1
|
Dey S, Guchhait KC, Manna T, Panda AK, Patra A, Mondal SK, Ghosh C. Evolutionary and compositional analysis of streptokinase including its interaction with plasminogen: An in silico approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Rafipour M, Keramati M, Aslani MM, Arashkia A, Roohvand F. The β-domain of streptokinase affects several functionalities, including specific/proteolytic activity kinetics. FEBS Open Bio 2019; 9:1259-1269. [PMID: 31087538 PMCID: PMC6609762 DOI: 10.1002/2211-5463.12657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/14/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
Streptokinase (SK) is a plasminogen activator which converts inactive plasminogen (Pg) to active plasmin (Pm), which cleaves fibrin clots. SK secreted by groups A, C, and G Streptococcus (SKA/SKC/SKG) is composed of three domains: SKα, SKβ and SKγ. Previous domain-swapping studies between SK1/SK2b-cluster variants revealed that SKβ plays a major role in the activation of human Pg. Here, we carried out domain-swapping between skcg-SK/SK2-cluster variants to determine the involvement of SKβ in several SK functionalities, including specific/proteolytic activity kinetics, fibrinogen-bound Pg activation and α2 -antiplasmin resistance. Our results indicate that SKβ has a minor to determining role in these diverse functionalities for skcg-SK and SK2b variants, which might potentially be accompanied by few critical residues acting as hot spots. Our findings enhance our understanding of the roles of SKβ and hot spots in different functional characteristics of SK clusters and may aid in the engineering of fibrin-specific variants of SK for breaking down blood clots with potentially higher efficacy and safety.
Collapse
Affiliation(s)
- Maryam Rafipour
- Virology DepartmentPasteur Institute of IranTehranIran
- Microbiology DepartmentPasteur Institute of IranTehranIran
| | - Malihe Keramati
- NanoBiotechnology DepartmentPasteur Institute of IranTehranIran
| | | | | | | |
Collapse
|
3
|
Huish S, Thelwell C, Longstaff C. Activity Regulation by Fibrinogen and Fibrin of Streptokinase from Streptococcus Pyogenes. PLoS One 2017; 12:e0170936. [PMID: 28125743 PMCID: PMC5268773 DOI: 10.1371/journal.pone.0170936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/12/2017] [Indexed: 01/26/2023] Open
Abstract
Streptokinase is a virulence factor of streptococci and acts as a plasminogen activator to generate the serine protease plasmin which promotes bacterial metastasis. Streptokinase isolated from group C streptococci has been used therapeutically as a thrombolytic agent for many years and its mechanism of action has been extensively studied. However, group A streptococci are associated with invasive and potentially fatal infections, but less detail is available on the mechanism of action of streptokinase from these bacteria. We have expressed recombinant streptokinase from a group C strain to investigate the therapeutic molecule (here termed rSK-H46A) and a molecule isolated from a cluster 2a strain from group A (rSK-M1GAS) which is known to produce the fibrinogen binding, M1 protein, and is associated with life-threatening disease. Detailed enzyme kinetic models have been prepared which show how fibrinogen-streptokinase-plasminogen complexes regulate plasmin generation, and also the effect of fibrin interactions. As is the case with rSK-H46A our data with rSK-M1GAS support a "trigger and bullet" mechanism requiring the initial formation of SK•plasminogen complexes which are replaced by more active SK•plasmin as plasmin becomes available. This model includes the important fibrinogen interactions that stimulate plasmin generation. In a fibrin matrix rSK-M1GAS has a 24 fold higher specific activity than the fibrin-specific thrombolytic agent, tissue plasminogen activator, and 15 fold higher specific activity than rSK-H46A. However, in vivo fibrin specificity would be undermined by fibrinogen stimulation. Given the observed importance of M1 surface receptors or released M1 protein to virulence of cluster 2a strain streptococci, studies on streptokinase activity regulation by fibrin and fibrinogen may provide additional routes to addressing bacterial invasion and infectious diseases.
