1
|
Fan J, El Sayyed H, Pambos OJ, Stracy M, Kyropoulos J, Kapanidis AN. RNA polymerase redistribution supports growth in E. coli strains with a minimal number of rRNA operons. Nucleic Acids Res 2023; 51:8085-8101. [PMID: 37351576 PMCID: PMC10450203 DOI: 10.1093/nar/gkad511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Bacterial transcription by RNA polymerase (RNAP) is spatially organized. RNAPs transcribing highly expressed genes locate in the nucleoid periphery, and form clusters in rich medium, with several studies linking RNAP clustering and transcription of rRNA (rrn). However, the nature of RNAP clusters and their association with rrn transcription remains unclear. Here we address these questions by using single-molecule tracking to monitor the subcellular distribution of mobile and immobile RNAP in strains with a heavily reduced number of chromosomal rrn operons (Δrrn strains). Strikingly, we find that the fraction of chromosome-associated RNAP (which is mainly engaged in transcription) is robust to deleting five or six of the seven chromosomal rrn operons. Spatial analysis in Δrrn strains showed substantial RNAP redistribution during moderate growth, with clustering increasing at cell endcaps, where the remaining rrn operons reside. These results support a model where RNAPs in Δrrn strains relocate to copies of the remaining rrn operons. In rich medium, Δrrn strains redistribute RNAP to minimize growth defects due to rrn deletions, with very high RNAP densities on rrn genes leading to genomic instability. Our study links RNAP clusters and rrn transcription, and offers insight into how bacteria maintain growth in the presence of only 1-2 rrn operons.
Collapse
Affiliation(s)
- Jun Fan
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hafez El Sayyed
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| | - Oliver J Pambos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| | - Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jingwen Kyropoulos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Baptista ISC, Kandavalli V, Chauhan V, Bahrudeen MNM, Almeida BLB, Palma CSD, Dash S, Ribeiro AS. Sequence-dependent model of genes with dual σ factor preference. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194812. [PMID: 35338024 DOI: 10.1016/j.bbagrm.2022.194812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Escherichia coli uses σ factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single σ factor, approximately 5% of them have dual σ factor preference. The most common are those responsive to both σ70, which controls housekeeping genes, and σ38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that 'σ70+38 genes' are nearly as upregulated in stationary growth as 'σ38 genes'. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to σ38 and σ70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.
Collapse
Affiliation(s)
- Ines S C Baptista
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vinodh Kandavalli
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
| | - Vatsala Chauhan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Mohamed N M Bahrudeen
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Bilena L B Almeida
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Cristina S D Palma
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Suchintak Dash
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Center of Technology and Systems (CTS-Uninova), NOVA University of Lisbon, 2829-516 Monte de Caparica, Portugal.
| |
Collapse
|
3
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
4
|
Kramm K, Endesfelder U, Grohmann D. A Single-Molecule View of Archaeal Transcription. J Mol Biol 2019; 431:4116-4131. [PMID: 31207238 DOI: 10.1016/j.jmb.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023]
Abstract
The discovery of the archaeal domain of life is tightly connected to an in-depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases (RNAPs) were nothing like the bacterial RNAP but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40years ago paved the way for in-depth studies of the transcription machinery in archaea. However, although the archaeal RNAP and the basal transcription factors that fine-tune the activity of the RNAP during the transcription cycle are long known, we still lack information concerning the architecture and dynamics of archaeal transcription complexes. In this context, single-molecule measurements were instrumental as they provided crucial insights into the process of transcription initiation, the architecture of the initiation complex and the dynamics of mobile elements of the RNAP. In this review, we discuss single-molecule approaches suitable to examine molecular mechanisms of transcription and highlight findings that shaped our understanding of the archaeal transcription apparatus. We furthermore explore the possibilities and challenges of next-generation single-molecule techniques, for example, super-resolution microscopy and single-molecule tracking, and ask whether these approaches will ultimately allow us to investigate archaeal transcription in vivo.
