVs and laboratory biomarkers. Conclusion This study shows genetic predispositions for the establishment of IE. Furthermore, correlation of SNVs with disease-related biomarkers suggests a role of genetic variants regarding the inflammatory response in IE.
Collapse
|
16
|
Contribution of the interaction of Streptococcus mutans serotype k strains with fibrinogen to the pathogenicity of infective endocarditis. Infect Immun 2014; 82:5223-34. [PMID: 25287921 DOI: 10.1128/iai.02164-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm(+)/PA(-) group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm(+)/PA(-) strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm(+)/PA(-) strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens.
Collapse
|
17
|
Jans C, Meile L, Lacroix C, Stevens MJA. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC). INFECTION GENETICS AND EVOLUTION 2014; 33:419-36. [PMID: 25233845 DOI: 10.1016/j.meegid.2014.09.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023]
Abstract
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are pivotal for strain performance during fermentation. Comparative genomics is a powerful tool to identify acquired pathogenic functions, but there is still an urgent need for more physiological and epidemiological data to understand SBSEC-specific traits.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Marc J A Stevens
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
18
|
Molecular identification of potential Th1/Th2 responses-modulating bacterial genes using suppression subtractive DNA hybridization. Immunobiology 2014; 219:208-17. [DOI: 10.1016/j.imbio.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 12/27/2022]
|
19
|
Christiansen JG, Jensen HE, Jensen LK, Koch J, Aalbaek B, Nielsen OL, Leifsson PS. Systemic inflammatory response and local cytokine expression in porcine models of endocarditis. APMIS 2013; 122:292-300. [PMID: 23879680 DOI: 10.1111/apm.12145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
The knowledge of systemic inflammation and local cytokine expression in porcine endocarditis models is limited, though it could provide valuable information about the pathogenesis and comparability to human endocarditis. Analyses of bacteriology and hematology were performed on blood samples from pigs with non-bacterial thrombotic endocarditis (NBTE, n = 11), Staphylococcus aureus infective endocarditis (IE, n = 2), animals with S. aureus sepsis without endocarditis (n = 2) and controls (n = 2). Furthermore, immunohistochemistry was used to examine the local expression of IL-1β and IL-8. Bacterial blood cultures were continuously positive in IE pigs from inoculation to euthanasia, and negative in all other pigs at all times. The total white blood cell counts and total neutrophil counts were massively elevated in pigs with IE. Local IL-1β and IL-8 expression in IE pigs were moderate to high, and high, respectively. In addition, slight local expression of IL-1β and IL-8 was present in some NBTE pigs. In the IE model, both the systemic inflammatory response and the high local expression of IL-8 were comparable to the human disease. Furthermore, the results indicate IL-1β and IL-8 as important contributors in the endocarditis pathogenesis.
