1
|
El-Alfy ES, Abbas I, Elseadawy R, El-Sayed SAES, Rizk MA. Genetic Diversity of Merozoite Surface Antigens in Global Babesia bovis Populations. Genes (Basel) 2023; 14:1936. [PMID: 37895285 PMCID: PMC10606690 DOI: 10.3390/genes14101936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cattle can be severely infected with the tick-borne protozoa Babesia bovis, giving rise to serious economic losses. Invasion of the host's RBCs by the parasite merozoite/sporozoites depends largely on the MSA (merozoite surface antigens) gene family, which comprises various fragments, e.g., MSA-1, MSA-2a1, MSA-2a2, MSA-2b and MSA-2c, highlighting the importance of these antigens as vaccine candidates. However, experimental trials documented the failure of some developed MSA-based vaccines to fully protect animals from B. bovis infection. One reason for this failure may be related to the genetic structure of the parasite. In the present study, all MSA-sequenced B. bovis isolates on the GenBank were collected and subjected to various analyses to evaluate their genetic diversity and population structure. The analyses were conducted on 199 MSA-1, 24 MSA-2a1, 193 MSA-2b and 148 MSA-2c isolates from geographically diverse regions. All these fragments displayed high nucleotide and haplotype diversities, but the MSA-1 was the most hypervariable and had the lowest inter- and intra-population gene flow values. This fragment also displayed a strong positive selection when testing its isolates for the natural selection, which suggests the potential occurrence of more genetic variations. On the contrary, the MSA-2c was the most conserved in comparison to the other fragments, and displayed the highest inter- and intra-population gene flow values, which was evidenced by a significantly negative selection and negative neutrality indices (Fu's Fs and Tajima's D). The majority of the MSA-2c tested isolates had two conserved amino acid repeats, and earlier reports have found these repeats to be highly immunogenic, which underlines the importance of this fragment in developing vaccines against B. bovis. Results of the MSA-2a1 analyses were also promising, but many more MSA-2a1 sequenced isolates are required to validating this assumption. The genetic analyses conducted for the MSA-2b fragment displayed borderline values when compared to the other fragments.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (E.-S.E.-A.); (I.A.); (R.E.)
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (E.-S.E.-A.); (I.A.); (R.E.)
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (E.-S.E.-A.); (I.A.); (R.E.)
| | - Shimaa Abd El-Salam El-Sayed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed Abdo Rizk
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Cuy-Chaparro L, Ricaurte-Contreras LA, Bohórquez MD, Arévalo-Pinzón G, Barreto-Santamaria A, Pabón L, Reyes C, Moreno-Pérez DA, Patarroyo MA. Identification of Babesia bovis MSA-1 functionally constraint regions capable of binding to bovine erythrocytes. Vet Parasitol 2022; 312:109834. [DOI: 10.1016/j.vetpar.2022.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
3
|
Matos CA, Silva JBD, Gonçalves LR, Mendes NS, Alvarez DO, André MR, Machado RZ. Genetic diversity of Babesia bovis studied longitudinally under natural transmission conditions in calves in the state of Rio de Janeiro, Brazil. ACTA ACUST UNITED AC 2020; 29:e021220. [PMID: 33237196 DOI: 10.1590/s1984-29612020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Serum and DNA samples from 15 naturally infected calves in Seropédica, Brazil, were obtained quarterly from birth to 12 months of age, in order to longitudinally evaluate their humoral immune response against Babesia bovis and the merozoite surface antigen diversity of B. bovis. Anti-B. bovis IgG antibodies were detected by an indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA). Using DNA amplification, sequencing and phylogenetic analysis, the genetic diversity of B. bovis was assessed based on the genes that encode merozoite surface antigens (MSA-1, MSA-2b and MSA-2c). The serological results demonstrated that up to six months of age, all the calves developed active immunity against B. bovis. Among the 75 DNA samples evaluated, 0, 3 and 5 sequences of the msa-1, msa-2b and msa-2c genes were obtained, respectively. The present study demonstrated that the msa-2b and msa-2c gene sequences amplified from blood DNA of B. bovis-positive calves were genetically diversified. These data emphasize the importance of conducting deeper studies on the genetic diversity of B. bovis in Brazil, in order to design diagnostic antigens and vaccines in the future.
Collapse
Affiliation(s)
- Carlos António Matos
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil.,Direcção de Ciências Animais, Maputo, Moçambique
| | - Jenevaldo Barbosa da Silva
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Luiz Ricardo Gonçalves
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Natalia Serra Mendes
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | | | - Marcos Rogério André
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Rosangela Zacarias Machado
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| |
Collapse
|
4
|
Flores DA, Rodriguez AE, Tomazic ML, Torioni de Echaide S, Echaide I, Zamorano P, Langellotti C, Araujo FR, Rolls P, Schnittger L, Florin-Christensen M. Characterization of GASA-1, a new vaccine candidate antigen of Babesia bovis. Vet Parasitol 2020; 287:109275. [PMID: 33091630 DOI: 10.1016/j.vetpar.2020.109275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023]
Abstract
Surface proteins bound to the cell membrane by glycosylphosphatidylinositol (GPI) anchors are considered essential for the survival of pathogenic protozoans. In the case of the tick-transmitted hemoparasite Babesia bovis, the most virulent causative agent of bovine babesiosis, the GPI-anchored proteome was recently unraveled by an in silico approach. In this work, one of the identified proteins, GASA-1 (GPI-Anchored Surface Antigen-1), was thoroughly characterized. GASA-1 is 179 aa long and has the characteristic features of a GPI-anchored protein, including a signal peptide, a hydrophilic core and a hydrophobic tail that harbors a GPI anchor signal. Transcriptomic analysis shows that it is expressed in pathogenic and attenuated B. bovis strains. Notably, the gasa-1 gene has syntenic counterparts in B. bigemina and B. ovata, which also encode GPI-anchored proteins. This is highly unusual since all piroplasmid GPI-anchored proteins described so far have been found to be species-specific. Sequencing of gasa-1 alleles from B. bovis geographical isolates originating from Argentina, USA, Brazil, Mexico and Australia showed over 98 % identity in both nucleotide and amino acid sequences. A recombinant form of GASA-1 (rGASA-1) was generated in E. coli and anti-rGASA-1 antibodies were raised in mice. Fixed and live immunofluorescence assays showed that GASA-1 is expressed in in vitro cultured B. bovis merozoites and surface-exposed. Moreover, incubation of B. bovis in vitro cultures with anti-GASA-1 antibodies partially, but significantly, reduced erythrocyte invasion, indicating that this protein bears neutralization-sensitive antibody epitopes. Splenocytes of rGASA-1-inoculated mice showed a specific proliferative response when exposed to the recombinant protein, indicating that GASA-1 bears T-cell epitopes. Finally, sera from a group of B. bovis-infected cattle reacted with the recombinant protein, demonstrating that GASA-1 is expressed during natural infection of bovines with B. bovis, and suggesting that it is immunodominant. The high degree of conservation among B. bovis isolates and the presence of syntenic genes in other Babesia species suggest a relevant role of GASA-1 and GASA-1-like proteins for parasite survival, especially considering that, due to their surface location, they are exposed to the selection pressure of the host immune system. The highlighted features of GASA-1 make it an interesting candidate for the development of vaccines against bovine babesiosis.
