1
|
Koob T, Döpp S, Schwalbe H. 1H, 13C, 15N and 31P chemical shift assignment of the first stem-loop Guanidine-II riboswitch from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2025:10.1007/s12104-025-10217-6. [PMID: 39890743 DOI: 10.1007/s12104-025-10217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
A comprehensive understanding of RNA-based gene regulation is a fundamental aspect for the development of innovative therapeutic options in medicine and for a more targeted response to environmental problems. Within the different mechanisms of RNA-based gene regulation, riboswitches are particularly interesting as they change their structure in response to the interaction with a low molecular weight ligand, often a well-known metabolite. Four distinct classes of riboswitches recognize the very small guanidinium cation. We are focused on the Guanidine-II riboswitch with the mini-ykkC motif. We report here the assignment of the 1H, 13C, 15N and 31P chemical shifts of the 23 nucleotide-long sequence of the first stem-loop of the Guanidine-II riboswitch aptamer from Escherichia coli. Despite its small size, the assignment of the NMR signals of this RNA proved to be challenging as it has symmetrical base pairs and palindromic character.
Collapse
Affiliation(s)
- Tatjana Koob
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany
| | - Silas Döpp
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany.
| |
Collapse
|
2
|
Seppälä S, Gierke T, Schauer EE, Brown JL, O'Malley MA. Identification and expression of small multidrug resistance transporters in early-branching anaerobic fungi. Protein Sci 2023; 32:e4730. [PMID: 37470750 PMCID: PMC10443351 DOI: 10.1002/pro.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Membrane-embedded transporters impart essential functions to cells as they mediate sensing and the uptake and extrusion of nutrients, waste products, and effector molecules. Promiscuous multidrug exporters are implicated in resistance to drugs and antibiotics and are highly relevant for microbial engineers who seek to enhance the tolerance of cell factory strains to hydrophobic bioproducts. Here, we report on the identification of small multidrug resistance (SMR) transporters in early-branching anaerobic fungi (Neocallimastigomycetes). The SMR class of transporters is commonly found in bacteria but has not previously been reported in eukaryotes. In this study, we show that SMR transporters from anaerobic fungi can be produced heterologously in the model yeast Saccharomyces cerevisiae, demonstrating the potential of these proteins as targets for further characterization. The discovery of these novel anaerobic fungal SMR transporters offers a promising path forward to enhance bioproduction from engineered microbial strains.
Collapse
Affiliation(s)
- Susanna Seppälä
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Taylor Gierke
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Elizabeth E. Schauer
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Jennifer L. Brown
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Michelle A. O'Malley
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Bioengineering ProgramUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Joint BioEnergy Institute (JBEI)EmeryvilleCaliforniaUSA
| |
Collapse
|
3
|
Peña-Castro JM, Muñoz-Páez KM, Robledo-Narvaez PN, Vázquez-Núñez E. Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion. Microorganisms 2023; 11:2197. [PMID: 37764041 PMCID: PMC10535843 DOI: 10.3390/microorganisms11092197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteria and yeast are being intensively used to produce biofuels and high-added-value products by using plant biomass derivatives as substrates. The number of microorganisms available for industrial processes is increasing thanks to biotechnological improvements to enhance their productivity and yield through microbial metabolic engineering and laboratory evolution. This is allowing the traditional industrial processes for biofuel production, which included multiple steps, to be improved through the consolidation of single-step processes, reducing the time of the global process, and increasing the yield and operational conditions in terms of the desired products. Engineered microorganisms are now capable of using feedstocks that they were unable to process before their modification, opening broader possibilities for establishing new markets in places where biomass is available. This review discusses metabolic engineering approaches that have been used to improve the microbial processing of biomass to convert the plant feedstock into fuels. Metabolically engineered microorganisms (MEMs) such as bacteria, yeasts, and microalgae are described, highlighting their performance and the biotechnological tools that were used to modify them. Finally, some examples of patents related to the MEMs are mentioned in order to contextualize their current industrial use.
Collapse
Affiliation(s)
- Julián Mario Peña-Castro
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico;
| | - Karla M. Muñoz-Páez
- CONAHCYT—Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Queretaro 76230, Queretaro, Mexico;
| | | | - Edgar Vázquez-Núñez
- Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas para la Sostenibilidad (NanoBioTS), Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, León 37150, Guanajuato, Mexico
| |
Collapse
|
4
|
Grewal J, Khare SK, Drewniak L, Pranaw K. Recent perspectives on microbial and ionic liquid interactions with implications for biorefineries. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Abstract
More than 55 distinct classes of riboswitches that respond to small metabolites or elemental ions have been experimentally validated to date. The ligands sensed by these riboswitches are biased in favor of fundamental compounds or ions that are likely to have been relevant to ancient forms of life, including those that might have populated the "RNA World", which is a proposed biochemical era that predates the evolutionary emergence of DNA and proteins. In the following text, I discuss the various types of ligands sensed by some of the most common riboswitches present in modern bacterial cells and consider implications for ancient biological processes centered on the proven capabilities of these RNA-based sensors. Although most major biochemical aspects of metabolism are represented by known riboswitch classes, there are striking sensory gaps in some key areas. These gaps could reveal weaknesses in the performance capabilities of RNA that might have hampered RNA World evolution, or these could highlight opportunities to discover additional riboswitch classes that sense essential metabolites.