Collapse
Affiliation(s)
- Johanna G Christiansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
Jans C, Follador R, Hochstrasser M, Lacroix C, Meile L, Stevens MJA. Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment. BMC Genomics 2013; 14:200. [PMID: 23521820 PMCID: PMC3640971 DOI: 10.1186/1471-2164-14-200] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/13/2013] [Indexed: 12/14/2022] Open
Abstract
Background Streptococcus infantarius subsp. infantarius (Sii) belongs to the Streptococcus bovis/Streptococcus equinus complex associated with several human and animal infections. Sii is a predominant bacterium in spontaneously fermented milk products in Africa. The genome sequence of Sii strain CJ18 was compared with that of other Streptococcus species to identify dairy adaptations including genome decay such as in Streptococcus thermophilus, traits for its competitiveness in spontaneous milk fermentation and to assess potential health risks for consumers. Results The genome of Sii CJ18 harbors several unique regions in comparison to Sii ATCC BAA-102T, among others an enlarged exo- and capsular polysaccharide operon; Streptococcus thermophilus-associated genes; a region containing metabolic and hypothetical genes mostly unique to CJ18 and the dairy isolate Streptococcus gallolyticus subsp. macedonicus; and a second oligopeptide transport operon. Dairy adaptations in CJ18 are reflected by a high percentage of pseudogenes (4.9%) representing genome decay which includes the inactivation of the lactose phosphotransferase system (lacIIABC) by multiple transposases integration. The presence of lacS and lacZ genes is the major dairy adaptation affecting lactose metabolism pathways also due to the disruption of lacIIABC. We constructed mutant strains of lacS, lacZ and lacIIABC and analyzed the resulting strains of CJ18 to confirm the redirection of lactose metabolism via LacS and LacZ. Natural competence genes are conserved in both Sii strains, but CJ18 contains a lower number of CRISPR spacers which indicates a reduced defense capability against alien DNA. No classical streptococcal virulence factors were detected in both Sii strains apart from those involved in adhesion which should be considered niche factors. Sii-specific virulence factors are not described. Several Sii-specific regions encoding uncharacterized proteins provide new leads for virulence analyses and investigation of the unclear association of dairy and clinical Sii with human diseases. Conclusions The genome of the African dairy isolate Sii CJ18 clearly differs from the human isolate ATCC BAA-102T. CJ18 possesses a high natural competence predisposition likely explaining the enlarged genome. Metabolic adaptations to the dairy environment are evident and especially lactose uptake corresponds to S. thermophilus. Genome decay is not as advanced as in S. thermophilus (10-19%) possibly due to a shorter history in dairy fermentations.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, ETH Zurich, Zurich, CH 8092, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Jung CJ, Yeh CY, Shun CT, Hsu RB, Cheng HW, Lin CS, Chia JS. Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. J Infect Dis 2012; 205:1066-75. [PMID: 22357661 DOI: 10.1093/infdis/jis021] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Infective endocarditis is a typical biofilm-associated infectious disease frequently caused by commensal streptococci, but the contribution of host factors in biofilm formation is unclear. We found that platelets are essential for in vitro biofilm formation by Streptococcus mutans or Streptococcus gordonii grown in human plasma. The biofilms were composed of bacterial floes embedded with platelet aggregates in layers, and a similar architecture was also detected in situ on the injured valves of a rat model of experimental endocarditis. Similar to planktonic cells, the streptococci in biofilms were also able to induce platelet aggregation, which facilitates multilayer biofilm formation. Entrapping of platelets directly enhances the resistance of streptococcal biofilms to clindamycin. Prophylactic antibiotics or aspirin can reduce but not prevent or abolish biofilm formation on injured heart valves. Therefore, the platelet is a host factor for commensal streptococci in the circulation to consolidate biofilm formation and protect bacteria against antibiotics.
Collapse
Affiliation(s)
- Chiau-Jing Jung
- Graduate Institute of Microbiology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
22
|
Lin IH, Liu TT, Teng YT, Wu HL, Liu YM, Wu KM, Chang CH, Hsu MT. Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence. PLoS One 2011; 6:e20519. [PMID: 21633709 PMCID: PMC3102119 DOI: 10.1371/journal.pone.0020519] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/28/2011] [Indexed: 11/25/2022] Open
Abstract
Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Tze-Tze Liu
- VGH Yang-Ming Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Teng
- VGH Yang-Ming Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Lun Wu
- VGH Yang-Ming Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ming Liu
- VGH Yang-Ming Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Keh-Ming Wu
- VGH Yang-Ming Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chuan-Hsiung Chang
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Ta Hsu