Collapse
Affiliation(s)
- Daniela A Flores
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronomicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires, Argentina
| | - Anabel E Rodriguez
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronomicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingham, Argentina
| | - Mariela L Tomazic
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronomicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires, Argentina
| | | | - Ignacio Echaide
- Estacion Experimental Agricola Rafaela, INTA, Santa Fe, Argentina
| | - Patricia Zamorano
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronomicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingham, Argentina; Instituto de Virologia e Innovaciones Tecnologicas, CICVyA, INTA, Argentina
| | - Cecilia Langellotti
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronomicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingham, Argentina; Instituto de Virologia e Innovaciones Tecnologicas, CICVyA, INTA, Argentina
| | | | - Peter Rolls
- Department of Agriculture & Fisheries, Tick Fever Centre, Queensland, Australia
| | - Leonhard Schnittger
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronomicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires, Argentina
| | - Monica Florin-Christensen
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronomicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingham, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Wang J, Yang J, Gao S, Wang X, Sun H, Lv Z, Li Y, Liu A, Liu J, Luo J, Guan G, Yin H. Genetic Diversity of Babesia bovis MSA-1, MSA-2b and MSA-2c in China. Pathogens 2020; 9:pathogens9060473. [PMID: 32549363 PMCID: PMC7350327 DOI: 10.3390/pathogens9060473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
The apicomplexan parasite Babesia bovis is a tick-borne intracellular hemoprotozoan parasite that is widespread across China. Genetic diversity is an important strategy used by parasites to escape the immune responses of their hosts. In our present study, 575 blood samples, collected from cattle in 10 provinces, were initially screened using a nested PCR (polymerase chain reaction) for detection of B. bovis infection. To perform genetic diversity analyses, positive samples were further amplified to obtain sequences of three B. bovis merozoite surface antigen genes (MSA-1, MSA-2b, MSA-2c). The results of the nested PCR approach showed that an average of 8.9% (51/575) of cattle were positive for B. bovis infection. Phylogenetic analyses of the predicted amino acid sequences revealed that unique antigen variants were formed only by Chinese isolates. Our findings provide vital information for understanding the genetic diversity of B. bovis in China.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Hao Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Zhaoyong Lv
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
- Correspondence: (G.G.); (H.Y.)
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (J.W.); (J.Y.); (S.G.); (X.W.); (H.S.); (Z.L.); (Y.L.); (A.L.); (J.L.); (J.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
- Correspondence: (G.G.); (H.Y.)
| |
Collapse
|
6
|
Babesiosis Vaccines: Lessons Learned, Challenges Ahead, and Future Glimpses. Trends Parasitol 2019; 35:622-635. [PMID: 31281025 DOI: 10.1016/j.pt.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/02/2023]
Abstract
The incidence and prevalence of babesiosis in animals and humans is increasing, yet prevention, control, or treatment measures remain limited and ineffective. Despite a growing body of new knowledge of the biology, pathogenicity, and virulence of Babesia parasites, there is still no well-defined, adequately effective and easily deployable vaccine. While numerous published studies suggest that the development of such anti-Babesia vaccines should be feasible, many others identify significant challenges that need to be overcome in order to succeed. Here, we review historic and recent attempts in babesiosis vaccine discovery to avoid past pitfalls, learn new lessons, and provide a roadmap to guide the development of next-generation babesiosis vaccines.
Collapse
|
7
|
Mendes NS, de Souza Ramos IA, Herrera HM, Campos JBV, de Almeida Alves JV, de Macedo GC, Machado RZ, André MR. Genetic diversity of Babesia bovis in beef cattle in a large wetland in Brazil. Parasitol Res 2019; 118:2027-2040. [PMID: 31079252 DOI: 10.1007/s00436-019-06337-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Babesia bovis is the etiological agent of bovine babesiosis, a disease transmitted by Rhipicephalus microplus, which affects cattle herds in tropical and subtropical regions of the world, causing significant economic losses due to decreasing meat and milk yield. This study used molecular techniques to determine the occurrence and genetic diversity of B. bovis, based on the genes encoding the spherical body protein (sbp-2) and the merozoite surface antigens (MSAs) genes, in a herd of 400 Nellore (Bos indicus) sampled from beef cattle farms in the Pantanal region, state of Mato Grosso do Sul, Midwestern Brazil. The results of the nested PCR assays based on the sbp-2 gene indicated that 18 (4.5%) calves were positive for B. bovis; out of them, while 77.7% (14/18) were positive for the B. bovis msa-2b fragment, 66.6% (12/18) were positive for the msa-2c fragment. The phylogenetic analysis based on the maximum likelihood method using 14 sequences from msa-2b clones and 13 sequences from msa-2c clones indicated that the sequences detected in this study are clearly distributed in different cladograms. These findings corroborated the diversity analysis of the same sequences, which revealed the presence of 14 and 11 haplotypes of the msa-2b and msa-2c genes, respectively. Furthermore, the entropy analyses of amino acid sequences revealed 78 and 44 high entropy peaks with values ranging from 0.25 to 1.53 and from 0.27 to 1.09 for MSA-2B and MSA-2C, respectively. Therefore, the results indicate a low molecular occurrence of B. bovis in beef cattle sampled in the Brazilian Pantanal. Despite this, a high degree of genetic diversity was found in the analyzed B. bovis population, with possibly different haplotypes coexisting in the same animal and/or in the same studied herd.
