1
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Chen M, Shang Y, Cui W, Wang X, Zhu J, Dong H, Wang H, Su T, Wang W, Zhang K, Li B, Xu S, Hu W, Zhang F, Gu L. Molecular mechanism of proteolytic cleavage-dependent activation of CadC-mediated response to acid in E. coli. Commun Biol 2024; 7:1335. [PMID: 39415060 PMCID: PMC11484849 DOI: 10.1038/s42003-024-06931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Colonizing in the gastrointestinal tract, Escherichia coli confronts diverse acidic challenges and evolves intricate acid resistance strategies for its survival. The lysine-mediated decarboxylation (Cad) system, featuring lysine decarboxylase CadA, lysine/cadaverine antiporter CadB, and transcriptional activator CadC, plays a crucial role in E. coli's adaptation to moderate acidic stress. While the activation of the one-component system CadC and subsequent upregulation of cadBA operon in response to acid and lysine presence have been proposed, the molecular mechanisms governing the transition of CadC from an inactive to an active state remain elusive. Under neutral conditions, CadC is inhibited by forming a complex with lysine-specific permease LysP, stabilized in this inactive state by a disulfide bond. Our study unveils that, in an acidic environment, the disulfide bond in CadC is reduced by the disulfide bond isomerase DsbC, exposing R184 to periplasmic proteases, namely DegQ and DegP. Cleavage at R184 by DegQ and DegP generates an active N-terminal DNA-binding domain of CadC, which binds to the cadBA promoter, resulting in the upregulated transcription of the cadA and cadB genes. Upon activation, CadA decarboxylates lysine, producing cadaverine, subsequently transported extracellularly by CadB. We propose that accumulating cadaverine gradually binds to the CadC pH-sensing domain, preventing cleavage and activation of CadC as a feedback mechanism. The identification of DegP, DegQ, and DsbC completes a comprehensive roadmap for the activation and regulation of the Cad system in response to moderate acidic stress in E. coli.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Ye Shang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Wenhao Cui
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Xiaomeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Jiakun Zhu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Hongjie Dong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Tiantian Su
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, jinan, China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, jinan, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China.
| |
Collapse
|
3
|
Gavriil A, Giannenas I, Skandamis PN. A current insight into Salmonella's inducible acid resistance. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39014992 DOI: 10.1080/10408398.2024.2373387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis N Skandamis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
4
|
The role of PhoP/PhoQ system in regulating stress adaptation response in Escherichia coli O157:H7. Food Microbiol 2023; 112:104244. [PMID: 36906298 DOI: 10.1016/j.fm.2023.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
The development of acid tolerance response (ATR) as a result of low pH in Escherichia coli O157:H7 (E. coli O157:H7) contaminating beef during processing is considered a major food safety concern. Thus, in order to explore the formation and molecular mechanisms of the tolerance response of E. coli O157:H7 in a simulated beef processing environment, the resistance of a wild-type (WT) strain and its corresponding ΔphoP mutant to acid, heat, and osmotic pressure was evaluated. Strains were pre-adapted under different conditions of pH (5.4 and 7.0), temperature (37 °C and 10 °C), and culture medium (meat extract and Luria-Bertani broth media). In addition, the expression of genes related to stress response and virulence was also investigated among WT and ΔphoP strains under the tested conditions. Pre-acid adaptation increased the resistance of E. coli O157:H7 to acid and heat treatment while resistance to osmotic pressure decreased. Moreover, acid adaptation in meat extract medium simulating slaughter environment increased ATR, whereas pre-adaptation at 10 °C reduced the ATR. Furthermore, it was shown that mildly acidic conditions (pH = 5.4) and the PhoP/PhoQ two-component system (TCS) acted synergistically to enhance acid and heat tolerance in E. coli O157:H7. Additionally, the expression of genes related to arginine and lysine metabolism, heat shock, and invasiveness was up-regulated, which revealed that the mechanism of acid resistance and cross-protection under mildly acidic conditions was mediated by the PhoP/PhoQ TCS. Both acid adaptation and phoP gene knockout reduced the relative expression of stx1 and stx2 genes which were considered as critical pathogenic factors. Collectively, the current findings indicated that ATR could occur in E. coli O157:H7 during beef processing. Thus, there is an increased food safety risk due to the persistence of tolerance response in the following processing conditions. The present study provides a more comprehensive basis for the effective application of hurdle technology in beef processing.
