1
|
Li Y, Kong X, Li Y, Tao N, Wang T, Li Y, Hou Y, Zhu X, Han Q, Zhang Y, An Q, Liu Y, Li H. Association between fatty acid metabolism gene mutations and Mycobacterium tuberculosis transmission revealed by whole genome sequencing. BMC Microbiol 2023; 23:379. [PMID: 38041005 PMCID: PMC10691062 DOI: 10.1186/s12866-023-03072-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/16/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Fatty acid metabolism greatly promotes the virulence and pathogenicity of Mycobacterium tuberculosis (M.tb). However, the regulatory mechanism of fatty acid metabolism in M.tb remains to be elucidated, and limited evidence about the effects of gene mutations in fatty acid metabolism on the transmission of M.tb was reported. RESULTS Overall, a total of 3193 M.tb isolates were included in the study, of which 1596 (50%) were genomic clustered isolates. Most of the tuberculosis isolates belonged to lineage2(n = 2744,85.93%), followed by lineage4(n = 439,13.75%) and lineage3(n = 10,0.31%).Regression results showed that the mutations of gca (136,605, 317G > C, Arg106Pro; OR, 22.144; 95% CI, 2.591-189.272), ogt(1,477,346, 286G > C ,Gly96Arg; OR, 3.893; 95%CI, 1.432-10.583), and rpsA (1,834,776, 1235 C > T, Ala412Val; OR, 3.674; 95% CI, 1.217-11.091) were significantly associated with clustering; mutations in gca and rpsA were also significantly associated with clustering of lineage2. Mutation in arsA(3,001,498, 885 C > G, Thr295Thr; OR, 6.278; 95% CI, 2.508-15.711) was significantly associated with cross-regional clusters. We also found that 20 mutation sites were positively correlated with cluster size, while 11 fatty acid mutation sites were negatively correlated with cluster size. CONCLUSION Our research results suggested that mutations in genes related to fatty acid metabolism were related to the transmission of M.tb. This research could help in the future control of the transmission of M.tb.
Collapse
Affiliation(s)
- Yameng Li
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China
| | - Xianglong Kong
- Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250011, Shandong, People's Republic of China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, 250031, Shandong, People's Republic of China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, 250021, Shandong, People's Republic of China
| | - Tingting Wang
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China
| | - Yingying Li
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China
| | - Yawei Hou
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China
| | - Xuehan Zhu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Qilin Han
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Yuzhen Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Qiqi An
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, 250021, Shandong, People's Republic of China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, 250021, Shandong, People's Republic of China.
| | - Huaichen Li
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Williams JT, Baker JJ, Zheng H, Dechow SJ, Fallon J, Murto M, Albrecht VJ, Gilliland HN, Olive AJ, Abramovitch RB. A genetic selection for Mycobacterium smegmatis mutants tolerant to killing by sodium citrate defines a combined role for cation homeostasis and osmotic stress in cell death. mSphere 2023; 8:e0035823. [PMID: 37681985 PMCID: PMC10597346 DOI: 10.1128/msphere.00358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023] Open
Abstract
Mycobacteria can colonize environments where the availability of metal ions is limited. Biological or inorganic chelators play an important role in limiting metal availability, and we developed a model to examine Mycobacterium smegmatis survival in the presence of the chelator sodium citrate. We observed that instead of restricting M. smegmatis growth, concentrated sodium citrate killed M. smegmatis. RNAseq analysis during sodium citrate treatment revealed transcriptional signatures of metal starvation and hyperosmotic stress. Notably, metal starvation and hyperosmotic stress, individually, do not kill M. smegmatis under these conditions. A forward genetic transposon selection was conducted to examine why sodium citrate was lethal, and several sodium-citrate-tolerant mutants were isolated. Based on the identity of three tolerant mutants, mgtE, treZ, and fadD6, we propose a dual stress model of killing by sodium citrate, where sodium citrate chelate metals from the cell envelope and then osmotic stress in combination with a weakened cell envelope causes cell lysis. This sodium citrate tolerance screen identified mutants in several other genes with no known function, with most conserved in the pathogen M. tuberculosis. Therefore, this model will serve as a basis to define their functions, potentially in maintaining cell wall integrity, cation homeostasis, or osmotolerance. IMPORTANCE Bacteria require mechanisms to adapt to environments with differing metal availability. When Mycobacterium smegmatis is treated with high concentrations of the metal chelator sodium citrate, the bacteria are killed. To define the mechanisms underlying killing by sodium citrate, we conducted a genetic selection and observed tolerance to killing in mutants of the mgtE magnesium transporter. Further characterization studies support a model where killing by sodium citrate is driven by a weakened cell wall and osmotic stress, that in combination cause cell lysis.
