1
|
Jiang Y, Meng F, Ge Z, Zhou Y, Fan Z, Du J. Bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors for the treatment of bacterial infections. J Mater Chem B 2024; 12:11596-11610. [PMID: 39436377 DOI: 10.1039/d4tb01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Insufficient development of new antibiotics and the rise in antimicrobial resistance are putting the world at risk of losing curative medicines against bacterial infection. Quorum sensing is a type of cellular signaling for cell-to-cell communication that plays critical roles in biofilm formation and antimicrobial resistance, and is expected to be a new type of effective target for drug resistant bacteria. In this review we highlight recent advances in bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors across various microbial communities. In addition, existing obstacles and future development directions of peptide/polyamino acid assemblies as quorum sensing inhibitors were proposed for broader clinical applications and translations. Overall, quorum sensing peptide/polyamino acid assemblies could be vital tools against bacterial infection and antimicrobial resistance.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Fanying Meng
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenghong Ge
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianzhong Du
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Wang S, Deng S, Wang Y. Theaflavin-3,3'-digallate effectively attenuates biofilm formation by Enterococcus faecalis via the targeting of specific quorum sensing pathways. Microb Pathog 2024; 193:106739. [PMID: 38857709 DOI: 10.1016/j.micpath.2024.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Enterococcus faecalis, an opportunistic pathogen responsible for nosocomial infections, exhibits increased pathogenicity via biofilm formation. Theaflavin-3,3'-digallate (TF3), a theaflavin extracted from black tea, exhibits potent antibacterial effects. In the present study, we investigated the inhibitory effect of TF3 on E. faecalis. Our results indicated that TF3 significantly inhibited E. faecalis ATCC 29212 biofilm formation. This observation was further confirmed via crystal violet staining, confocal laser scanning microscopy, and field emission-scanning electron microscopy. To disclose the underlying mechanisms, RNA-seq was applied. TF3 treatment significantly altered the transcriptomic profile of E. faecalis, as evidenced by identification of 248 differentially expressed genes (DEGs). Through functional annotation of these DEGs, several quorum-sensing pathways were found to be suppressed in TF3-treated cultures. Further, gene expression verification via real-time PCR confirmed the downregulation of gelE, sprE, and secY by TF3. These findings highlighted the ability of TF3 to impede E. faecalis biofilm formation, suggesting a novel preventive strategy against E. faecalis infections.
Collapse
Affiliation(s)
- Sa Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China
| | - Shuli Deng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China
| | - Ying Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Gu J, Song P, Chen X, Yang Z, Zhang X, Bai Y. Comparative study of the bacterial distribution and antimicrobial susceptibility of uropathogens in older and younger patients with urinary stones. BMC Geriatr 2022; 22:195. [PMID: 35279077 PMCID: PMC8918295 DOI: 10.1186/s12877-022-02886-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background This study compared the bacterial spectrum and antibiotic susceptibility of uropathogens in older and younger patients with urinary stones to provide appropriate antibiotic management. Methods We retrospectively reviewed urinary tract infection patients with urolithiasis, presented to Xiangya Hospital from March 2014 to April 2021. Patients were divided into older and younger groups according to 60 years of age. The bacterial spectrum and drug sensitivity of uropathogens were compared. Results A total of 542 strains of uropathogens (177 in older and 365 in younger groups) were isolated from 507 patients. E. coli (41.8% vs 43.6%) remains the most common pathogen, followed by E. faecalis (6.2% vs 9.6%) in older and younger groups, respectively. Particularly, K. pneumoniae was significantly more frequent in older (9.6%) than in younger group (4.7%, P < .05). E. faecium was substantially more prevalent in older group (6.2%) than in younger group (2.7%, P < .05). The proportion of males increased in older patients (47.3%) than in younger patients (34.9%, P = 0.007). In both groups, major Gram-negative bacteria (E. coli and K. pneumoniae) revealed a high sensitivity over 70% to piperacillin/tazobactam, imipenem and amikacin, whereas the resistance level was high to penicillin, tetracycline and vancomycin. Major Gram-positive (E. faecalis and E. faecium) isolates demonstrated high sensitivity of over 50% to gentamicin and vancomycin in both groups. Furthermore, uropathogens isolated from younger urolithiasis patients were more susceptible to antimicrobials than those isolated from older patients. Conclusions The male increased in the older urolithiasis patients with UTI and uropathogens microbial spectrum in older urolithiasis patients are different from younger. High susceptibility and age should be utilized in empirical antibiotic selection to avoid increased multidrug-resistant bacteria.
Collapse
|
4
|
Conwell M, Dooley J, Naughton PJ. Enterococcal biofilm - a nidus for antibiotic resistance transfer? J Appl Microbiol 2022; 132:3444-3460. [PMID: 34990042 PMCID: PMC9306868 DOI: 10.1111/jam.15441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Enterococci, important agents of hospital acquired infection, are listed on the WHO list of multi-drug resistant pathogens commonly encountered in hospital acquired infections are now of increasing importance, due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilm such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilm and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.