Collapse
|
5
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022; 14:2146979. [PMID: 36456534 PMCID: PMC9728131 DOI: 10.1080/19490976.2022.2146979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China,Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China,KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China,CONTACT Bingqing Li Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021Shandong, China
| |
Collapse
|
6
|
Liu Y, Zhang Y, Zhu L, Niu L, Luo X, Dong P. The acid tolerance responses of the Salmonella strains isolated from beef processing plants. Food Microbiol 2022; 104:103977. [DOI: 10.1016/j.fm.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
|
7
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022. [PMID: 36456534 DOI: 10.1080/194909762125747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China
- KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
8
|
Gu D, Wang K, Lu T, Li L, Jiao X. Vibrio parahaemolyticus CadC regulates acid tolerance response to enhance bacterial motility and cytotoxicity. JOURNAL OF FISH DISEASES 2021; 44:1155-1168. [PMID: 33831221 PMCID: PMC8359830 DOI: 10.1111/jfd.13376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 05/15/2023]
Abstract
Pathogens adapted to sub-lethal acidic conditions could increase the virulence and survival ability under lethal conditions. In the aquaculture industry, feed acidifiers have been used to increase the growth of aquatic animals. However, there is limited study on the effects of acidic condition on the virulence and survival of pathogens in aquaculture. In this study, we investigated the survival ability of Vibrio parahaemolyticus at lethal acidic pH (4.0) after adapted the bacteria to sub-lethal acidic pH (5.5) for 1 hr. Our results indicated that the adapted strain increased the survival ability at lethal acidic pH invoked by an inorganic (HCl) or organic (citric) acid. RNA-sequencing (RNA-seq) results revealed that 321 genes were differentially expressed at the sub-lethal acidic pH including cadC, cadBA and groES/groEL relating to acid tolerance response (ATR), as well as genes relating to outer membrane, heat-shock proteins, phosphotransferase system and flagella system. Quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that cadC and cadBA were upregulated under sub-lethal acidic conditions. The CadC protein could directly regulate the expression of cadBA to modulate the ATR in V. parahaemolyticus. RNA-seq data also indicated that 113 genes in the CadC-dependent way and 208 genes in the CadC-independent way were differentially expressed, which were related to the regulation of ATR. Finally, the motility and cytotoxicity of the sub-lethal acidic adapted wild type (WT) were significantly increased compared with the unadapted strain. Our results demonstrated that the dietary acidifiers may increase the virulence and survival of V. parahaemolyticus in aquaculture.
Collapse
Affiliation(s)
- Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and QualityMinistry of Agriculture of ChinaYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhou UniversityJiangsuChina
| | - Kangru Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Tianyu Lu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and QualityMinistry of Agriculture of ChinaYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhou UniversityJiangsuChina
| |
Collapse
|
9
|
Enhancing the tropism of bacteria via genetically programmed biosensors. Nat Biomed Eng 2021; 6:94-104. [PMID: 34326488 DOI: 10.1038/s41551-021-00772-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Engineered bacteria for therapeutic applications would benefit from control mechanisms that confine the growth of the bacteria within specific tissues or regions in the body. Here we show that the tropism of engineered bacteria can be enhanced by coupling bacterial growth with genetic circuits that sense oxygen, pH or lactate through the control of the expression of essential genes. Bacteria that were engineered with pH or oxygen sensors showed preferential growth in physiologically relevant acidic or oxygen conditions, and reduced growth outside the permissive environments when orally delivered to mice. In syngeneic mice bearing subcutaneous tumours, bacteria engineered with both hypoxia and lactate biosensors coupled through an AND gate showed increased tumour specificity. The multiplexing of genetic circuits may be more broadly applicable for enhancing the localization of bacteria to specified niches.