Collapse
Affiliation(s)
- Natalia Serra Mendes
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.,Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Inalda Angélica de Souza Ramos
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, Jaboticabal, São Paulo, 14884-900, Brazil
| | | | | | | | | | - Rosangela Zacarias Machado
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Marcos Rogério André
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
8
|
Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol 2019; 49:183-197. [PMID: 30690089 PMCID: PMC6988112 DOI: 10.1016/j.ijpara.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The global impact of bovine babesiosis caused by the tick-borne apicomplexan parasites Babesia bovis, Babesia bigemina and Babesia divergens is vastly underappreciated. These parasites invade and multiply asexually in bovine red blood cells (RBCs), undergo sexual reproduction in their tick vectors (Rhipicephalus spp. for B. bovis and B. bigemina, and Ixodes ricinus for B. divergens) and have a trans-ovarial mode of transmission. Babesia parasites can cause acute and persistent infections to adult naïve cattle that can occur without evident clinical signs, but infections caused by B. bovis are associated with more severe disease and increased mortality, and are considered to be the most virulent agent of bovine babesiosis. In addition, babesiosis caused by B. divergens has an important zoonotic potential. The disease caused by B. bovis and B. bigemina can be controlled, at least in part, using therapeutic agents or vaccines comprising live-attenuated parasites, but these methods are limited in terms of their safety, ease of deployability and long-term efficacy, and improved control measures are urgently needed. In addition, expansion of tick habitats due to climate change and other rapidly changing environmental factors complicate efficient control of these parasites. While the ability to cause persistent infections facilitates transmission and persistence of the parasite in endemic regions, it also highlights their capacity to evade the host immune responses. Currently, the mechanisms of immune responses used by infected bovines to survive acute and chronic infections remain poorly understood, warranting further research. Similarly, molecular details on the processes leading to sexual reproduction and the development of tick-stage parasites are lacking, and such tick-specific molecules can be targets for control using alternative transmission blocking vaccines. In this review, we identify and examine key phases in the life-cycle of Babesia parasites, including dependence on a tick vector for transmission, sexual reproduction of the parasite in the midgut of the tick, parasite-dependent invasion and egression of bovine RBCs, the role of the spleen in the clearance of infected RBCs (IRBCs), and age-related disease resistance in cattle, as opportunities for developing improved control measures. The availability of integrated novel research approaches including "omics" (such as genomics, transcriptomics, and proteomics), gene modification, cytoadhesion assays, RBC invasion assays and methods for in vitro induction of sexual-stage parasites will accelerate our understanding of parasite vulnerabilities. Further, producing new knowledge on these vulnerabilities, as well as taking full advantage of existing knowledge, by filling important research gaps should result in the development of next-generation vaccines to control acute disease and parasite transmission. Creative and effective use of current and future technical and computational resources are needed, in the face of the numerous challenges imposed by these highly evolved parasites, for improving the control of this disease. Overall, bovine babesiosis is recognised as a global disease that imposes a serious burden on livestock production and human livelihood, but it largely remains a poorly controlled disease in many areas of the world. Recently, important progress has been made in our understanding of the basic biology and host-parasite interactions of Babesia parasites, yet a good deal of basic and translational research is still needed to achieve effective control of this important disease and to improve animal and human health.
Collapse
Affiliation(s)
- Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States.
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States
| | - Vignesh Rathinasamy
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - William A Poole
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Brian M Cooke
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
9
|
Matos CA, Gonçalves LR, Alvarez DO, Freschi CR, Silva JBD, Val-Moraes SP, Mendes NS, André MR, Machado RZ. Longitudinal evaluation of humoral immune response and merozoite surface antigen diversity in calves naturally infected with Babesia bovis, in São Paulo, Brazil. ACTA ACUST UNITED AC 2018; 26:479-490. [PMID: 29211135 DOI: 10.1590/s1984-29612017069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022]
Abstract
Babesiosis is an economically important infectious disease affecting cattle worldwide. In order to longitudinally evaluate the humoral immune response against Babesia bovis and the merozoite surface antigen diversity of B. bovis among naturally infected calves in Taiaçu, Brazil, serum and DNA samples from 15 calves were obtained quarterly, from their birth to 12 months of age. Anti-B. bovis IgG antibodies were detected by means of the indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA). The polymerase chain reaction (PCR) was used to investigate the genetic diversity of B. bovis, based on the genes that encode merozoite surface antigens (MSA-1, MSA-2b and MSA-2c). The serological results demonstrated that up to six months of age, all the calves developed active immunity against B. bovis. Among the 75 DNA samples evaluated, 2, 4 and 5 sequences of the genes msa-1, msa-2b and msa-2c were obtained. The present study demonstrated that the msa-1 and msa-2b genes sequences amplified from blood DNA of calves positive to B. bovis from Taiaçu were genetically distinct, and that msa-2c was conserved. All animals were serologically positive to ELISA and IFAT, which used full repertoire of parasite antigens in despite of the genetic diversity of MSAs.