Collapse
Affiliation(s)
- Sian Huish
- Component development laboratory, NHS Blood and Transplant, Cambridge Donor Centre, Cambridge, United Kingdom
| | - Craig Thelwell
- Biotherapeutics Section, National Institute for Biological Standard and Control, South Mimms, Herts, United Kingdom
| | - Colin Longstaff
- Biotherapeutics Section, National Institute for Biological Standard and Control, South Mimms, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Capitanescu C, Macovei Oprescu AM, Ionita D, Dinca GV, Turculet C, Manole G, Macovei RA. Molecular processes in the streptokinase thrombolytic therapy. J Enzyme Inhib Med Chem 2016; 31:1411-4. [DOI: 10.3109/14756366.2016.1142985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cristian Capitanescu
- S.C. Ecodet Activ S.R.L, Fizicienilor No.22, BL.21A, Sc.1, Ap.22, Bucharest, 3, Romania,
- National Environmental Protection Agency, Splaiul Independentei No. 294, Bucharest, 6, Romania,
| | | | - Dan Ionita
- Clinical Hospital Grigore Alexandrescu, Iancu De Hunedoara No. 30-32, Bucharest, 1, Romania,
| | - Gabi Valeriu Dinca
- University “Titu Maiorescu”, Gheorghe Petrascu No. 67A, Bucharest, 3, Romania, and
| | - Claudiu Turculet
- Carol Davila University of Medicine and Pharmacy, Dionisie Lupu No. 37, Bucharest, 1, Romania,
| | - Gheorghe Manole
- University “Titu Maiorescu”, Gheorghe Petrascu No. 67A, Bucharest, 3, Romania, and
- Clinical Hospital Colentina, Stefan Cel Mare No. 19–21, Bucharest, 2, Romania
| | - Radu Alexandru Macovei
- Carol Davila University of Medicine and Pharmacy, Dionisie Lupu No. 37, Bucharest, 1, Romania,
| |
Collapse
|
5
|
Expression of recombinant streptokinase from streptococcus pyogenes and its reaction with infected human and murine sera. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:985-9. [PMID: 24171077 PMCID: PMC3804847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/07/2013] [Indexed: 11/01/2022]
Abstract
OBJECTIVE(S) Streptokinase (SKa) is an antigenic protein which is secreted by Streptococcus pyogenes. Streptokinase induces inflammation by complement activation, which may play a role in post infectious diseases. In the present study, recombinant streptokinase from S. pyogenes was produced and showed that recombinant SKa protein was recognized by infected human sera using Western blot analysis. MATERIALS AND METHODS In this study, the ska gene from S. pyogenes was amplified and cloned into pET32a which is a prokaryotic expression vector. pET32a-ska was transformed to Escherichia coli BL21 (DE3) pLysS and gene expression was induced by IPTG. Protein production was improved by modification of composition of the bacterial culture media and altering the induction time by IPTG. The expressed protein was purified by affinity chromatography using the Ni-NTA resin. The integrity of the product was confirmed by Westernblot analysis using infected mice. Serum reactivity of five infected individuals was further analyzed against the recombinant SKa protein. RESULTS Data indicated that recombinant SKa protein from S. pyogenes can be recognized by patient and mice sera. The concentration of the purified recombinant protein was 3.2 mg/L of initial culture. The highest amount of the expressed protein after addition of IPTG was obtained in a bacterial culture without glucose with the culture optical density of 0.8 (OD600 = 0.8). Conclusion : Present data shows, recombinant SKa protein has same epitopes with natural form of this antigen. Recombinant SKa also seemed to be a promising antigen for the serologic diagnosis of S. pyogenes infections.
Collapse
|
6
|
Zhang Y, Liang Z, Glinton K, Ploplis VA, Castellino FJ. Functional differences between Streptococcus pyogenes cluster 1 and cluster 2b streptokinases are determined by their β-domains. FEBS Lett 2013; 587:1304-9. [PMID: 23474243 PMCID: PMC3740169 DOI: 10.1016/j.febslet.2013.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
Abstract
Cluster 1 streptokinases (SK1) from Streptococcus pyogenes (GAS) show substantially higher human plasminogen (hPg) activation activities and tighter hPg binding affinities than cluster 2b streptokinases (SK2b) in solution. The extent to which the different domains of SK are responsible for these differences is unknown. We exchanged each of the three known SK domains (α, β, and γ) between SK1 and SK2b and assessed the function of the resulting variants. Our results show that primary structural differences in the β-domains dictate these functional differences. This first report on the primary structure-functional relationship between naturally occurring SK1 and SK2b sheds new light on the mechanism of hPg activation by SK, a critical virulence determinant in this species of human pathogenic bacteria.