Collapse
|
10
|
Lang C, Zhang Y, Mao Y, Yang X, Wang X, Luo X, Dong P, Zhu L. Acid tolerance response of Salmonella during simulated chilled beef storage and its regulatory mechanism based on the PhoP/Q system. Food Microbiol 2020; 95:103716. [PMID: 33397629 DOI: 10.1016/j.fm.2020.103716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
To investigate the persistence of acid tolerance response (ATR) and the regulatory mechanism during chilled storage, Salmonella ATCC 14028 and the △phoP mutant were acid adapted and then incubated in meat extract at 4 °C for 24 days as simulated beef storage. The bacterial population, D values and expression of PhoP/PhoQ linked genes of both strains were determined at 6-day intervals. Although a mild suppression effect on the D values of adapted Salmonella was found during the long-time storage in meat extract at 4 °C, the D value of adapted strains was significantly higher than non-adapted strains, indicating the persistence of ATR during the whole aging and distribution of beef posing a threat to food safety. The fact that low temperature inhibits the formation of ATR at the early adapted stage emphasizes the importance of keeping a low-temperature environment during slaughter. An interaction between the acidic adaptation and phoP gene on D values was found and the expression levels of adiA, adiY, cadA and cadB genes was significantly reduced in the △phoP mutant, suggesting that PhoP/Q system plays an important role in the ATR by sensing the pH and regulating lysine and arginine decarboxylation directly or indirectly.
Collapse
Affiliation(s)
- Chenxiao Lang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyun Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
11
|
Wettstadt S, Llamas MA. Role of Regulated Proteolysis in the Communication of Bacteria With the Environment. Front Mol Biosci 2020; 7:586497. [PMID: 33195433 PMCID: PMC7593790 DOI: 10.3389/fmolb.2020.586497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal. Among other mechanisms, regulated proteolysis is becoming increasingly recognized as a key process in the modulation of the activity of these signal response proteins. Regulated proteolysis can either produce complete degradation or specific cleavage of the target protein, thus modifying its function. Because proteolysis is a fast process, the modulation of signaling proteins activity by this process allows for an immediate response to a given signal, which facilitates adaptation to the surrounding environment and bacterial survival. Moreover, regulated proteolysis is a fundamental process for the transmission of extracellular signals to the cytosol through the bacterial membranes. By a proteolytic mechanism known as regulated intramembrane proteolysis (RIP) transmembrane proteins are cleaved within the plane of the membrane to liberate a cytosolic domain or protein able to modify gene transcription. This allows the transmission of a signal present on one side of a membrane to the other side where the response is elicited. In this work, we review the role of regulated proteolysis in the bacterial communication with the environment through the modulation of the main bacterial signal transduction systems, namely one- and two-component systems, and alternative σ factors.
Collapse
Affiliation(s)
- Sarah Wettstadt
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
12
|
Pinto D, Liu Q, Mascher T. ECF σ factors with regulatory extensions: the one-component systems of the σ universe. Mol Microbiol 2019; 112:399-409. [PMID: 31175685 DOI: 10.1111/mmi.14323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
The σ subunit of the bacterial RNA polymerase determines promoter specificity. The extracytoplasmic function σ factors (ECFs) represent the most abundant and diverse group of alternative σ factors and are present in the vast majority of bacterial genomes. Typically, ECFs are regulated by anti-σ factors that sequester their cognate ECFs, thereby preventing their interaction with the RNA polymerase. Beyond these ECF paradigms, a number of distinct modes of regulation have been proposed and experimentally investigated. Regulatory extensions represent one such alternative mechanism of ECF regulation that can be found in 18 phylogenetically distinct ECF groups. Here, the σ factors contain additional domains that are fused to the ECF core domains and are involved in stimulus perception and modulation of σ factor activity. We will summarize the current state of knowledge on regulating ECF activity by C-terminal extensions. We will also discuss newly identified ECF groups containing either N- or C-terminal extensions and propose possible mechanisms by which these extensions have been generated and affect ECF σ factor activity. Based on their modular architecture and the resulting physical connection between stimulus perception and transcriptional output, these ECFs are analogous to one-component systems, the primary mechanism of bacterial signal transduction.