- VGH Yang-Ming Genome Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Lack of the delta subunit of RNA polymerase increases virulence related traits of Streptococcus mutans. PLoS One 2011; 6:e20075. [PMID: 21625504 PMCID: PMC3098267 DOI: 10.1371/journal.pone.0020075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/25/2011] [Indexed: 01/21/2023] Open
Abstract
The delta subunit of the RNA polymerase, RpoE, maintains the transcriptional specificity in Gram-positive bacteria. Lack of RpoE results in massive changes in the transcriptome of the human dental caries pathogen Streptococcus mutans. In this study, we analyzed traits of the ΔrpoE mutant which are important for biofilm formation and interaction with oral microorganisms and human cells and performed a global phenotypic analysis of its physiological functions. The ΔrpoE mutant showed higher self-aggregation compared to the wild type and coaggregated with other oral bacteria and Candida albicans. It formed a biofilm with a different matrix structure and an altered surface attachment. The amount of the cell surface antigens I/II SpaP and the glucosyltransferase GtfB was reduced. The ΔrpoE mutant displayed significantly stronger adhesion to human extracellular matrix components, especially to fibronectin, than the wild type. Its adhesion to human epithelial cells HEp-2 was reduced, probably due to the highly aggregated cell mass. The analysis of 1248 physiological traits using phenotype microarrays showed that the ΔrpoE mutant metabolized a wider spectrum of carbon sources than the wild type and had acquired resistance to antibiotics and inhibitory compounds with various modes of action. The reduced antigenicity, increased aggregation, adherence to fibronection, broader substrate spectrum and increased resistance to antibiotics of the ΔrpoE mutant reveal the physiological potential of S. mutans and show that some of its virulence related traits are increased.
Collapse
|
24
|
The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 2011; 79:2277-84. [PMID: 21422186 DOI: 10.1128/iai.00767-10] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is considered the primary etiologic agent of dental caries, a global health problem that affects 60 to 90% of the population, and a leading causative agent of infective endocarditis. It can be divided into four different serotypes (c, e, f, and k), with serotype c strains being the most common in the oral cavity. In this study, we demonstrate that in addition to OMZ175 and B14, three other strains (NCTC11060, LM7, and OM50E) of the less prevalent serotypes e and f are able to invade primary human coronary artery endothelial cells (HCAEC). Invasive strains were also significantly more virulent than noninvasive strains in the Galleria mellonella (greater wax worm) model of systemic disease. Interestingly, the invasive strains carried an additional gene, cnm, which was previously shown to bind to collagen and laminin in vitro. Inactivation of cnm rendered the organisms unable to invade HCAEC and attenuated their virulence in G. mellonella. Notably, the cnm knockout strains did not adhere to HCAEC as efficiently as the parental strains did, indicating that the loss of the invasion phenotype observed for the mutants was linked to an adhesion defect. Comparisons of the invasive strains and their respective cnm mutants did not support a correlation between biofilm formation and invasion. Thus, Cnm is required for S. mutans invasion of endothelial cells and possibly represents an important virulence factor of S. mutans that may contribute to cardiovascular infections and pathologies.
Collapse
|
25
|
Defect of glucosyltransferases reduces platelet aggregation activity of Streptococcus mutans: analysis of clinical strains isolated from oral cavities. Arch Oral Biol 2010; 55:410-6. [PMID: 20398892 DOI: 10.1016/j.archoralbio.2010.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/13/2010] [Accepted: 03/18/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Streptococcus mutans is a major pathogen of dental caries and occasionally isolated from the blood of patients with infective endocarditis, though the association of its cell-surface glucosyltransferases (GTFB, GTFC, and GTFD) with pathogenicity for infective endocarditis remains to be elucidated. In this study, we investigated the contribution of S. mutans GTFs to platelet aggregation and analysed GTF expression profiles in a large number of clinical oral isolates. DESIGN The platelet aggregation properties of GTF-defective isogenic mutant strains constructed from S. mutans reference strain MT8148 were evaluated using whole blood and platelet-rich plasma (PRP) taken from mice, as well as human PRP. In addition, GTF expression profiles for 396 S. mutans strains isolated from the oral cavities of 396 subjects were analysed by western blotting using antisera specific for each GTF. RESULTS The platelet aggregation activities of the GTF-defective isogenic mutants were significantly lower than that of MT8148 when added to a large number of cells. Western blotting revealed no strains without GTF expression, though six strains had alterations of GTFB and GTFC as compared to MT8148. PCR analyses indicated that the gtfB-gtfC region length was approximately 4.5 kb shorter in those strains as compared to MT8148. These were designated as "GTFBC-fusion" strains and they demonstrated lower levels of platelet aggregation. CONCLUSIONS Our findings indicate that GTFs are associated with platelet aggregation. Although the clinical detection frequency of S. mutans strains with altered expressions is extremely low, GTFBC-fusion strains have activities similar to GTF-defective mutant strains.