Collapse
Affiliation(s)
- Yueling Zhang
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zhong Liang
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kristofor Glinton
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Keramati M, Roohvand F, Aslani MM, Motevalli F, khatami S, Memarnejadian A. Pitfalls in screening streptococci for retrieving superior streptokinase (SK) genes: no activity correlation for streptococcal culture supernatant and recombinant SK. ACTA ACUST UNITED AC 2013; 40:151-8. [DOI: 10.1007/s10295-012-1205-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
Abstract
Abstract
Streptokinase (SK), the heterogeneous protein family secreted by some groups of β-hemolytic streptococci (βHS), is a plasminogen activator and well-known drug for thrombolytic therapy. Differences in plasminogen activation property of streptococcal culture supernatants (SCS) have been traditionally used to identify superior producer strains and SK genes (skc) for recombinant SK (rSK) production. However, the role of SK heterogeneity and whether SK activities in SCS correlate with that of their corresponding rSK is a matter of debate. To address these concerns, SCS of nine group C streptococci (GCS) screened among 252 βHS clinical isolates were compared for plasminogen activation using S-2251 chromogenic assay. The GCS (Streptococcus equisimilis) showing the highest (GCS-S87) and lowest (GCS-S131) activities were selected for PCR-based isolation of skc, cloning and rSK production in Escherichia coli. The 6×His-tagged rSK proteins were purified by NI–NTA chromatography, analyzed by SDS-PAGE and Western blotting and their activities were determined. While SCS of GCS-S87 and GCS-S131 showed different plasminogen activations (95 and 35 %, respectively) compared to that of the reference strain (GCS-9542), but interestingly rSK of all three strains showed close specific activities (1.33, 1.70, and 1.55 × 104 IU mg−1). Accordingly, SKS87 and SKS131 had more than 90 % sequence identity at the amino acids level compared to SK9542. Therefore, SK heterogeneity by itself may not contribute to the differences in plasminogen activation properties of SCS and evaluation of this activity in SCS might not be a proper assay for screening superior skc.
Collapse
Affiliation(s)
- Malihe Keramati
- grid.420169.8 0000000095622611 Microbiology Department Pasteur Institute of Iran Tehran Iran
- grid.420169.8 0000000095622611 Hepatitis and AIDS Department Pasteur Institute of Iran Tehran Iran
| | - Farzin Roohvand
- grid.420169.8 0000000095622611 Hepatitis and AIDS Department Pasteur Institute of Iran Tehran Iran
| | - Mohammad Mehdi Aslani
- grid.420169.8 0000000095622611 Microbiology Department Pasteur Institute of Iran Tehran Iran
| | - Fatemeh Motevalli
- grid.420169.8 0000000095622611 Hepatitis and AIDS Department Pasteur Institute of Iran Tehran Iran
| | - Shohreh khatami
- grid.420169.8 0000000095622611 Biochemistry Department Pasteur Institute of Iran Tehran Iran
| | - Arash Memarnejadian
- grid.420169.8 0000000095622611 Hepatitis and AIDS Department Pasteur Institute of Iran Tehran Iran
| |
Collapse
|
8
|
Keramati M, Roohvand F, Eslaminejad Z, Mirzaie A, Nikbin VS, Aslani MM. PCR/RFLP-based allelic variants of streptokinase and their plasminogen activation potencies. FEMS Microbiol Lett 2012; 335:79-85. [PMID: 22812485 DOI: 10.1111/j.1574-6968.2012.02640.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/26/2022] Open
Abstract
PCR-restriction fragment length polymorphism (PCR/RFLP)-based analysis of β-domain variable region of streptokinase genes (sk) has previously identified 14 sk alleles (sk1-sk14) in group A (GAS), C (GCS) and G (GGS) streptococci isolates from a few geographically distinct regions. However, the relation of sk allelic variants to their plasminogen activation potencies remained as a matter of debate. Herein, employing the same PCR/RFLP assay, we analysed sk allelic variants of GAS and GCS/GGS isolates from Iranian patients. In total, 21 sk allelic variants including 14 new alleles (sk14-sk28) were identified. Results implied the horizontal gene transfer of sk fragments between GAS and GCS/GGS strains and did not prove the specificity of particular sk alleles to GCS/GGS or GAS groups. Measurement of streptokinase (SK) activity in streptococcal culture supernatants by colorimetric assay (S2251 substrate) ranged from 9 to 182 IU mL(-1). Although some strains with the highest SK activity were detected in definite variants, no significant correlation between sk alleles and plasminogen activation was detected (P value > 0.05). Analysis of DNA sequences and restriction site mapping of selective sk variants with similar SK activity pointed to the inadequacy of the currently available PCR/RFLP method for differentiation of critical/silent nucleotides to precisely categorize sk alleles for their functional properties.