Collapse
Affiliation(s)
- Daniela Pinto
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Qiang Liu
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany.,Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| |
Collapse
|
13
|
Jung K, Fabiani F, Hoyer E, Lassak J. Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biol 2019; 8:rsob.180023. [PMID: 29695618 PMCID: PMC5936718 DOI: 10.1098/rsob.180023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Every living cell possesses numerous transmembrane signalling systems that receive chemical and physical stimuli from the environment and transduce this information into an intracellular signal that triggers some form of cellular response. As unicellular organisms, bacteria require these systems for survival in rapidly changing environments. The receptors themselves act as ‘sensory organs’, while subsequent signalling circuits can be regarded as forming a ‘neural network’ that is involved in decision making, adaptation and ultimately in ensuring survival. Bacteria serve as useful biosensors in industry and clinical diagnostics, in addition to producing drugs for therapeutic purposes. Therefore, there is a great demand for engineered bacterial strains that contain transmembrane signalling systems with high molecular specificity, sensitivity and dose dependency. In this review, we address the complexity of transmembrane signalling systems and discuss principles to rewire receptors and their signalling outputs.
Collapse
Affiliation(s)
- Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Florian Fabiani
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Elisabeth Hoyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
14
|
Hu S, Yu Y, Zhou D, Li R, Xiao X, Wu H. Global transcriptomic Acid Tolerance Response in Salmonella Enteritidis. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Lee YH, Kim JH. Direct interaction between the transcription factors CadC and OmpR involved in the acid stress response of Salmonella enterica. J Microbiol 2017; 55:966-972. [DOI: 10.1007/s12275-017-7410-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023]
|
16
|
Rivera-Cancel G, Orth K. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus. Gut Microbes 2017; 8:366-373. [PMID: 28129014 PMCID: PMC5570421 DOI: 10.1080/19490976.2017.1287655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins.
Collapse
Affiliation(s)
- Giomar Rivera-Cancel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA,CONTACT Kim Orth
| |
Collapse
|
17
|
Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M, Stinear TP, Bode HB. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016; 17:537. [PMID: 27488257 PMCID: PMC4971723 DOI: 10.1186/s12864-016-2862-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023] Open
Abstract
Background Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes. Results Here we report the genomic details of two new reference Photorhabdus species. By then conducting genomic comparisons across the genus, we show that there are several highly conserved biosynthetic gene clusters. These clusters produce a range of bioactive small molecules that support the pathogenic phase of the integral relationship that Photorhabdus maintain with nematodes. Conclusions Photorhabdus contain several genetic loci that allow them to become specialist insect pathogens by efficiently evading insect immune responses and killing the insect host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2862-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Bagdevi Mishra
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Deepak K Gupta
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
19
|
Wu C, Zhang J, Du G, Chen J. Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. BIORESOURCE TECHNOLOGY 2013; 143:238-41. [PMID: 23796607 DOI: 10.1016/j.biortech.2013.05.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 05/04/2023]
Abstract
The aim of this study was to investigate the effect of nisin-inducible RecO expression on the stress tolerance of Lactococcus lactis NZ9000. RecO protein from Lactobacillus casei Zhang was introduced into Lactococcus lactis NZ9000 by using a nisin-inducible expression system. The recombinant strain (NZ-RecO) exhibited higher growth performances and survival rate compared with the control strain (NZ-Vector) under stress conditions. In addition, the NZ-RecO strain exhibited 1.37-, 1.41-, and 1.42-fold higher biomass, lactate production, lactate productivity, compared with the corresponding values for NZ-Vector during NaCl-stressed condition. Analysis of lactate dehydrogenase (LDH) activity showed that the production of RecO maintained the stability of LDH during salt stress. These results suggest that overproduction of RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Results presented in this study may help to enhance the industrial utility of lactic acid bacteria.