Collapse
|
26
|
Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates and human endothelial cells. BMC Microbiol 2010; 10:78. [PMID: 20233397 PMCID: PMC2846920 DOI: 10.1186/1471-2180-10-78] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 03/16/2010] [Indexed: 01/15/2023] Open
Abstract
Background Streptococcus gallolyticus subsp. gallolyticus is an important causative agent of infective endocarditis (IE) but the knowledge on virulence factors is limited and the pathogenesis of the infection is poorly understood. In the present study, we established an experimental in vitro IE cell culture model using EA.hy926 and HUVEC cells to investigate the adhesion and invasion characteristics of 23 Streptococcus gallolyticus subsp. gallolyticus strains from different origins (human IE-derived isolates, other human clinical isolates, animal isolates). Adhesion to eight components of the extracellular matrix (ECM) and the ability to form biofilms in vitro was examined in order to reveal features of S. gallolyticus subsp. gallolyticus endothelial infection. In addition, the strains were analyzed for the presence of the three virulence factors gtf, pilB, and fimB by PCR. Results The adherence to and invasion characteristics of the examined S. gallolyticus subsp. gallolyticus strains to the endothelial cell line EA.hy926 differ significantly among themselves. In contrast, the usage of three different in vitro models (EA.hy926 cells, primary endothelial cells (HUVECs), mechanical stretched cells) revealed no differences regarding the adherence to and invasion characteristics of different strains. Adherence to the ECM proteins collagen I, II and IV revealed the highest values, followed by fibrinogen, tenascin and laminin. Moreover, a strong correlation was observed in binding to these proteins by the analyzed strains. All strains show the capability to adhere to polystyrole surfaces and form biofilms. We further confirmed the presence of the genes of two known virulence factors (fimB: all strains, gtf: 19 of 23 strains) and demonstrated the presence of the gene of one new putative virulence factor (pilB: 9 of 23 strains) by PCR. Conclusion Our study provides the first description of S. gallolyticus subsp. gallolyticus adhesion and invasion of human endothelial cells, revealing important initial information of strain variability, behaviour and characteristics of this as yet barely analyzed pathogen.
Collapse
Affiliation(s)
- Tanja Vollmer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany
| | | | | | | |
Collapse
|
27
|
Nakano K, Ooshima T. Serotype classification of Streptococcus mutans and its detection outside the oral cavity. Future Microbiol 2009; 4:891-902. [PMID: 19722842 DOI: 10.2217/fmb.09.64] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus mutans, generally known as a major pathogen of dental caries, is also a possible causative agent of bacteremia and infective endocarditis. S. mutans is classified into serotypes c, e, f and k based on the chemical composition of serotype-specific polysaccharides, with approximately 70-80% of strains found in the oral cavity classified as serotype c, followed by e (approximately 20%), and f and k (less than 5% each). Serotype k was recently designated as a novel serotype and shown to possess unique features, the most prominent being a defect of the glucose side chain in serotype-specific rhamnose-glucose polymers, which is related to a higher incidence of detection in cardiovascular specimens, owing to phagocytosis resistance. Molecular analyses of cardiovascular specimens showed a high detection frequency for S. mutans DNA, among which the detection rate for serotype k was quite high. These findings suggest that serotype k S. mutans possibly has a high level of virulence for systemic diseases.