Collapse
Affiliation(s)
- Ronald R. Breaker
- Corresponding Author: Ronald R. Breaker - Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, United States; Phone: 203-432-9389; , Twitter: @RonBreaker
| |
Collapse
|
6
|
Cho CW, Pham TPT, Zhao Y, Stolte S, Yun YS. Review of the toxic effects of ionic liquids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147309. [PMID: 33975102 DOI: 10.1016/j.scitotenv.2021.147309] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 05/11/2023]
Abstract
Interest in ionic liquids (ILs), called green or designer solvents, has been increasing because of their excellent properties such as thermal stability and low vapor pressure; thus, they can replace harmful organic chemicals and help several industrial fields e.g., energy-storage materials production and biomaterial pretreatment. However, the claim that ILs are green solvents should be carefully considered from an environmental perspective. ILs, given their minimal vapor pressure, may not directly cause atmospheric pollution. However, they have the potential to cause adverse effects if leaked into the environment, for instance if they are spilled due to human mistakes or technical errors. To estimate the risks of ILs, numerous ILs have had their toxicity assessed toward several micro- and macro-organisms over the past few decades. Since the toxic effects of ILs depend on the method of estimating toxicity, it is necessary to briefly summarize and comprehensively discuss the biological effects of ILs according to their structure and toxicity testing levels. This can help simplify our understanding of the toxicity of ILs. Therefore, in this review, we discuss the key findings of toxicological information of ILs, collect some toxicity data of ILs to different species, and explain the influence of IL structure on their toxic properties. In the discussion, we estimated two different sensitivity values of toxicity testing levels depending on the experiment condition, which are theoretical magnitudes of the inherent sensitivity of toxicity testing levels in various conditions and their changes in biological response according to the change in IL structure. Finally, some perspectives, future research directions, and limitations to toxicological research of ILs, presented so far, are discussed.
Collapse
Affiliation(s)
- Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea.
| | - Thi Phuong Thuy Pham
- Faculty of Biotechnology, HoChiMihn University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Yufeng Zhao
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Stefan Stolte
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry, Bergstraße 66, 01062 Dresden, Germany
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 561-756, South Korea.
| |
Collapse
|
7
|
Liu H, Qi Y, Zhou P, Ye C, Gao C, Chen X, Liu L. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol 2021; 41:339-354. [PMID: 33541146 DOI: 10.1080/07388551.2020.1856770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microbial cell factories provide vital platforms for the production of chemicals. Advanced biotechnological toolboxes have been developed to enhance their efficiency. However, these tools have limitations in improving physiological functions, and therefore boosting the efficiency (e.g. titer, rate, and yield) of microbial cell factories remains a challenge. In this review, we propose a strategy of microbial physiological engineering (MPE) to improve the efficiency of microbial cell factories. This strategy integrates tools from synthetic and systems biology to characterize and regulate physiological functions during chemical synthesis. MPE strategies mainly focus on the efficiency of substrate utilization, growth performance, stress tolerance, and the product export capacity of cell factories. In short, this review provides a new framework for resolving the bottlenecks that currently exist in low-efficiency cell factories.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Salvail H, Balaji A, Yu D, Roth A, Breaker RR. Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria. Biochemistry 2020; 59:4654-4662. [PMID: 33236895 DOI: 10.1021/acs.biochem.0c00793] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An intriguing consequence of ongoing riboswitch discovery efforts is the occasional identification of metabolic or toxicity response pathways for unusual ligands. Recently, we reported the experimental validation of three distinct bacterial riboswitch classes that regulate gene expression in response to the selective binding of a guanidinium ion. These riboswitch classes, called guanidine-I, -II, and -III, regulate numerous genes whose protein products include previously misannotated guanidine exporters and enzymes that degrade guanidine via an initial carboxylation reaction. Guanidine is now recognized as the primal substrate of many multidrug efflux pumps that are important for bacterial resistance to certain antibiotics. Guanidine carboxylase enzymes had long been annotated as urea carboxylase enzymes but are now understood to participate in guanidine degradation. Herein, we report the existence of a fourth riboswitch class for this ligand, called guanidine-IV. Members of this class use a novel aptamer to selectively bind guanidine and use an unusual expression platform arrangement that is predicted to activate gene expression when ligand is present. The wide distribution of this abundant riboswitch class, coupled with the striking diversity of other guanidine-sensing RNAs, demonstrates that many bacterial species maintain sophisticated sensory and genetic mechanisms to avoid guanidine toxicity. This finding further highlights the mystery regarding the natural source of this nitrogen-rich chemical moiety.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Adam Roth