Collapse
Affiliation(s)
- John T. Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jacob J. Baker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Huiqing Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Shelby J. Dechow
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jared Fallon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Megan Murto
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Veronica J. Albrecht
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Haleigh N. Gilliland
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Szoke T, Nussbaum-Shochat A, Amster-Choder O. Evolutionarily conserved mechanism for membrane recognition from bacteria to mitochondria. FEBS Lett 2021; 595:2805-2815. [PMID: 34644400 DOI: 10.1002/1873-3468.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022]
Abstract
The mechanisms controlling membrane recognition by proteins with one hydrophobic stretch at their carboxyl terminus (tail anchor, TA) are poorly defined. The Escherichia coli TAs of ElaB and YqjD, which share sequential and structural similarity with the Saccharomyces cerevisiae TA of Fis1, were shown to localize to mitochondria. We show that YqjD and ElaB are directed by their TAs to bacterial cell poles. Fis1(TA) expressed in E. coli localizes like the endogenous TAs. The yeast and bacterial TAs are inserted in the E. coli inner membrane, and they all show affiliation to phosphatidic acid (PA), found in the membrane of the bacterial cell poles and of the yeast mitochondria. Our results suggest a mechanism for TA membrane recognition conserved from bacteria to mitochondria and raise the possibility that through their interaction with PA, and TAs play a role across prokaryotes and eukaryotes in controlling cell/organelle fate.
Collapse
Affiliation(s)
- Tamar Szoke
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
4
|
Whitaker M, Ruecker N, Hartman T, Klevorn T, Andres J, Kim J, Rhee K, Ehrt S. Two interacting ATPases protect Mycobacterium tuberculosis from glycerol and nitric oxide toxicity. J Bacteriol 2020; 202:JB.00202-20. [PMID: 32482725 PMCID: PMC8404711 DOI: 10.1128/jb.00202-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 01/29/2023] Open
Abstract
The Mycobacterium tuberculosis H37Rv genome has been sequenced and annotated over 20 years ago, yet roughly half of the protein-coding genes still lack a predicted function. We characterized two genes of unknown function, rv3679 and rv3680, for which inconsistent findings regarding their importance for virulence in mice have been reported. We confirmed that a rv3679-80 deletion mutant (Δrv3679-80) was virulent in mice and discovered that Δrv3679-80 suffered from a glycerol-dependent recovery defect on agar plates following mouse infection. Glycerol also exacerbated killing of Δrv3679-80 by nitric oxide. Rv3679-Rv3680 have previously been shown to form a complex with ATPase activity and we demonstrate that the ability of M. tuberculosis to cope with elevated levels of glycerol and nitric oxide requires intact ATP-binding motifs in both Rv3679 and Rv3680. Inactivation of glycerol kinase or Rv2370c, a protein of unknown function, suppressed glycerol mediated toxicity in Δrv3679-80 Glycerol catabolism led to increased intracellular methylglyoxal pools and Δrv3679-80 was hypersusceptible to extracellular methylglyoxal suggesting that glycerol toxicity in Δrv3679-80 is caused by methylglyoxal. Rv3679 and Rv3680 interacted with Rv1509, and Rv3679 had numerous additional interactors including proteins of the type II fatty acid synthase (FASII) pathway and mycolic acid modifying enzymes linking Rv3679 to fatty acid or lipid synthesis. This work provides experimentally determined roles for Rv3679 and Rv3680 and stimulates future research on these and other proteins of unknown function.Importance A better understanding of the pathogenesis of tuberculosis requires a better understanding of gene function in M. tuberculosis This work provides the first functional insight into the Rv3679/Rv3680 ATPase complex. We demonstrate that M. tuberculosis requires this complex and specifically its ATPase activity to resist glycerol and nitric oxide toxicity. We provide evidence that the glycerol-derived metabolite methylglyoxal causes toxicity in the absence of Rv3679/Rv3680. We further show that glycerol-dependent toxicity is reversed when glycerol kinase (GlpK) is inactivated. Our work uncovered other genes of unknown function that interact with Rv3679 and/or Rv3680 genetically or physically, underscoring the importance of understanding uncharacterized genes.
Collapse
Affiliation(s)
- Meredith Whitaker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Travis Hartman
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thais Klevorn
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Jaclynn Andres
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Jia Kim
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| |
Collapse
|