Collapse
Affiliation(s)
- Malihe Keramati
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
9
|
Aneja R, Datt M, Singh B, Kumar S, Sahni G. Identification of a new exosite involved in catalytic turnover by the streptokinase-plasmin activator complex during human plasminogen activation. J Biol Chem 2009; 284:32642-50. [PMID: 19801674 DOI: 10.1074/jbc.m109.046573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the goal of identifying hitherto unknown surface exosites of streptokinase involved in substrate human plasminogen recognition and catalytic turnover, synthetic peptides encompassing the 170 loop (CQFTPLNPDDDFRPGLKDTKLLC) in the beta-domain were tested for selective inhibition of substrate human plasminogen activation by the streptokinase-plasmin activator complex. Although a disulfide-constrained peptide exhibited strong inhibition, a linear peptide with the same sequence, or a disulfide-constrained variant with a single lysine to alanine mutation showed significantly reduced capabilities of inhibition. Alanine-scanning mutagenesis of the 170 loop of the beta-domain of streptokinase was then performed to elucidate its importance in streptokinase-mediated plasminogen activation. Some of the 170 loop mutants showed a remarkable decline in k(cat) without any alteration in apparent substrate affinity (K(m)) as compared with wild-type streptokinase and identified the importance of Lys(180) as well as Pro(177) in the functioning of this loop. Remarkably, these mutants were able to generate amidolytic activity and non-proteolytic activation in "partner" plasminogen as wild-type streptokinase. Moreover, cofactor activities of the 170 loop mutants, pre-complexed with plasmin, against microplasminogen as the substrate showed a similar pattern of decline in k(cat) as that observed in the case of full-length plasminogen, with no concomitant change in K(m). These results strongly suggest that the 170 loop of the beta-domain of streptokinase is important for catalysis by the streptokinase-plasmin(ogen) activator complex, particularly in catalytic processing/turnover of substrate, although it does not seem to contribute significantly toward enzyme-substrate affinity per se.
Collapse
Affiliation(s)
- Rachna Aneja
- Department of Molecular Biology and Protein Engineering, The Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160036, India
| | | | | | | | | |
Collapse
|
10
|
McArthur JD, McKay FC, Ramachandran V, Shyam P, Cork AJ, Sanderson‐Smith ML, Cole JN, Ringdahl U, Sjöbring U, Ranson M, Walker MJ. Allelic variants of streptokinase fromStreptococcus pyogenesdisplay functional differences in plasminogen activation. FASEB J 2008; 22:3146-53. [DOI: 10.1096/fj.08-109348] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jason D. McArthur
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Fiona C. McKay
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Priya Shyam
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Amanda J. Cork
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Jason N. Cole
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Ulrika Ringdahl
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Ulf Sjöbring
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Marie Ranson
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Mark J. Walker
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| |
Collapse
|
11
|
Abstract
Thrombosis, the blockage of blood vessels with clots, can lead to acute myocardial infarction and ischemic stroke, both leading causes of death. Other than surgical interventions to remove or by pass the blockage, or the generation of collateral vessels to provide a new blood supply, the only treatment available is the administration of thrombolytic agents to dissolve the blood clot. This article describes a comprehensive review of streptokinase (SK). We discuss the biochemistry and molecular biology of SK, describing the mechanism of action, structures, confirmational properties, immunogenecity, chemical modification, and cloning and expression. The production and physico-chemical properties of this SK are also discussed. In this review, considering the properties and characteristics of SK that make it the drug of choice for thrombolytic therapy.
Collapse
Affiliation(s)
- Adinarayana Kunamneni
- Department of Pharmaceutical Sciences, Pharmaceutical Biotechnology Division, Andhra University, Visakhapatnam, 530 003, India.
| | | | | |
Collapse
|
12
|
Lizano S, Luo F, Bessen DE. Role of streptococcal T antigens in superficial skin infection. J Bacteriol 2006; 189:1426-34. [PMID: 17012387 PMCID: PMC1797348 DOI: 10.1128/jb.01179-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FCT region genes of Streptococcus pyogenes encode surface proteins that include fibronectin- and collagen-binding proteins and the serological markers known as T antigens, some of which give rise to pilus-like appendages. It remains to be established whether FCT region surface proteins contribute to virulence by in vivo models of infection. In this study, a highly sensitive and ecologically relevant humanized mouse model was used to measure superficial skin infection. Three genes encoding FCT region surface proteins essential for T-serotype specificity were inactivated. Both the Deltacpa and DeltaprtF2 mutants were highly attenuated for virulence when topically applied to the skin following exponential growth but were fully virulent when delivered in stationary phase. In contrast, the DeltafctA mutant was virulent at the skin, regardless of its initial growth state. Immunoblots of cell extracts revealed anti-FctA-reactive, ladder-like polymers characteristic of streptococcal pili. In addition, FctA formed a heteropolymer with the putative collagen-binding protein Cpa. The DeltafctA mutant showed a loss in anti-Cpa-reactive polymers, whereas anti-FctA-reactive polymers were reduced in the Deltacpa mutant. The findings suggest that both FctA and Cpa are required for pilus formation, but importantly, an intact pilus is not essential for Cpa-mediated virulence. Although it is an integral part of the T-antigen complex, the fibronectin-binding protein PrtF2 is not covalently linked to the FctA- and Cpa-containing heteropolymer derived from cell extracts. The data provide direct evidence that streptococcal T antigens function as virulence factors in vivo, but they also reveal that a pilus-like structure is not essential for the most common form of streptococcal skin disease.
Collapse
Affiliation(s)
- Sergio Lizano
- Dept of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|