Collapse
Affiliation(s)
- Chongde Wu
- Key Laboratory for Leather Chemistry and Engineering, Ministry of Education, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, PR China
| | | | | | | |
Collapse
|
20
|
Li Z, Park Y, Marcotte EM. A Bacteriophage tailspike domain promotes self-cleavage of a human membrane-bound transcription factor, the myelin regulatory factor MYRF. PLoS Biol 2013; 11:e1001624. [PMID: 23966832 PMCID: PMC3742443 DOI: 10.1371/journal.pbio.1001624] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/05/2013] [Indexed: 11/29/2022] Open
Abstract
Myelination of the central nervous system (CNS) is critical to vertebrate nervous systems for efficient neural signaling. CNS myelination occurs as oligodendrocytes terminally differentiate, a process regulated in part by the myelin regulatory factor, MYRF. Using bioinformatics and extensive biochemical and functional assays, we find that MYRF is generated as an integral membrane protein that must be processed to release its transcription factor domain from the membrane. In contrast to most membrane-bound transcription factors, MYRF proteolysis seems constitutive and independent of cell- and tissue-type, as we demonstrate by reconstitution in E. coli and yeast. The apparent absence of physiological cues raises the question as to how and why MYRF is processed. By using computational methods capable of recognizing extremely divergent sequence homology, we identified a MYRF protein domain distantly related to bacteriophage tailspike proteins. Although occurring in otherwise unrelated proteins, the phage domains are known to chaperone the tailspike proteins' trimerization and auto-cleavage, raising the hypothesis that the MYRF domain might contribute to a novel activation method for a membrane-bound transcription factor. We find that the MYRF domain indeed serves as an intramolecular chaperone that facilitates MYRF trimerization and proteolysis. Functional assays confirm that the chaperone domain-mediated auto-proteolysis is essential both for MYRF's transcriptional activity and its ability to promote oligodendrocyte maturation. This work thus reveals a previously unknown key step in CNS myelination. These data also reconcile conflicting observations of this protein family, different members of which have been identified as transmembrane or nuclear proteins. Finally, our data illustrate a remarkable evolutionary repurposing between bacteriophages and eukaryotes, with a chaperone domain capable of catalyzing trimerization-dependent auto-proteolysis in two entirely distinct protein and cellular contexts, in one case participating in bacteriophage tailspike maturation and in the other activating a key transcription factor for CNS myelination. Membrane-bound transcription factors are synthesized as integral membrane proteins, but are proteolytically cleaved in response to relevant cues, untethering their transcription factor domains from the membrane to control gene expression in the nucleus. Here, we find that the myelin regulatory factor MYRF, a major transcriptional regulator of oligodendrocyte differentiation and central nervous system myelination, is also a membrane-bound transcription factor. In marked contrast to most well-known membrane-bound transcription factors, cleavage of MYRF appears to be unconditional. Surprisingly, this processing is performed by a protein domain shared with bacteriophages in otherwise unrelated proteins, where the domain is critical to the folding and proteolytic maturation of virus tailspikes. In addition to revealing a previously unknown key step in central nervous system myelination, this work also illustrates a remarkable example of evolutionary repurposing between bacteriophages and eukaryotes, with the same protein domain capable of catalyzing trimerization-dependent auto-proteolysis in two completely distinct protein and cellular contexts.
Collapse
Affiliation(s)
- Zhihua Li
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yungki Park
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (YP); (EMM)
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (YP); (EMM)
| |
Collapse
|
21
|
Kuda T, Yazaki T, Takahashi H, Kimura B. Effect of dried and vinegar flavored squid products on acid resistance of Salmonella Typhimurium and Staphylococcus aureus. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Lassak K, Peeters E, Wróbel S, Albers SV. The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum. Mol Microbiol 2013; 88:125-39. [PMID: 23461567 DOI: 10.1111/mmi.12173] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Abstract
Linking the motility apparatus to signal transduction systems enables microbes to precisely control their swimming behaviour according to environmental conditions. Bacteria have therefore evolved a complex chemotaxis machinery, which has presumably spread through lateral gene transfer into the euryarchaeal subkingdom. By contrast Crenarchaeota encode no chemotaxis-like proteins but are nevertheless able to connect external stimuli to archaellar derived motility. This raises fundamental questions about the underlying regulatory mechanisms. Recently, we reported that the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius becomes motile upon nutrient starvation by promoting transcription of flaB encoding the filament forming subunits. Here we describe two transcriptional activators as paralogous one-component-systems Saci_1180 and Saci_1171 (ArnR and ArnR1). Deletions of arnR and arnR1 resulted in diminished flaB expression and accordingly the deletion mutants revealed impaired swimming motility. We further identified two inverted repeat sequences located upstream of the flaB core promoter of S. acidocaldarius. These cis-regulatory elements were shown to be critical for ArnR and ArnR1 mediated flaB gene expression in vivo. Finally, bioinformatic analysis revealed ArnR to be conserved not only in Sulfolobales but also in the crenarchaeal order of Desulfurococcales and thus might represent a more general control mechanism of archaeal motility.