Collapse
Affiliation(s)
- Carlos António Matos
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil.,Direcção de Ciências Animais, Maputo, Moçambique
| | - Luiz Ricardo Gonçalves
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | | | - Carla Roberta Freschi
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Jenevaldo Barbosa da Silva
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Silvana Pompeia Val-Moraes
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Natalia Serra Mendes
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| |
Collapse
|
10
|
Serosurvey of Babesia bovis and Babesia bigemina in cattle in Mongolia. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2018; 13:85-91. [PMID: 31014894 DOI: 10.1016/j.vprsr.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 01/15/2023]
Abstract
Mongolia is an agriculturally rich country with large livestock populations that contribute significantly to its national economy. However, the export market for live animals and livestock products is often constrained for various reasons including infectious diseases. Babesia bovis and B. bigemina, which are bovine hemoprotozoan parasites, cause severe forms of clinical babesiosis, in cattle. However, a country-wide survey to determine the exposure rates in various provinces in Mongolia was not conducted to determine the risk for infections with these parasite species. Therefore, we investigated the frequency of antibodies to B. bovis and B. bigemina in cattle reared throughout Mongolia. B. bovis-and B. bigemina-specific enzyme-linked immunosorbent assays (ELISAs) were used to screen the serum samples sourced from 1946 cattle in 19 of 21 provinces and a provincial municipality (Ulaanbaatar) in Mongolia. We found 351 (18.0%) samples positive for B. bovis and 435 (22.4%) samples positive for B. bigemina infections. The B. bovis- and B. bigemina-positive rates ranged from 0.8 to 61.5% and 4.0 to 50.6%, respectively, among the surveyed provinces. The positive rates of B. bovis and B. bigemina infections were relatively higher in the provinces located in northernmost, northern, eastern, southeastern, and southern Mongolia. Additionally, the B. bovis- and B. bigemina-positive rates were not significantly different between females (18.2 and 22.2%, respectively) and males (17.2 and 18.8%, respectively) or between the 1-3-year-old (16.2 and 19.4%, respectively) and >3-year-old (17.1 and 20.9%, respectively) age groups. The differential seropositivity for B. bovis and B. bigemina infections among the provinces may reflect the variations in the risk of cattle being infected with these parasite species. The findings of the present study highlight the need for country-wide control measures, including tick control programs, to minimize the rates of B. bovis and B. bigemina infections in Mongolian cattle.
Collapse
|
11
|
SIVAKUMAR T, LAN DTB, LONG PT, VIET LQ, WEERASOORIYA G, KUME A, SUGANUMA K, IGARASHI I, YOKOYAMA N. Serological and molecular surveys of Babesia bovis and Babesia bigemina among native cattle and cattle imported from Thailand in Hue, Vietnam. J Vet Med Sci 2018; 80:333-336. [PMID: 29249730 PMCID: PMC5836773 DOI: 10.1292/jvms.17-0549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/26/2017] [Indexed: 01/15/2023] Open
Abstract
Serum and DNA from blood samples collected from Vietnamese yellow cattle (n=101) and cattle imported from Thailand (n=54) at a Vietnamese slaughter house were screened for Babesia bovis and Babesia bigemina infections by enzyme-linked immunosorbent assay (ELISA) and PCR. The positive rates determined by ELISA (B. bovis and B. bigemina) or PCR (B. bigemina) in the Vietnamese cattle were significantly higher than those found in Thai cattle. Some PCR-positive Vietnamese animals were ELISA-negative, whereas all PCR-positive Thai cattle were ELISA-positive, suggesting that the animals were infected in Thailand. Importing Babesia-infected cattle may lead to the introduction of new parasite strains, possibly compromising the development of anti-Babesia immune control strategies in Vietnam.
Collapse
Affiliation(s)
- Thillaiampalam SIVAKUMAR
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555,
Japan
| | - Dinh Thi Bich LAN
- Hue University Institute of Biotechnology, Phu Thuong
Commune, Phu Vang District, Thua Thien Hue Province 47000, Vietnam
| | - Phung Thang LONG
- University of Agriculture and Forestry, Hue University, 102
Phung Hung Street, Hue 47000, Vietnam
| | - Le Quoc VIET
- Hue University Institute of Biotechnology, Phu Thuong
Commune, Phu Vang District, Thua Thien Hue Province 47000, Vietnam
| | - Gayani WEERASOORIYA
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555,
Japan
- Veterinary Research Institute, P.O. Box 28, Peradeniya, Sri
Lanka
| | - Aiko KUME
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555,
Japan
| | - Keisuke SUGANUMA
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555,
Japan
- Research Center for Global Agromedicine, Obihiro University
of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Ikuo IGARASHI
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555,
Japan
| | - Naoaki YOKOYAMA
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555,
Japan
| |
Collapse
|
12
|
Ishizaki T, Sivakumar T, Hayashida K, Takemae H, Tuvshintulga B, Munkhjargal T, Guswanto A, Igarashi I, Yokoyama N. Babesia bovis BOV57, a Theileria parva P67 homolog, is an invasion-related, neutralization-sensitive antigen. INFECTION GENETICS AND EVOLUTION 2017; 54:138-145. [DOI: 10.1016/j.meegid.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 11/27/2022]
|
13
|
Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S, Chung YT, Sthitmatee N. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. INFECTION GENETICS AND EVOLUTION 2017; 54:447-454. [PMID: 28807856 DOI: 10.1016/j.meegid.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Babesia bovis, a parasite infecting cattle and buffalo, continues to spread throughout the developing world. The babesial vaccine was developed to be a sustainable alternative treatment to control the parasite. However, genetic diversity is a major obstacle for designing and developing a safe and effective vaccine. The apical membrane antigen 1 (AMA-1) is considered to be a potential vaccine candidate antigen among immunogenic genes of B. bovis. To gain a more comprehensive understanding of B. bovis AMA-1 (BbAMA-1), three B. bovis DNA samples were randomly selected to characterize in order to explore genetic diversity and natural selection and to predict the antigen epitopes. The sequence analysis revealed that BbAMA-1 has a low level of polymorphism and is highly conserved (95.46-99.94%) among Thai and global isolates. The majority of the polymorphic sites were observed in domains I and III. Conversely, domain II contained no polymorphic sites. We report the first evidence of strong negative or purifying selection across the full length of the gene, especially in domain I, by demonstrating a significant excess of the average number of synonymous (dS) over the non-synonymous (dN) substitutions. Finally, we also predict the linear and conformational B-cell epitope. The predicted B-cell epitopes appeared to be involved with the amino acid changes. Collectively, the results suggest that the conserved BbAMA-1 may be used to detect regional differences in the B. bovis parasite. Importantly, the limitation of BbAMA-1 diversity under strong negative selection indicates strong functional constraints on this gene. Thus, the gene could be a valuable target vaccine candidate antigen.