Collapse
Affiliation(s)
- Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infections & Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
28
|
Jung CJ, Zheng QH, Shieh YH, Lin CS, Chia JS. Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Mol Microbiol 2009; 74:888-902. [PMID: 19818020 DOI: 10.1111/j.1365-2958.2009.06903.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Streptococcus mutans, a commensal of the human oral cavity, can survive in the bloodstream and cause infective endocarditis (IE). However, the virulence factors associated with this manifestation of disease are not known. Here, we demonstrate that AtlA, an autolysin of S. mutans is a newly identified fibronectin (Fn) binding protein and contributes to bacterial resistance to phagocytosis and survival in the bloodstream. Interestingly, prior exposure to plasma at low concentrations was sufficient to enhance bacterial survival in the circulation. Calcium ions at physiological plasma concentrations induced maturation of AtlA from the 104-90 kDa isoform resulting in increased Fn binding and resistance to phagocytosis. An isogenic mutant strain defective in AtlA expression exhibited reduced survival and virulence when tested in a rat model of IE compared with the wild-type and complemented strains. The data presented suggest that plasma components utilized by S. mutans enhanced survival in the circulation and AtlA is a virulence factor associated with infective endocarditis.
Collapse
Affiliation(s)
- Chiau-Jing Jung
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei, 10051, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Nomura R, Nakano K, Nemoto H, Mukai T, Hata H, Toda K, Yoshioka H, Taniguchi K, Amano A, Ooshima T. Molecular analyses of bacterial DNA in extirpated heart valves from patients with infective endocarditis. ACTA ACUST UNITED AC 2009; 24:43-9. [PMID: 19121069 DOI: 10.1111/j.1399-302x.2008.00474.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND/AIMS Infective endocarditis (IE) is caused by a microbial infection of the endothelial surface of the heart. Although blood culture examinations are commonly used to determine the associated bacterial species, molecular techniques, which enable rapid identification of targeted bacterial species, have recently been applied in clinical cases. METHODS Nine heart valve specimens from IE patients (six subacute cases and three acute cases) were extirpated and collected, then bacterial DNA was extracted. Bacterial species in the specimens were determined by two different molecular methods and the results were compared with those from a conventional blood culture technique. In addition, a comparison between the two molecular methods was carried out using known numbers of six streptococcal species. RESULTS The conventional blood culture method revealed the bacterial species in eight cases, while one was found to be negative. Multiple species were identified in most of the cases by both molecular methods; however, those specified by one method were not always consistent with those specified by the other. Furthermore, the species determined by the blood culture technique were not always identified by the molecular methods. We also found that the two molecular methods used in the present study were extremely sensitive to detect from 1 to 100 cells of individual oral streptococcal species. CONCLUSION Our results suggest that species specified by molecular methods may have disseminated incidentally into the bloodstream, so interpretation of such results should be carefully undertaken in clinical situations.
