1
|
Zik JJ, Yoon SH, Guan Z, Stankeviciute Skidmore G, Gudoor RR, Davies KM, Deutschbauer AM, Goodlett DR, Klein EA, Ryan KR. Caulobacter lipid A is conditionally dispensable in the absence of fur and in the presence of anionic sphingolipids. Cell Rep 2022; 39:110888. [PMID: 35649364 PMCID: PMC9393093 DOI: 10.1016/j.celrep.2022.110888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 01/12/2023] Open
Abstract
Lipid A, the membrane-anchored portion of lipopolysaccharide (LPS), is an essential component of the outer membrane (OM) of nearly all Gram-negative bacteria. Here we identify regulatory and structural factors that together render lipid A nonessential in Caulobacter crescentus. Mutations in the ferric uptake regulator fur allow Caulobacter to survive in the absence of either LpxC, which catalyzes an early step of lipid A synthesis, or CtpA, a tyrosine phosphatase homolog we find is needed for wild-type lipid A structure and abundance. Alterations in Fur-regulated processes, rather than iron status per se, underlie the ability to survive when lipid A synthesis is blocked. Fitness of lipid A-deficient Caulobacter requires an anionic sphingolipid, ceramide phosphoglycerate (CPG), which also mediates sensitivity to the antibiotic colistin. Our results demonstrate that, in an altered regulatory landscape, anionic sphingolipids can support the integrity of a lipid A-deficient OM. Lipid A, the membrane-anchoring segment of lipopolysaccharide, is generally considered to be an essential component of the Gram-negative bacterial outer membrane. Zik et al. show that deletion of the transcriptional regulator fur and synthesis of the anionic sphingolipid ceramide phosphoglycerate enable Caulobacter crescentus to survive without lipid A.
Collapse
Affiliation(s)
- Justin J Zik
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sung Hwan Yoon
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Gabriele Stankeviciute Skidmore
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ridhi R Gudoor
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karen M Davies
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David R Goodlett
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada; University of Victoria-Genome BC Proteomics Centre, Victoria, BC V8Z 7X8, Canada
| | - Eric A Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA; Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Kathleen R Ryan
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Taylor JA, Sichel SR, Salama NR. Bent Bacteria: A Comparison of Cell Shape Mechanisms in Proteobacteria. Annu Rev Microbiol 2019; 73:457-480. [PMID: 31206344 DOI: 10.1146/annurev-micro-020518-115919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helical cell shape appears throughout the bacterial phylogenetic tree. Recent exciting work characterizing cell shape mutants in a number of curved and helical Proteobacteria is beginning to suggest possible mechanisms and provide tools to assess functional significance. We focus here on Caulobacter crescentus, Vibrio cholerae, Helicobacter pylori, and Campylobacter jejuni, organisms from three classes of Proteobacteria that live in diverse environments, from freshwater and saltwater to distinct compartments within the gastrointestinal tract of humans and birds. Comparisons among these bacteria reveal common themes as well as unique solutions to the task of maintaining cell curvature. While motility appears to be influenced in all these bacteria when cell shape is perturbed, consequences on niche colonization are diverse, suggesting the need to consider additional selective pressures.
Collapse
Affiliation(s)
- Jennifer A Taylor
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA; .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sophie R Sichel
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, Washington 98195, USA
| | - Nina R Salama
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA; .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
3
|
A New Essential Cell Division Protein in Caulobacter crescentus. J Bacteriol 2017; 199:JB.00811-16. [PMID: 28167520 DOI: 10.1128/jb.00811-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division is a complex process that relies on a multiprotein complex composed of a core of widely conserved and generally essential proteins and on accessory proteins that vary in number and identity in different bacteria. The assembly of this complex and, particularly, the initiation of constriction are regulated processes that have come under intensive study. In this work, we characterize the function of DipI, a protein conserved in Alphaproteobacteria and Betaproteobacteria that is essential in Caulobacter crescentus Our results show that DipI is a periplasmic protein that is recruited late to the division site and that it is required for the initiation of constriction. The recruitment of the conserved cell division proteins is not affected by the absence of DipI, but localization of DipI to the division site occurs only after a mature divisome has formed. Yeast two-hybrid analysis showed that DipI strongly interacts with the FtsQLB complex, which has been recently implicated in regulating constriction initiation. A possible role of DipI in this process is discussed.IMPORTANCE Bacterial cell division is a complex process for which most bacterial cells assemble a multiprotein complex that consists of conserved proteins and of accessory proteins that differ among bacterial groups. In this work, we describe a new cell division protein (DipI) present only in a group of bacteria but essential in Caulobacter crescentus Cells devoid of DipI cannot constrict. Although a mature divisome is required for DipI recruitment, DipI is not needed for recruiting other division proteins. These results, together with the interaction of DipI with a protein complex that has been suggested to regulate cell wall synthesis during division, suggest that DipI may be part of the regulatory mechanism that controls constriction initiation.