Collapse
Affiliation(s)
| | | | - Pacharathon Simking
- Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | | | | | | | - Yang-Tsung Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
14
|
Sivakumar T, Igarashi I, Yokoyama N. Babesia ovata: Taxonomy, phylogeny and epidemiology. Vet Parasitol 2016; 229:99-106. [PMID: 27809988 DOI: 10.1016/j.vetpar.2016.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022]
Abstract
Babesia ovata, which is transmitted by Haemaphysalis longicornis, is an intraerythrocytic protozoan parasite of cattle. Based on its morphology, B. ovata is classified as a large-type Babesia. The developmental stages of B. ovata have been described both in cattle and the tick vector. In infected adult female ticks, the parasite is transovarially transmitted to the tick eggs. The sexual reproduction of B. ovata has been demonstrated in the tick midgut. The diagnostic tools that are currently available for the specific detection of B. ovata in cattle include microscopy and polymerase chain reaction assays. The development of improved molecular and serological diagnostic tools has been constrained by the limited availability of genetic data. B. ovata has been reported in cattle populations in Japan, Korea, China, Mongolia and Thailand. B. ovata was thought to be a benign parasite; however, infections in immuno compromised or Theileria orientalis-infected animals are clinically significant. Thus, control strategies aimed at minimizing the prevalence of B. ovata are vital. The taxonomy of B. ovata is unclear, and the phylogenetic position has not been well defined. Consequently, non-B. ovata species have sometimes been classified as B. ovata. In this review, we provide an outline of the lifecycle, geographical distribution, and control of B. ovata, and critically discuss the taxonomy and phylogeny of this bovine Babesia.
Collapse
Affiliation(s)
- Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
15
|
Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand. INFECTION GENETICS AND EVOLUTION 2016; 41:255-261. [PMID: 27101782 DOI: 10.1016/j.meegid.2016.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 04/17/2016] [Indexed: 11/21/2022]
Abstract
Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand.
Collapse
|
16
|
Liyanagunawardena N, Sivakumar T, Kothalawala H, Silva SSP, Battsetseg B, Lan DTB, Inoue N, Igarashi I, Yokoyama N. Type-specific PCR assays for Babesia bovis msa-1 genotypes in Asia: Revisiting the genetic diversity in Sri Lanka, Mongolia, and Vietnam. INFECTION GENETICS AND EVOLUTION 2015; 37:64-9. [PMID: 26520797 DOI: 10.1016/j.meegid.2015.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/27/2015] [Indexed: 11/17/2022]
Abstract
Babesia bovis is the most virulent Babesia organism, resulting in a high mortality rate in cattle. The genetic diversity of B. bovis merozoite surface antigens (MSAs), such as MSA-1, MSA-2b, and MSA-2c, might be linked to altered immune profiles in the host animals. The present study aimed to develop type-specific PCR assays for Asian msa-1 genotypes, thereby re-analyzing the genetic diversity of msa-1 in Sri Lanka, Mongolia, and Vietnam. Specific primers were designed for nine Asian msa-1 genotypes, which had been detected based on the phylogeny constructed using msa-1 gene sequences retrieved from the GenBank database. Specificity of the type-specific PCR assays was confirmed using plasmids containing the inserts of msa-1 gene fragments that represent Asian genotypes. Furthermore, no amplicons were observed by these PCR assays when DNA samples of Babesia bigemina, Babesia ovata, Theileria annulata, Theileria orientalis, Trypanosoma evansi, Trypanosoma theileri, Anaplasma marginale, and Anaplasma bovis, and non-infected bovine blood were analyzed. In total, 109 B. bovis-positive blood DNA samples sourced from Sri Lanka (44 cattle), Mongolia (26 cattle), and Vietnam (23 cattle and 16 water buffaloes) were then screened by the type-specific PCR assays. The sequences derived from all of the PCR amplicons were phylogenetically analyzed. Out of 109 DNA samples, 23 (20 from cattle and 3 from water buffaloes) were positive for at least one genotype. In agreement with previous studies, five and four different genotypes were detected among the DNA samples from Sri Lanka and Vietnam, respectively. In contrast, four genotypes, including three novel genotypes, were detected from Mongolia. Five DNA samples were found to be co-infected with multiple genotypes. The sequences of the PCR amplicons clustered phylogenetically within the corresponding clades. These findings indicated that the type-specific PCR assays described herein are useful for the determination of genotypic diversity of the B. bovis msa-1 gene in Asia.
Collapse
Affiliation(s)
- Nilukshi Liyanagunawardena
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; Veterinary Research Institute, Peradeniya, Sri Lanka
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; Veterinary Research Institute, Peradeniya, Sri Lanka
| | | | | | - Badgar Battsetseg
- Laboratory of Molecular Genetics, Institute of Veterinary Medicine, Ulaanbaatar, Mongolia
| | | | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.
| |
Collapse
|
17
|
Expression, Purification, and Biological Characterization of Babesia microti Apical Membrane Antigen 1. Infect Immun 2015. [PMID: 26195550 DOI: 10.1128/iai.00168-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The intraerythrocytic apicomplexan Babesia microti, the primary causative agent of human babesiosis, is a major public health concern in the United States and elsewhere. Apicomplexans utilize a multiprotein complex that includes a type I membrane protein called apical membrane antigen 1 (AMA1) to invade host cells. We have isolated the full-length B. microti AMA1 (BmAMA1) gene and determined its nucleotide sequence, as well as the amino acid sequence of the AMA1 protein. This protein contains an N-terminal signal sequence, an extracellular region, a transmembrane region, and a short conserved cytoplasmic tail. It shows the same domain organization as the AMA1 orthologs from piroplasm, coccidian, and haemosporidian apicomplexans but differs from all other currently known piroplasmida, including other Babesia and Theileria species, in lacking two conserved cysteines in highly variable domain III of the extracellular region. Minimal polymorphism was detected in BmAMA1 gene sequences of parasite isolates from six babesiosis patients from Nantucket. Immunofluorescence microscopy studies showed that BmAMA1 is localized on the cell surface and cytoplasm near the apical end of the parasite. Native BmAMA1 from parasite lysate and refolded recombinant BmAMA1 (rBmAMA1) expressed in Escherichia coli reacted with a mouse anti-BmAMA1 antibody using Western blotting. In vitro binding studies showed that both native BmAMA1 and rBmAMA1 bind to human red blood cells (RBCs). This binding is trypsin and chymotrypsin treatment sensitive but neuraminidase independent. Incubation of B. microti parasites in human RBCs with a mouse anti-BmAMA1 antibody inhibited parasite growth by 80% in a 24-h assay. Based on its antigenically conserved nature and potential role in RBC invasion, BmAMA1 should be evaluated as a vaccine candidate.