Collapse
Affiliation(s)
- R Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nemoto H, Nakano K, Nomura R, Ooshima T. Molecular characterization of Streptococcus mutans strains isolated from the heart valve of an infective endocarditis patient. J Med Microbiol 2008; 57:891-895. [DOI: 10.1099/jmm.0.47836-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hirotoshi Nemoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Takashi Ooshima
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
31
|
|
32
|
Nomura R, Nakano K, Nemoto H, Fujita K, Inagaki S, Takahashi T, Taniguchi K, Takeda M, Yoshioka H, Amano A, Ooshima T. Isolation and characterization of Streptococcus mutans in heart valve and dental plaque specimens from a patient with infective endocarditis. J Med Microbiol 2006; 55:1135-1140. [PMID: 16849735 DOI: 10.1099/jmm.0.46609-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans, known to be an aetiologic agent of dental caries, also causes infective endocarditis (IE), although a comparison of isolates from the oral cavity and infected heart valve of the same patient has not been reported. In the present study, infected heart valve and dental plaque samples from a patient with IE were analysed. Broad-range PCR with DNA sequencing revealed that 50 clones from the dental plaque isolates were composed of oral streptococci and periodontopathic bacteria, whereas only Streptococcus mutans was detected in 50 clones from the heart valve. Eighteen strains of Streptococcus mutans were isolated from dental plaque and seven from the heart valve, and the biochemical properties of each were in accordance with those of Streptococcus mutans. DNA fingerprinting analysis revealed that all the oral isolates of Streptococcus mutans had similar patterns, which were different from those of the isolates from the infected heart valve. Western blotting using glucosyltransferase (GTF)-specific antiserum showed that the seven strains from the heart valve lacked the three types of intact GTF. In addition, the sucrose-dependent adhesion rates of these isolates were significantly lower than those of the oral isolates (P<0.001). Furthermore, the isolates from the heart valve were less susceptible to erythromycin and kanamycin. These results indicate that the properties of the Streptococcus mutans strains isolated from the infected valve were different from those of typical oral strains, which may be related to the effects of IE.
Collapse
|
33
|
Widmer E, Que YA, Entenza JM, Moreillon P. New concepts in the pathophysiology of infective endocarditis. Curr Infect Dis Rep 2006; 8:271-9. [PMID: 16822370 DOI: 10.1007/s11908-006-0071-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Endocarditis pathogens colonize valves with pre-existing sterile vegetations or valves with minimal endothelial lesions. Inflamed endothelia produce cytokines, integrins, and tissue factor, which in turn attract fibronectin, monocytes, and platelets. Bacteria attaching to such structures further activate the cascade, becoming embedded and protected from host defenses. Staphylococcus aureus also actively invade the endothelium, causing apoptosis and endothelial damage. Knowledge of this interplay identifies host factors as potential therapeutic targets. Blocking infection by modulating host factors might be opportune because host factors are conserved. In contrast, interfering with bacterial virulence factors might be more complicated because they vary among different bacteria.
Collapse
Affiliation(s)
- Eleonora Widmer
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
34
|
Yeh CY, Chen JY, Chia JS. Glucosyltransferases of viridans group streptococci modulate interleukin-6 and adhesion molecule expression in endothelial cells and augment monocytic cell adherence. Infect Immun 2006; 74:1273-83. [PMID: 16428777 PMCID: PMC1360351 DOI: 10.1128/iai.74.2.1273-1283.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recruitment of monocytes plays important roles during vegetation formation and endocardial inflammation in the pathogenesis of infective endocarditis (IE). Bacterial antigens or modulins can activate endothelial cells through the expression of cytokines or adhesion molecules and modulate the recruitment of leukocytes. We hypothesized that glucosyltransferases (GTFs), modulins of viridans group streptococci, may act directly to up-regulate the expression of adhesion molecules and also interleukin-6 (IL-6) to augment monocyte attachment to endothelial cells. Using primary cultured human umbilical vein endothelial cells (HUVECs) as an in vitro model, we demonstrated that GTFs (in the cell-bound or free form) could specifically modulate the expression of IL-6, and also adhesion molecules, in a dose- and time-dependent manner. Results of inhibition assays suggested that enhanced expression of adhesion molecules was dependent on the activation of nuclear factor kappaB (NF-kappaB) and extracellular signal-regulated kinase and that p38 mitogen-activated protein kinase pathways also contributed to the release of IL-6. Streptococcus-infected HUVECs or treatment with purified IL-6 plus soluble IL-6 receptor alpha enhanced the expression of ICAM-1 and the adherence of the monocytic cell line U937. These results suggest that streptococcal GTFs might play an important role in recruiting monocytic cells during inflammation in IE through induction of adhesion molecules and IL-6, a cytokine involved in transition from neutrophil to monocyte recruitment.
Collapse
Affiliation(s)
- Chiou-Yueh Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|