Collapse
Affiliation(s)
- Kerstin Lassak
- Molecular Biology of Archaea, Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
23
|
Lee YH, Kim S, Kim JH, Bang IS, Lee IS, Bang SH, Park YK. A phosphotransferase system permease is a novel component of CadC signaling in Salmonella enterica. FEMS Microbiol Lett 2012; 338:54-61. [PMID: 23066934 DOI: 10.1111/1574-6968.12025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/11/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, proteolytic cleavage of the membrane-bound transcriptional regulator CadC acts as a switch to activate genes of the lysine decarboxylase system in response to low pH and lysine signals. To identify the genetic factors required for the proteolytic activation of CadC, we performed genome-wide random mutagenesis. We show that a phosphotransferase system (PTS) permease STM4538 acts as a positive modulator of CadC function. The transposon insertion in STM4538 reduces the expression of the CadC target operon cadBA under permissive conditions. In addition, deletional inactivation of STM4538 in the wild-type background leads to the impaired proteolytic cleavage of CadC. We also show that only the low pH signal is involved in the proteolytic processing of CadC, but the lysine signal plays a role in the repression of the lysP gene encoding a lysine-specific permease, which negatively controls expression of the cadBA operon. Our data suggest that the PTS permease STM4538 affects proteolytic processing, which is a necessary but not sufficient step for CadC activation, rendering CadC able to activate target genes.
Collapse
Affiliation(s)
- Yong Heon Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
ibeA is a virulence factor found in some extraintestinal pathogenic Escherichia coli (ExPEC) strains from the B2 phylogenetic group and particularly in newborn meningitic and avian pathogenic strains. It was shown to be involved in the invasion process of the newborn meningitic strain RS218. In a previous work, we showed that in the avian pathogenic E. coli (APEC) strain BEN2908, isolated from a colibacillosis case, ibeA was rather involved in adhesion to eukaryotic cells by modulating type 1 fimbria synthesis (M. A. Cortes et al., Infect. Immun. 76:4129-4136, 2008). In this study, we demonstrate a new role for ibeA in oxidative stress resistance. We showed that an ibeA mutant of E. coli BEN2908 was more sensitive than its wild-type counterpart to H(2)O(2) killing. This phenotype was also observed in a mutant deleted for the whole GimA genomic region carrying ibeA and might be linked to alterations in the expression of a subset of genes involved in the oxidative stress response. We also showed that RpoS expression was not altered by the ibeA deletion. Moreover, the transfer of an ibeA-expressing plasmid into an E. coli K-12 strain, expressing or not expressing type 1 fimbriae, rendered it more resistant to an H(2)O(2) challenge. Altogether, these results show that ibeA by itself is able to confer increased H(2)O(2) resistance to E. coli. This feature could partly explain the role played by ibeA in the virulence of pathogenic strains.
Collapse
|
25
|
Álvarez-Ordóñez A, Prieto M, Bernardo A, Hill C, López M. The Acid Tolerance Response of Salmonella spp.: An adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Álvarez-Ordóñez A, Begley M, Prieto M, Messens W, López M, Bernardo A, Hill C. Salmonella spp. survival strategies within the host gastrointestinal tract. MICROBIOLOGY-SGM 2011; 157:3268-3281. [PMID: 22016569 DOI: 10.1099/mic.0.050351-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human salmonellosis infections are usually acquired via the food chain as a result of the ability of Salmonella serovars to colonize and persist within the gastrointestinal tract of their hosts. In addition, after food ingestion and in order to cause foodborne disease in humans, Salmonella must be able to resist several deleterious stress conditions which are part of the host defence against infections. This review gives an overview of the main defensive mechanisms involved in the Salmonella response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and the low oxygen tension conditions of the mammalian and avian gastrointestinal tracts.