Collapse
|
4
|
Abstract
For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.Since 2003, after the first bacterial IF-like protein, crescentin was identified, it has been evident that bacteria also employ filamentous networks, other than those built from bacterial tubulin or actin homologues, in order to support their cell shape, growth and, in some cases, division. Intriguingly, compared to their eukaryote counterparts, the group of bacterial IF-like proteins shows much wider structural diversity. The sizes of both the head and tail domains are markedly reduced and there is great variation in the length of the central rod-domain. Furthermore, bacterial rod-domains often lack the sub-domain organisation of eukaryote IFs that is the defining feature of the IF-family. However, the fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion. The lack of extensive head and tail domains may well make the bacterial proteins more amenable for structural characterisation, which will be essential for establishing the mechanism for their association into filaments. What is more, the well-developed tools for bacterial manipulations provide an excellent opportunity of studying the bacterial systems with the prospect of making significant progress in our understanding of the general underlying principles of intermediate filament assemblies.
Collapse
Affiliation(s)
- Gabriella H Kelemen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
5
|
Derouiche A, Shi L, Bidnenko V, Ventroux M, Pigonneau N, Franz-Wachtel M, Kalantari A, Nessler S, Noirot-Gros MF, Mijakovic I. Bacillus subtilis SalA is a phosphorylation-dependent transcription regulator that represses scoC and activates the production of the exoprotease AprE. Mol Microbiol 2015; 97:1195-208. [PMID: 26094643 DOI: 10.1111/mmi.13098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis Mrp family protein SalA has been shown to indirectly promote the production of the exoprotease AprE by inhibiting the expression of scoC, which codes for a repressor of aprE. The exact mechanism by which SalA influences scoC expression has not been clarified previously. We demonstrate that SalA possesses a DNA-binding domain (residues 1-60), which binds to the promoter region of scoC. The binding of SalA to its target DNA depends on the presence of ATP and is stimulated by phosphorylation of SalA at tyrosine 327. The B. subtilis protein-tyrosine kinase PtkA interacts specifically with the C-terminal domain of SalA in vivo and in vitro and is responsible for activating its DNA binding via phosphorylation of tyrosine 327. In vivo, a mutant mimicking phosphorylation of SalA (SalA Y327E) exhibited a strong repression of scoC and consequently overproduction of AprE. By contrast, the non-phosphorylatable SalA Y327F and the ΔptkA exhibited the opposite effect, stronger expression of scoC and lower production of the exoprotease. Interestingly, both SalA and PtkA contain the same ATP-binding Walker domain and have thus presumably arisen from the common ancestral protein. Their regulatory interplay seems to be conserved in other bacteria.
Collapse
Affiliation(s)
- Abderahmane Derouiche
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Lei Shi
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Vladimir Bidnenko
- Micalis UMR1319, Institut National de la Recherche Agronomique, Jouy-en-Josas, 78350, France
| | - Magali Ventroux
- Micalis UMR1319, Institut National de la Recherche Agronomique, Jouy-en-Josas, 78350, France
| | - Nathalie Pigonneau
- Micalis UMR1319, Institut National de la Recherche Agronomique, Jouy-en-Josas, 78350, France
| | | | - Aida Kalantari
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Sylvie Nessler
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, University Paris-Sud, Orsay, 91405, France
| | | | - Ivan Mijakovic
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| |
Collapse
|
6
|
Gruninger RJ, Thibault J, Capeness MJ, Till R, Mosimann SC, Sockett RE, Selinger BL, Lovering AL. Structural and biochemical analysis of a unique phosphatase from Bdellovibrio bacteriovorus reveals its structural and functional relationship with the protein tyrosine phosphatase class of phytase. PLoS One 2014; 9:e94403. [PMID: 24718691 PMCID: PMC3981807 DOI: 10.1371/journal.pone.0094403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/14/2014] [Indexed: 11/19/2022] Open
Abstract
Bdellovibrio bacteriovorus is an unusual δ-proteobacterium that invades and preys on other Gram-negative bacteria and is of potential interest as a whole cell therapeutic against pathogens of man, animals and crops. PTPs (protein tyrosine phosphatases) are an important class of enzyme involved in desphosphorylating a variety of substrates, often with implications in cell signaling. The B. bacteriovorus open reading frame Bd1204 is predicted to encode a PTP of unknown function. Bd1204 is both structurally and mechanistically related to the PTP-like phytase (PTPLP) class of enzymes and possesses a number of unique properties not observed in any other PTPLPs characterized to date. Bd1204 does not display catalytic activity against some common protein tyrosine phosphatase substrates but is highly specific for hydrolysis of phosphomonoester bonds of inositol hexakisphosphate. The structure reveals that Bd1204 has the smallest and least electropositive active site of all characterized PTPLPs to date yet possesses a unique substrate specificity characterized by a strict preference for inositol hexakisphosphate. These two active site features are believed to be the most significant contributors to the specificity of phytate degrading enzymes. We speculate that Bd1204 may be involved in phosphate acquisition outside of prey.