Collapse
|
18
|
Yokoyama N, Sivakumar T, Tuvshintulga B, Hayashida K, Igarashi I, Inoue N, Long PT, Lan DTB. Genetic variations in merozoite surface antigen genes of Babesia bovis detected in Vietnamese cattle and water buffaloes. INFECTION GENETICS AND EVOLUTION 2015; 30:288-295. [DOI: 10.1016/j.meegid.2014.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/25/2014] [Accepted: 12/29/2014] [Indexed: 11/29/2022]
|
19
|
Molad T, Fleiderovitz L, Leibovitz B, Wolkomirsky R, Behar A, Markovics A. Differentiation between Israeli B. bovis vaccine strain and field isolates. Vet Parasitol 2015; 208:159-68. [PMID: 25636460 DOI: 10.1016/j.vetpar.2014.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 11/24/2022]
Abstract
The present study demonstrated for the first time the ability to distinguish between the Israeli Babesia bovis vaccine strain and field isolates. The existence of an additional EcoRI restriction site in the rhoptry-associated protein-1 (rap-1) gene, which is unique to the Israeli vaccine strain, and the abolition of one of the HaeIII restriction sites in the rap-1 gene of the vaccine strain enabled distinction between the Israeli B. bovis vaccine strain and field isolates, and this was the basis for polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) development. ClustalW sequence alignment of RAP-1-deduced amino acids of the Israeli B. bovis strains and of field isolates showed that the total sequence identity among the RAP-1 amino acid sequences ranged from 97.5% to 100%. However, comparison between amino acids of RAP-1 of the Israeli vaccine strain and of field isolates, on the one hand, and B. bovis strains from Argentina, Mexico, Brazil, and USA, on the other hand, revealed 90% identity. The PCR-RFLP assay offered the great advantage of being able to distinguish between vaccine and field isolates in mixtures and provide new insight into the molecular epidemiology of B. bovis infections in Israel.
Collapse
Affiliation(s)
- T Molad
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel.
| | - L Fleiderovitz
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - B Leibovitz
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - R Wolkomirsky
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - A Behar
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - A Markovics
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| |
Collapse
|
20
|
Molad T, Fleiderovitz L, Leibovich B, Wolkomirsky R, Erster O, Roth A, Mazuz M, Markovics A, Shkap V. Genetic polymorphism of Babesia bovis merozoite surface antigens-2 (MSA-2) isolates from bovine blood and Rhipicephalus annulatus ticks in Israel. Vet Parasitol 2014; 205:20-7. [DOI: 10.1016/j.vetpar.2014.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 11/17/2022]
|
21
|
Abstract
Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, but when retained, attenuated B. bovis can revert to virulence following tick passage. This study provides data showing that tick passage of the partially attenuated B. bovis T2Bo derivative strain further decreased virulence compared with intravenous inoculation of the same strain in infected animals. Ticks that acquired virulent or attenuated parasites by feeding on infected cattle were transmission fed on naive, splenectomized animals. While there was no significant difference between groups in the number of parasites in the midgut, hemolymph, or eggs of replete female ticks after acquisition feeding, animals infected with the attenuated parasites after tick transmission showed no clinical signs of babesiosis, unlike those receiving intravenous challenge with the same attenuated strain prior to tick passage. Additionally, there were significantly fewer parasites in blood and tissues of animals infected with tick-passaged attenuated parasites. Sequencing analysis of select B. bovis genes before and after tick passage showed significant differences in parasite genotypes in both peripheral blood and cerebral samples. These results provide evidence that not only is tick transmissibility retained by the attenuated T2Bo strain, but also it results in enhanced attenuation and is accompanied by expansion of parasite subpopulations during tick passage that may be associated with the change in disease phenotype.
Collapse
|
22
|
Tattiyapong M, Sivakumar T, Ybanez AP, Ybanez RHD, Perez ZO, Guswanto A, Igarashi I, Yokoyama N. Diversity of Babesia bovis merozoite surface antigen genes in the Philippines. Parasitol Int 2014; 63:57-63. [DOI: 10.1016/j.parint.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/07/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
23
|
Sivakumar T, Okubo K, Igarashi I, de Silva WK, Kothalawala H, Silva SSP, Vimalakumar SC, Meewewa AS, Yokoyama N. Genetic diversity of merozoite surface antigens in Babesia bovis detected from Sri Lankan cattle. INFECTION GENETICS AND EVOLUTION 2013; 19:134-40. [DOI: 10.1016/j.meegid.2013.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
24
|
Munkhjargal T, Sivakumar T, Battsetseg B, Nyamjargal T, Aboulaila M, Purevtseren B, Bayarsaikhan D, Byambaa B, Terkawi MA, Yokoyama N, Igarashi I. Prevalence and genetic diversity of equine piroplasms in Tov province, Mongolia. INFECTION GENETICS AND EVOLUTION 2013; 16:178-85. [DOI: 10.1016/j.meegid.2013.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
|
25
|
Phylogenetic relationships of Mongolian Babesia bovis isolates based on the merozoite surface antigen (MSA)-1, MSA-2b, and MSA-2c genes. Vet Parasitol 2012; 184:309-16. [DOI: 10.1016/j.vetpar.2011.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022]
|
26
|
Association and evidence for linked recognition of type IV secretion system proteins VirB9-1, VirB9-2, and VirB10 in Anaplasma marginale. Infect Immun 2011; 80:215-27. [PMID: 22038917 DOI: 10.1128/iai.05798-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Like several other bacterial pathogens, Anaplasma marginale has an outer membrane that induces complete protection from infection and disease. However, the proteins that confer protective immunity and whether protection requires interacting proteins and/or linked T-cell and immunoglobulin G epitopes are not known. Our goal is to target the conserved type IV secretion system (T4SS) to identify conserved, immunogenic membrane proteins that are interacting and linked recognition candidates. Linked recognition is a process by which a B cell is optimally activated by a helper T cell that responds to the same, or physically associated, antigen. A. marginale T4SS proteins VirB2, VirB4-1, VirB4-2, VirB6-1, VirB7, VirB8-2, VirB9-1, VirB9-2, VirB10, VirB11, and VirD4 were screened for their ability to induce IgG and to stimulate CD4+ T cells from outer membrane-vaccinated cattle. VirB9-1, VirB9-2, and VirB10 induced the strongest IgG and T-cell responses in the majority of cattle, although three animals with major histocompatibility complex class II DRB3 restriction fragment length polymorphism types 8/23, 3/16, and 16/27 lacked T-cell responses to VirB9-1, VirB9-1 and VirB9-2, or VirB9-2 and VirB10, respectively. For these animals, VirB9-1-, VirB9-2-, and VirB10-specific IgG production may be associated with T-cell help provided by responses to an interacting protein partner(s). Interacting protein partners indicated by far-Western blotting were confirmed by immunoprecipitation assays and revealed, for the first time, specific interactions of VirB9-1 with VirB9-2 and VirB10. The immunogenicity and interactions of VirB9-1, VirB9-2, and VirB10 justify their testing as a linked protein vaccine against A. marginale.