Collapse
Affiliation(s)
- Kevin Kramm
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
5
|
Oliveira SMD, Goncalves NSM, Kandavalli VK, Martins L, Neeli-Venkata R, Reyelt J, Fonseca JM, Lloyd-Price J, Kranz H, Ribeiro AS. Chromosome and plasmid-borne P LacO3O1 promoters differ in sensitivity to critically low temperatures. Sci Rep 2019; 9:4486. [PMID: 30872616 PMCID: PMC6418193 DOI: 10.1038/s41598-019-39618-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Temperature shifts trigger genome-wide changes in Escherichia coli's gene expression. We studied if chromosome integration impacts on a gene's sensitivity to these shifts, by comparing the single-RNA production kinetics of a PLacO3O1 promoter, when chromosomally-integrated and when single-copy plasmid-borne. At suboptimal temperatures their induction range, fold change, and response to decreasing temperatures are similar. At critically low temperatures, the chromosome-integrated promoter becomes weaker and noisier. Dissection of its initiation kinetics reveals longer lasting states preceding open complex formation, suggesting enhanced supercoiling buildup. Measurements with Gyrase and Topoisomerase I inhibitors suggest hindrance to escape supercoiling buildup at low temperatures. Consistently, similar phenomena occur in energy-depleted cells by DNP at 30 °C. Transient, critically-low temperatures have no long-term consequences, as raising temperature quickly restores transcription rates. We conclude that the chromosomally-integrated PLacO3O1 has higher sensitivity to low temperatures, due to longer-lasting super-coiled states. A lesser active, chromosome-integrated native lac is shown to be insensitive to Gyrase overexpression, even at critically low temperatures, indicating that the rate of escaping positive supercoiling buildup is temperature and transcription rate dependent. A genome-wide analysis supports this, since cold-shock genes exhibit atypical supercoiling-sensitivities. This phenomenon might partially explain the temperature-sensitivity of some transcriptional programs of E. coli.
Collapse
Affiliation(s)
- Samuel M D Oliveira
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Nadia S M Goncalves
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Vinodh K Kandavalli
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Leonardo Martins
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Ramakanth Neeli-Venkata
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Jan Reyelt
- Gene Bridges, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Jose M Fonseca
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Jason Lloyd-Price
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Harald Kranz
- Gene Bridges, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland.
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal.
| |
Collapse
|
6
|
Startceva S, Kandavalli VK, Visa A, Ribeiro AS. Regulation of asymmetries in the kinetics and protein numbers of bacterial gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:119-128. [DOI: 10.1016/j.bbagrm.2018.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023]
|
7
|
Lin J, Amir A. Homeostasis of protein and mRNA concentrations in growing cells. Nat Commun 2018; 9:4496. [PMID: 30374016 PMCID: PMC6206055 DOI: 10.1038/s41467-018-06714-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Many experiments show that the numbers of mRNA and protein are proportional to the cell volume in growing cells. However, models of stochastic gene expression often assume constant transcription rate per gene and constant translation rate per mRNA, which are incompatible with these experiments. Here, we construct a minimal gene expression model to fill this gap. Assuming ribosomes and RNA polymerases are limiting in gene expression, we show that the numbers of proteins and mRNAs both grow exponentially during the cell cycle and that the concentrations of all mRNAs and proteins achieve cellular homeostasis; the competition between genes for the RNA polymerases makes the transcription rate independent of the genome number. Furthermore, by extending the model to situations in which DNA (mRNA) can be saturated by RNA polymerases (ribosomes) and becomes limiting, we predict a transition from exponential to linear growth of cell volume as the protein-to-DNA ratio increases.