Collapse
Affiliation(s)
- Robert J. Gruninger
- Lethbridge Research Center, Agriculture & Agri-Foods Canada, Lethbridge, AB, Canada
| | - John Thibault
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Michael J. Capeness
- Centre for Genetics and Genomics, School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, United Kingdom
| | - Robert Till
- Centre for Genetics and Genomics, School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, United Kingdom
| | - Steven C. Mosimann
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - R. Elizabeth Sockett
- Centre for Genetics and Genomics, School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, United Kingdom
| | - Brent L. Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andrew L. Lovering
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Ravikumar V, Shi L, Krug K, Derouiche A, Jers C, Cousin C, Kobir A, Mijakovic I, Macek B. Quantitative phosphoproteome analysis of Bacillus subtilis reveals novel substrates of the kinase PrkC and phosphatase PrpC. Mol Cell Proteomics 2014; 13:1965-78. [PMID: 24390483 DOI: 10.1074/mcp.m113.035949] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) residues plays a critical role in regulation of vital processes in the cell. Despite of considerable progress in our understanding of the role of this modification in bacterial physiology, the dynamics of protein phosphorylation during bacterial growth has rarely been systematically addressed. In addition, little is known about in vivo substrates of bacterial Ser/Thr/Tyr kinases and phosphatases. An excellent candidate to study these questions is the Gram-positive bacterium Bacillus subtilis, one of the most intensively investigated bacterial model organism with both research and industrial applications. Here we employed gel-free phosphoproteomics combined with SILAC labeling and high resolution mass spectrometry to study the proteome and phosphoproteome dynamics during the batch growth of B. subtilis. We measured the dynamics of 1666 proteins and 64 phosphorylation sites in five distinct phases of growth. Enzymes of the central carbon metabolism and components of the translation machinery appear to be highly phosphorylated in the stationary phase, coinciding with stronger expression of Ser/Thr kinases. We further used the SILAC workflow to identify novel putative substrates of the Ser/Thr kinase PrkC and the phosphatase PrpC during stationary phase. The overall number of putative substrates was low, pointing to a high kinase and phosphatase specificity. One of the phosphorylation sites affected by both, PrkC and PrpC, was the Ser281 on the oxidoreductase YkwC. We showed that PrkC phosphorylates and PrpC dephosphorylates YkwC in vitro and that phosphorylation at Ser281 abolishes the oxidoreductase activity of YkwC in vitro and in vivo. Our results present the most detailed phosphoproteomic analysis of B. subtilis growth to date and provide the first global in vivo screen of PrkC and PrpC substrates.
Collapse
Affiliation(s)
- Vaishnavi Ravikumar
- From the ‡Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany
| | - Lei Shi
- §Micalis UMR 1319, AgroParisTech/Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Karsten Krug
- From the ‡Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany
| | - Abderahmane Derouiche
- §Micalis UMR 1319, AgroParisTech/Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Carsten Jers
- §Micalis UMR 1319, AgroParisTech/Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Charlotte Cousin
- §Micalis UMR 1319, AgroParisTech/Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Ahasanul Kobir
- §Micalis UMR 1319, AgroParisTech/Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Ivan Mijakovic
- §Micalis UMR 1319, AgroParisTech/Institut National de la Recherche Agronomique, Jouy en Josas, France; ¶Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Boris Macek
- From the ‡Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany;
| |
Collapse
|
8
|
Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol Lett 2013; 346:11-9. [PMID: 23731382 DOI: 10.1111/1574-6968.12189] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
In this review, we address some recent developments in the field of bacterial protein phosphorylation, focusing specifically on serine/threonine and tyrosine kinases. We present an overview of recent studies outlining the scope of physiological processes that are regulated by phosphorylation, ranging from cell cycle, growth, cell morphology, to metabolism, developmental phenomena, and virulence. Specific emphasis is placed on Mycobacterium tuberculosis as a showcase organism for serine/threonine kinases, and Bacillus subtilis to illustrate the importance of protein phosphorylation in developmental processes. We argue that bacterial serine/threonine and tyrosine kinases have a distinctive feature of phosphorylating multiple substrates and might thus represent integration nodes in the signaling network. Some open questions regarding the evolutionary benefits of relaxed substrate selectivity of these kinases are treated, as well as the notion of nonfunctional 'background' phosphorylation of cellular proteins. We also argue that phosphorylation events for which an immediate regulatory effect is not clearly established should not be dismissed as unimportant, as they may have a role in cross-talk with other post-translational modifications. Finally, recently developed methods for studying protein phosphorylation networks in bacteria are briefly discussed.
Collapse
|