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, United States
| |
Collapse
|
9
|
Slipski CJ, Jamieson TR, Zhanel GG, Bay DC. Riboswitch-Associated Guanidinium-Selective Efflux Pumps Frequently Transmitted on Proteobacterial Plasmids Increase Escherichia coli Biofilm Tolerance to Disinfectants. J Bacteriol 2020; 202:e00104-20. [PMID: 32928929 PMCID: PMC7648145 DOI: 10.1128/jb.00104-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Members of the small multidrug resistance (SMR) efflux pump family known as SugE (recently renamed Gdx) are known for their narrow substrate selectivity to small guanidinium (Gdm+) compounds and disinfectant quaternary ammonium compounds (QACs). Gdx members have been identified on multidrug resistance plasmids in Gram-negative bacilli, but their functional role remains unclear, as few have been characterized. Here, we conducted a survey of sequenced proteobacterial plasmids that encoded one or more SugE/Gdx sequences in an effort to (i) identify the most frequently represented Gdx member(s) on these plasmids and their sequence diversity, (ii) verify if Gdx sequences possess a Gdm+ riboswitch that regulates their translation similarly to chromosomally encoded Gdx members, and (iii) determine the antimicrobial susceptibility profile of the most predominate Gdx member to various QACs and antibiotics in Escherichia coli strains BW25113 and KAM32. The results of this study determined 14 unique SugE sequences, but only one Gdx sequence, annotated as "SugE(p)," predominated among the >140 plasmids we surveyed. Enterobacterales plasmids carrying sugE(p) possessed a guanidine II riboswitch similar to the upstream region of E. coligdx Cloning and expression of sugE(p), gdx, and emrE sequences into a low-copy-number expression vector (pMS119EH) revealed significant increases in QAC resistance to a limited range of detergent-like QACs only when gdx and sugE(p) transformants were grown as biofilms. These findings suggest that sugE(p) presence on proteobacterial plasmids may be driven by species that frequently encounter Gdm+ and QAC exposure.IMPORTANCE This study characterized the function of antimicrobial-resistant phenotypes attributed to plasmid-encoded guanidinium-selective small multidrug resistance (Gdm/SugE) efflux pumps. These sequences are frequently monitored as biocide resistance markers in antimicrobial resistance surveillance studies. Our findings reveal that enterobacterial gdm sequences transmitted on plasmids possess a guanidine II riboswitch, which restricts transcript translation in the presence of guanidinium. Cloning and overexpression of this gdm sequence revealed that it confers higher resistance to quaternary ammonium compound (QAC) disinfectants (which possess guanidium moieties) when grown as biofilms. Since biofilms are commonly eradicated with QAC-containing compounds, the presence of this gene on plasmids and its biofilm-specific resistance are a growing concern for clinical and food safety prevention measures.
Collapse
Affiliation(s)
- Carmine J Slipski
- University of Manitoba, Medical Microbiology and Infectious Disease, Winnipeg, Manitoba, Canada
| | - Taylor R Jamieson
- University of Manitoba, Medical Microbiology and Infectious Disease, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- University of Manitoba, Medical Microbiology and Infectious Disease, Winnipeg, Manitoba, Canada
| | - Denice C Bay
- University of Manitoba, Medical Microbiology and Infectious Disease, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Schneider NO, Tassoulas LJ, Zeng D, Laseke AJ, Reiter NJ, Wackett LP, Maurice MS. Solving the Conundrum: Widespread Proteins Annotated for Urea Metabolism in Bacteria Are Carboxyguanidine Deiminases Mediating Nitrogen Assimilation from Guanidine. Biochemistry 2020; 59:3258-3270. [PMID: 32786413 DOI: 10.1021/acs.biochem.0c00537] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Free guanidine is increasingly recognized as a relevant molecule in biological systems. Recently, it was reported that urea carboxylase acts preferentially on guanidine, and consequently, it was considered to participate directly in guanidine biodegradation. Urea carboxylase combines with allophanate hydrolase to comprise the activity of urea amidolyase, an enzyme predominantly found in bacteria and fungi that catalyzes the carboxylation and subsequent hydrolysis of urea to ammonia and carbon dioxide. Here, we demonstrate that urea carboxylase and allophanate hydrolase from Pseudomonas syringae are insufficient to catalyze the decomposition of guanidine. Rather, guanidine is decomposed to ammonia through the combined activities of urea carboxylase, allophanate hydrolase, and two additional proteins of the DUF1989 protein family, expansively annotated as urea carboxylase-associated family proteins. These proteins comprise the subunits of a heterodimeric carboxyguanidine deiminase (CgdAB), which hydrolyzes carboxyguanidine to N-carboxyurea (allophanate). The genes encoding CgdAB colocalize with genes encoding urea carboxylase and allophanate hydrolase. However, 25% of urea carboxylase genes, including all fungal urea amidolyases, do not colocalize with cgdAB. This subset of urea carboxylases correlates with a notable Asp to Asn mutation in the carboxyltransferase active site. Consistent with this observation, we demonstrate that fungal urea amidolyase retains a strong substrate preference for urea. The combined activities of urea carboxylase, carboxyguanidine deiminase and allophanate hydrolase represent a newly recognized pathway for the biodegradation of guanidine. These findings reinforce the relevance of guanidine as a biological metabolite and reveal a broadly distributed group of enzymes that act on guanidine in bacteria.