Collapse
|
27
|
Genotypic diversity of merozoite surface antigen 1 of Babesia bovis within an endemic population. Mol Biochem Parasitol 2010; 172:107-12. [PMID: 20371255 PMCID: PMC2941823 DOI: 10.1016/j.molbiopara.2010.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022]
Abstract
Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.
Collapse
|
28
|
Anaplasma marginale type IV secretion system proteins VirB2, VirB7, VirB11, and VirD4 are immunogenic components of a protective bacterial membrane vaccine. Infect Immun 2010; 78:1314-25. [PMID: 20065028 DOI: 10.1128/iai.01207-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Anaplasma and related Ehrlichia spp. are important tick-borne, Gram-negative bacterial pathogens of livestock and humans that cause acute infection and disease and can persist. Immunization of cattle with an Anaplasma marginale fraction enriched in outer membranes (OM) can provide complete protection against disease and persistent infection. Serological responses of OM vaccinees to the OM proteome previously identified over 20 antigenic proteins, including three type IV secretion system (T4SS) proteins, VirB9-1, VirB9-2, and VirB10. Subsequent studies showed that these three proteins also stimulated CD4(+) T-cell responses in OM vaccinees. The T4SS, composed of a complex of proteins spanning the inner and outer membranes of certain bacteria, is an important virulence factor but is relatively unexplored as a vaccine target. The goal of this study was to determine if additional T4SS proteins are immunogenic for animals immunized with the protective OM fraction of A. marginale. T4SS proteins expressed by in vitro transcription and translation were screened for stimulating proliferation of T cells from OM vaccinees, and immunogenic proteins were expressed as recombinant proteins in Escherichia coli and their immunogenicity was verified. VirB2, a putative VirB7, VirB11, and VirD4 were immunogenic for OM vaccinees expressing several common major histocompatibility complex (MHC) class II haplotypes. VirB2 is encoded by multiple genes that share a conserved central region, and epitope mapping revealed T-cell epitopes in this region. The discovery of novel immunogenic T4SS proteins recognized by outbred individuals with common MHC haplotypes further justifies evaluating the T4SS as a potential vaccine candidate for pathogenic bacteria.
Collapse
|
29
|
Using msa-2b as a molecular marker for genotyping Mexican isolates of Babesia bovis. INFECTION GENETICS AND EVOLUTION 2009; 9:1102-7. [DOI: 10.1016/j.meegid.2009.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/21/2009] [Accepted: 03/26/2009] [Indexed: 11/22/2022]
|
30
|
Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res 2009; 40:37. [PMID: 19379662 PMCID: PMC2695028 DOI: 10.1051/vetres/2009020] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/16/2009] [Indexed: 12/24/2022] Open
Abstract
Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated.
Collapse
Affiliation(s)
- Alain Chauvin
- Ecole nationale vétérinaire, UMR 1300 BIOEPAR, ENVN, Atlanpôle - La Chantrerie, BP 40706, F-44307 Nantes Cedex 03, France.
| | | | | | | | | |
Collapse
|
31
|
Genis AD, Mosqueda JJ, Borgonio VM, Falcón A, Alvarez A, Camacho M, de Lourdes Muñoz M, Figueroa JV. Phylogenetic analysis of Mexican Babesia bovis isolates using msa and ssrRNA gene sequences. Ann N Y Acad Sci 2009; 1149:121-5. [PMID: 19120189 DOI: 10.1196/annals.1428.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Variable merozoite surface antigens of Babesia bovis are exposed glycoproteins having a role in erythrocyte invasion. Members of this gene family include msa-1 and msa-2 (msa-2c, msa-2a(1), msa-2a(2), and msa-2b). Small subunit ribosomal (ssr)RNA gene is subject to evolutive pressure and has been used in phylogenetic studies. To determine the phylogenetic relationship among B. bovis Mexican isolates using different genetic markers, PCR amplicons, corresponding to msa-1, msa-2c, msa-2b, and ssrRNA genes, were cloned and plasmids carrying the corresponding inserts were sequenced. Comparative analysis of nucleotide and deduced amino acid sequences revealed distinct degrees of variability and identity among the coding gene sequences obtained from 12 geographically different B. bovis isolates and a reference strain. Overall sequence identities of 47.7%, 72.3%, 87.7%, and 94% were determined for msa-1, msa-2b, msa-2c, and ssrRNA, respectively. A robust phylogenetic tree was obtained with msa-2b sequences. The phylogenetic analysis suggests that Mexican B. bovis isolates group in clades not concordant with the Mexican geography. However, the Mexican isolates group together in an American clade separated from the Australian clade. Sequence heterogeneity in msa-1, msa-2b, and msa-2c coding regions of Mexican B. bovis isolates present in different geographical regions can be a result of either differential evolutive pressure or cattle movement from commercial trade.