Collapse
Affiliation(s)
- Avelino Álvarez-Ordóñez
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Winy Messens
- Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Mercedes López
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Ana Bernardo
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Dillon SC, Cameron ADS, Hokamp K, Lucchini S, Hinton JCD, Dorman CJ. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol 2010; 76:1250-65. [PMID: 20444106 DOI: 10.1111/j.1365-2958.2010.07173.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugative IncHI1 plasmid pSfR27 from Shigella flexneri 2a strain 2457T encodes the Sfh protein, a paralogue of the global transcriptional repressor H-NS. Sfh allows pSfR27 to be transmitted to new bacterial hosts with minimal impact on host fitness, providing a 'stealth' function whose molecular mechanism has yet to be determined. The impact of the Sfh protein on the Salmonella enterica serovar Typhimurium transcriptome was assessed and binding sites for Sfh in the Salmonella Typhimurium genome were identified by chromatin immunoprecipitation. Sfh did not bind uniquely to any sites. Instead, it bound to a subset of the larger H-NS regulatory network. Analysis of Sfh binding in the absence of H-NS revealed a greatly expanded population of Sfh binding sites that included the majority of H-NS target genes. Furthermore, the presence of plasmid pSfR27 caused a decrease in H-NS interactions with the S. Typhimurium chromosome, suggesting that the A + T-rich DNA of this large plasmid acts to titrate H-NS, removing it from chromosomal locations. It is proposed that Sfh acts as a molecular backup for H-NS and that it provides its 'stealth' function by replacing H-NS on the chromosome, thus minimizing disturbances to the H-NS-DNA binding pattern in cells that acquire pSfR27.
Collapse
Affiliation(s)
- Shane C Dillon
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
28
|
Zhao B, Houry WA. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survivalThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:301-14. [DOI: 10.1139/o09-182] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enteric bacteria such as Escherichia coli have acquired a wide array of acid stress response systems to counteract the extreme acidity encountered when invading the host’s digestive or urinary tracts. These acid stress response systems are both enzyme and chaperone based. The 3 main enzyme-based acid resistance pathways are glutamate-, arginine-, and lysine-decarboxylase pathways. They are under a complex regulatory network allowing the bacteria to fine tune its response to the external environment. HdeA and HdeB are the main chaperones involved in acid stress response. The decarboxylase systems are also found in Vibrio cholera, Vibrio vulnifus, Shigella flexneri, and Salmonella typhimurium, although some differences exist in their functional mechanism and regulation.
Collapse
Affiliation(s)
- Boyu Zhao
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
29
|
Fritz G, Koller C, Burdack K, Tetsch L, Haneburger I, Jung K, Gerland U. Induction Kinetics of a Conditional pH Stress Response System in Escherichia coli. J Mol Biol 2009; 393:272-86. [DOI: 10.1016/j.jmb.2009.08.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/06/2009] [Accepted: 08/13/2009] [Indexed: 11/26/2022]
|
30
|
Liu Y, Zeng L, Burne RA. AguR is required for induction of the Streptococcus mutans agmatine deiminase system by low pH and agmatine. Appl Environ Microbiol 2009; 75:2629-37. [PMID: 19270124 PMCID: PMC2681689 DOI: 10.1128/aem.02145-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/22/2009] [Indexed: 11/20/2022] Open
Abstract
Acidic conditions and the presence of exogenous agmatine are required to achieve maximal expression of the agmatine deiminase system (AgDS) of Streptococcus mutans. Here we demonstrate that the transcriptional activator of the AgDS, AguR, is required for the responses to agmatine and to low pH. Linker scanning mutagenesis was used to create a panel of mutated aguR genes that were utilized to complement an aguR deletion mutant of S. mutans. The level of production of the mutant proteins was shown to be comparable to that of the wild-type AguR protein. Mutations in the predicted DNA binding domain of AguR eliminated activation of the agu operon. Insertions into the region connecting the DNA binding domain to the predicted extracellular and transmembrane domains were well tolerated. In contrast, a variety of mutants were isolated that had a diminished capacity to respond to low pH but retained the ability to activate AgDS gene expression in response to agmatine, and vice versa. Also, a number of mutants were unable to respond to either agmatine or low pH. AguD, which is a predicted agmatine-putrescine antiporter, was found to be a negative regulator of AgDS gene expression in the absence of exogenous agmatine but was not required for low-pH induction of the AgDS genes. This study reveals that the control of AgDS gene expression by both agmatine and low pH is coordinated through the AguR protein and begins to identify domains of the protein involved in sensing and signaling.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610-0424, USA
| | | | | |
Collapse
|