Collapse
Affiliation(s)
- Nicholas O Schneider
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Lambros J Tassoulas
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108-6106, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108-6106, United States
| | - Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Amanda J Laseke
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108-6106, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108-6106, United States
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
11
|
Sherlock ME, Breaker RR. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes. RNA (NEW YORK, N.Y.) 2020; 26:675-693. [PMID: 32165489 PMCID: PMC7266159 DOI: 10.1261/rna.074997.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative sequence analyses have been used to discover numerous classes of structured noncoding RNAs, some of which are riboswitches that specifically recognize small-molecule or elemental ion ligands and influence expression of adjacent downstream genes. Determining the correct identity of the ligand for a riboswitch candidate typically is aided by an understanding of the genes under its regulatory control. Riboswitches whose ligands were straightforward to identify have largely been associated with well-characterized metabolic pathways, such as coenzyme or amino acid biosynthesis. Riboswitch candidates whose ligands resist identification, collectively known as orphan riboswitches, are often associated with genes coding for proteins of unknown function, or genes for various proteins with no established link to one another. The cognate ligands for 16 former orphan riboswitch motifs have been identified to date. The successful pursuit of the ligands for these classes has provided insight into areas of biology that are not yet fully explored, such as ion homeostasis, signaling networks, and other previously underappreciated biochemical or physiological processes. Herein we discuss the strategies and methods used to match ligands with orphan riboswitch classes, and overview the lessons learned to inform and motivate ongoing efforts to identify ligands for the many remaining candidates.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
12
|
Onyeabor M, Martinez R, Kurgan G, Wang X. Engineering transport systems for microbial production. ADVANCES IN APPLIED MICROBIOLOGY 2020; 111:33-87. [PMID: 32446412 DOI: 10.1016/bs.aambs.2020.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid development in the field of metabolic engineering has enabled complex modifications of metabolic pathways to generate a diverse product portfolio. Manipulating substrate uptake and product export is an important research area in metabolic engineering. Optimization of transport systems has the potential to enhance microbial production of renewable fuels and chemicals. This chapter comprehensively reviews the transport systems critical for microbial production as well as current genetic engineering strategies to improve transport functions and thus production metrics. In addition, this chapter highlights recent advancements in engineering microbial efflux systems to enhance cellular tolerance to industrially relevant chemical stress. Lastly, future directions to address current technological gaps are discussed.
Collapse
Affiliation(s)
- Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rodrigo Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
13
|
Improving ionic liquid tolerance in Saccharomyces cerevisiae through heterologous expression and directed evolution of an ILT1 homolog from Yarrowia lipolytica. ACTA ACUST UNITED AC 2019; 46:1715-1724. [DOI: 10.1007/s10295-019-02228-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/10/2019] [Indexed: 01/25/2023]
Abstract
Abstract
Ionic liquids show promise for deconstruction of lignocellulosic biomass prior to fermentation. Yet, imidazolium ionic liquids (IILs) can be toxic to microbes even at concentrations present after recovery. Here, we show that dominant overexpression of an Ilt1p homolog (encoded by YlILT1/YALI0C04884) from the IIL-tolerant yeast Yarrowia lipolytica confers an improvement in 1-ethyl-3-methylimidazolium acetate tolerance in Saccharomyces cerevisiae compared to the endogenous Ilt1p (ScILT1/YDR090C). We subsequently enhance tolerance in S. cerevisiae through directed evolution of YlILT1 using growth-based selection, leading to identification of mutants that grow in up to 3.5% v/v ionic liquid. Lastly, we demonstrate that strains expressing YlILT1 variants demonstrate improved growth rate and ethanol production in the presence of residual IIL. This shows that dominant overexpression of a heterologous protein (wild type or evolved) from an IIL-tolerant yeast can increase tolerance in S. cerevisiae at concentrations relevant to bioethanol production from IIL-treated biomass.
Collapse
|