Collapse
Affiliation(s)
- Alma D Genis
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, México City, México
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Borgonio V, Mosqueda J, Genis AD, Falcon A, Alvarez JA, Camacho M, Figueroa JV. msa-1andmsa-2cGene Analysis and Common Epitopes Assessment in MexicanBabesia bovisIsolates. Ann N Y Acad Sci 2008; 1149:145-8. [DOI: 10.1196/annals.1428.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog 2007; 3:1401-13. [PMID: 17953480 PMCID: PMC2034396 DOI: 10.1371/journal.ppat.0030148] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 08/30/2007] [Indexed: 12/28/2022] Open
Abstract
Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ∼150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development. Vector-transmitted blood parasites cause some of the most widely distributed, serious, and poorly controlled diseases globally, including the most severe form of human malaria caused by Plasmodium falciparum. In livestock, tick-transmitted blood parasites include the protozoa Theileria parva, the cause of East Coast fever and Babesia bovis, the cause of tick fever, to which well over half of the world's cattle population are at risk. There is a critical need to better understand the mechanisms by which these parasites are transmitted, persist, and cause disease in order to optimize methods for control, including development of vaccines. This manuscript presents the genome sequence of B. bovis, and provides a whole genome comparative analysis with P. falciparum and T. parva. Genome-wide characterization of the B. bovis antigenically variable ves1 family reveals interesting differences in organization and expression from the related P. falciparum var genes. The second largest gene family (smorf) in B. bovis was newly discovered and may itself be involved in persistence, highlighting the utility of this approach in gene discovery. Organization and structure of the B. bovis genome is most similar to that of Theileria, and despite common features in clinical outcome is limited to microregional similarity with P. falciparum. Comparative gene analysis identifies several previously unknown proteins as homologs of vaccine candidates in one or more of these parasites, and candidate genes whose expression might account for unique properties such as the ability of Theileria to reversibly transform leukocytes.
Collapse
|
36
|
Berens SJ, Brayton KA, McElwain TF. Coinfection with antigenically and genetically distinct virulent strains of Babesia bovis is maintained through all phases of the parasite life cycle. Infect Immun 2007; 75:5769-76. [PMID: 17893136 PMCID: PMC2168326 DOI: 10.1128/iai.00802-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigenic polymorphism is a defining characteristic of the Babesia bovis variable merozoite surface antigen (VMSA) family. Sequence analysis strongly suggests that recombination between virulent strains contributes to VMSA diversity. While meiosis during the aneuploid stage of the parasite's life cycle in the tick vector Rhipicephalus (Boophilus) microplus is the most probable source of interstrain recombination, there is no definitive evidence that coinfection of the mammalian host or R. microplus ticks with more than one virulent strain occurs. Using allele-specific real-time quantitative PCR, we tested the hypotheses that cattle could support coinfection of two antigenically variant virulent tick-transmissible strains of B. bovis and that R. microplus ticks could acquire and transmit these two divergent strains. The results indicate that both calves and ticks can support virulent B. bovis coinfection through all phases of the hemoparasite's life cycle. Neither strain dominated in either the mammalian or invertebrate host, and larval tick progeny, which could be coinfected individually, were also able to transmit both strains, resulting in virulent babesiosis in recipients. While coinfection of the tick vector provides the context in which allelic antigenic diversity can be generated, recombination of VMSA genes could not be confirmed, suggesting that VMSA allelic changes are slow to accumulate.
Collapse
Affiliation(s)
- Shawn J Berens
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
37
|
Brown WC, Norimine J, Goff WL, Suarez CE, McElwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol 2006; 28:315-27. [PMID: 16842268 DOI: 10.1111/j.1365-3024.2006.00849.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Babesial parasites infect cattle in tropical and temperate regions of the world and cause significant morbidity and mortality. Discovery of protective antigens that could be used in a killed vaccine has been slow and to date there are few promising vaccine candidates for cattle Babesia. This review describes mechanisms of protective innate and adaptive immune responses to babesial parasites and different strategies to identify potentially protective protein antigens of B. bovis, B. bigemina, and B. divergens. Successful parasites often cause persistent infection, and this paper also discusses how B. bovis evades and regulates the immune response to promote survival of parasite and host. Development of successful non-living recombinant vaccines will depend on increased understanding of protective immune mechanisms and availability of parasite genomes.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
38
|
LeRoith T, Berens SJ, Brayton KA, Hines SA, Brown WC, Norimine J, McElwain TF. The Babesia bovis merozoite surface antigen 1 hypervariable region induces surface-reactive antibodies that block merozoite invasion. Infect Immun 2006; 74:3663-7. [PMID: 16714599 PMCID: PMC1479293 DOI: 10.1128/iai.00032-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A hypervariable region (HVR) previously identified in the carboxy-terminal one-third of the Babesia bovis variable merozoite surface antigen family was more extensively analyzed in merozoite surface antigen 1 (MSA-1) from 16 strains and isolates. The MSA-1 HVR is proline rich and contains three semiconserved motifs nearly identical to those described for the related family member MSA-2. Two MSA-1-specific monoclonal antibodies previously shown to be reactive with the merozoite surface bound to a recombinant construct encoding the HVR, indicating that the HVR is surface exposed and accessible to antibody binding. Importantly, these surface-reactive, HVR-specific monoclonal antibodies were capable of inhibiting merozoite infectivity of the host erythrocyte in vivo. The results indicate that the MSA-1 HVR is involved in erythrocyte invasion and suggest that selection of MSA-1 variants may be driven by invasion-blocking antibodies.
Collapse
Affiliation(s)
- Tanya LeRoith
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Berens SJ, Brayton KA, Molloy JB, Bock RE, Lew AE, McElwain TF. Merozoite surface antigen 2 proteins of Babesia bovis vaccine breakthrough isolates contain a unique hypervariable region composed of degenerate repeats. Infect Immun 2005; 73:7180-9. [PMID: 16239512 PMCID: PMC1273907 DOI: 10.1128/iai.73.11.7180-7189.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the complete msa-2 locus was characterized from 12 Australian B. bovis strains and isolates, including two vaccine strains and eight vaccine breakthrough isolates, and compared to the loci in previously and newly characterized American strains. In contrast to American strains, the msa-2 loci of all Australian strains and isolates examined contain, in addition to msa-2c, only a solitary gene (designated msa-2a/b) closely related to American strain msa-2a and msa-2b. Nevertheless, the proteins encoded by these genes are quite diverse both between and within geographic regions and harbor evidence of genetic exchange among other VMSA family members, including msa-1. Moreover, all but one of the Australian breakthrough isolate MSA-2a/b proteins is markedly different from the vaccine strain from which immune escape occurred, consistent with their role in strain-specific protective immunity. The densest distribution of polymorphisms occurs in a hypervariable region (HVR) within the carboxy third of the molecule that is highly proline rich. Variation in length and content of the HVR is primarily attributable to differences in the order and number of degenerate nucleotide repeats encoding three motifs of unknown function.
Collapse
Affiliation(s)
- Shawn J Berens
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|