Collapse
Affiliation(s)
- M Conwell
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - Jsg Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| |
Collapse
|
5
|
Parthasarathy S, Wang X, Carr KR, Varahan S, Hancock EB, Hancock LE. SigV Mediates Lysozyme Resistance in Enterococcus faecalis via RsiV and PgdA. J Bacteriol 2021; 203:e0025821. [PMID: 34370556 PMCID: PMC8459761 DOI: 10.1128/jb.00258-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Enterococcus faecalis is a gut commensal but transitions to a pathogenic state as a consequence of intestinal dysbiosis and/or the presence of indwelling medical devices, causing a wide range of infections. One of the unique features of E. faecalis is its ability to display high level resistance to lysozyme, an important host defense of the innate immune response. Lysozyme resistance in E. faecalis is known to be mediated by the extracytoplasmic function (ECF) sigma factor SigV. PgdA and RsiV expression is directly regulated by SigV, but pgdA and rsiV mutants display nominal changes in lysozyme resistance, suggesting that additional gene products in the SigV regulon contribute to lysozyme resistance. Using transcriptome sequencing (RNA-seq) analysis, we compared the transcriptional profile of the parental strain to that of an isogenic sigV mutant and show that apart from sigV, only rsiV and pgdA expression was induced upon lysozyme exposure. The combined deletion mutant of both rsiV and pgdA rendered E. faecalis sensitive to lysozyme at a level comparable to that of the sigV mutant, highlighting the limited SigV regulon. Several additional genes were also induced upon lysozyme exposure, but in a SigV-independent fashion. Overexpression of pgdA from a SigV-independent promoter restored lysozyme resistance in a sigV deletion mutant and also induced cell chaining. Overexpression of rsiV from a SigV-independent promoter only partially restored lysozyme resistance in a sigV mutant. Overall, we provide evidence for a simple adaptation to lysozyme stress, in which SigV controls the expression of rsiV and pgdA, and that both gene products contribute to lysozyme resistance. IMPORTANCE Enterococcus faecalis causes health care-associated infections and displays resistance to a variety of antibiotics and molecules of the innate immune system. SigV has been shown to play an important role in enterococcal lysozyme resistance. Even though several proteins have been implicated in enterococcal lysozyme resistance, a complete SigV-dependent regulon has not been functionally characterized as being responsible for the dramatic increase in lysozyme susceptibility displayed by a sigV mutant. Using RNA-seq, we have identified the SigV regulon to be comprised of two gene loci, sigV-rsiV and pgdA. Deletion of both rsiV and pgdA renders E. faecalis susceptible to lysozyme on par with a sigV mutant. We also demonstrate that overproduction of rsiV and pgdA contributes to lysozyme resistance in susceptible strains.
Collapse
Affiliation(s)
- Srivatsan Parthasarathy
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Xiaofei Wang
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Kristen R. Carr
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Sriram Varahan
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Elyssa B. Hancock
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Lynn E. Hancock
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| |
Collapse
|
6
|
Influence of the Alternative Sigma Factor RpoN on Global Gene Expression and Carbon Catabolism in Enterococcus faecalis V583. mBio 2021; 12:mBio.00380-21. [PMID: 34006651 PMCID: PMC8262876 DOI: 10.1128/mbio.00380-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The alternative sigma factor σ54 has been shown to regulate the expression of a wide array of virulence-associated genes, as well as central metabolism, in bacterial pathogens. In Gram-positive organisms, the σ54 is commonly associated with carbon metabolism. In this study, we show that the Enterococcus faecalis alternative sigma factor σ54 (RpoN) and its cognate enhancer binding protein MptR are essential for mannose utilization and are primary contributors to glucose uptake through the Mpt phosphotransferase system. To gain further insight into how RpoN contributes to global transcriptional changes, we performed microarray transcriptional analysis of strain V583 and an isogenic rpoN mutant grown in a chemically defined medium with glucose as the sole carbon source. Transcripts of 340 genes were differentially affected in the rpoN mutant; the predicted functions of these genes mainly related to nutrient acquisition. These differentially expressed genes included those with predicted catabolite-responsive element (cre) sites, consistent with loss of repression by the major carbon catabolite repressor CcpA. To determine if the inability to efficiently metabolize glucose/mannose affected infection outcome, we utilized two distinct infection models. We found that the rpoN mutant is significantly attenuated in both rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI). Here, we examined a ccpA mutant in the CAUTI model and showed that the absence of carbon catabolite control also significantly attenuates bacterial tissue burden in this model. Our data highlight the contribution of central carbon metabolism to growth of E. faecalis at various sites of infection.
Collapse
|