Collapse
Affiliation(s)
- Jie Lin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
8
|
Krogh TJ, Møller-Jensen J, Kaleta C. Impact of Chromosomal Architecture on the Function and Evolution of Bacterial Genomes. Front Microbiol 2018; 9:2019. [PMID: 30210483 PMCID: PMC6119826 DOI: 10.3389/fmicb.2018.02019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
The bacterial nucleoid is highly condensed and forms compartment-like structures within the cell. Much attention has been devoted to investigating the dynamic topology and organization of the nucleoid. In contrast, the specific nucleoid organization, and the relationship between nucleoid structure and function is often neglected with regard to importance for adaption to changing environments and horizontal gene acquisition. In this review, we focus on the structure-function relationship in the bacterial nucleoid. We provide an overview of the fundamental properties that shape the chromosome as a structured yet dynamic macromolecule. These fundamental properties are then considered in the context of the living cell, with focus on how the informational flow affects the nucleoid structure, which in turn impacts on the genetic output. Subsequently, the dynamic living nucleoid will be discussed in the context of evolution. We will address how the acquisition of foreign DNA impacts nucleoid structure, and conversely, how nucleoid structure constrains the successful and sustainable chromosomal integration of novel DNA. Finally, we will discuss current challenges and directions of research in understanding the role of chromosomal architecture in bacterial survival and adaptation.
Collapse
Affiliation(s)
- Thøger J Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
9
|
Fan H, Conn AB, Williams PB, Diggs S, Hahm J, Gamper HB, Hou YM, O'Leary SE, Wang Y, Blaha GM. Transcription-translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits. Nucleic Acids Res 2017; 45:11043-11055. [PMID: 28977553 PMCID: PMC5737488 DOI: 10.1093/nar/gkx719] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/09/2017] [Indexed: 11/12/2022] Open
Abstract
In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation.
Collapse
Affiliation(s)
- Haitian Fan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Adam B Conn
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Preston B Williams
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Stephen Diggs
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Joseph Hahm
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Howard B Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Seán E O'Leary
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Gregor M Blaha
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Panchapakesan SSS, Ferguson ML, Hayden EJ, Chen X, Hoskins AA, Unrau PJ. Ribonucleoprotein purification and characterization using RNA Mango. RNA (NEW YORK, N.Y.) 2017; 23:1592-1599. [PMID: 28747322 PMCID: PMC5602116 DOI: 10.1261/rna.062166.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/12/2017] [Indexed: 05/04/2023]
Abstract
The characterization of RNA-protein complexes (RNPs) is a difficult but increasingly important problem in modern biology. By combining the compact RNA Mango aptamer with a fluorogenic thiazole orange desthiobiotin (TO1-Dtb or TO3-Dtb) ligand, we have created an RNA tagging system that simplifies the purification and subsequent characterization of endogenous RNPs. Mango-tagged RNP complexes can be immobilized on a streptavidin solid support and recovered in their native state by the addition of free biotin. Furthermore, Mango-based RNP purification can be adapted to different scales of RNP isolation ranging from pull-down assays to the isolation of large amounts of biochemically defined cellular RNPs. We have incorporated the Mango aptamer into the S. cerevisiae U1 small nuclear RNA (snRNA), shown that the Mango-snRNA is functional in cells, and used the aptamer to pull down a U1 snRNA-associated protein. To demonstrate large-scale isolation of RNPs, we purified and characterized bacterial RNA polymerase holoenzyme (HE) in complex with a Mango-containing 6S RNA. We were able to use the combination of a red-shifted TO3-Dtb ligand and eGFP-tagged HE to follow the binding and release of the 6S RNA by two-color native gel analysis as well as by single-molecule fluorescence cross-correlation spectroscopy. Together these experiments demonstrate how the Mango aptamer in conjunction with simple derivatives of its flurophore ligands enables the purification and characterization of endogenous cellular RNPs in vitro.
Collapse
Affiliation(s)
- Shanker Shyam S Panchapakesan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew L Ferguson
- Department of Physics, Boise State University, Boise, Idaho 83725, USA
- Department of Biological Science and Biomolecular Sciences Graduate Program, Boise State University, Boise, Idaho 83725, USA
| | - Eric J Hayden
- Department of Biological Science and Biomolecular Sciences Graduate Program, Boise State University, Boise, Idaho 83725, USA
| | - Xin Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
11
|
Gaal T, Bratton BP, Sanchez-Vazquez P, Sliwicki A, Sliwicki K, Vegel A, Pannu R, Gourse RL. Colocalization of distant chromosomal loci in space in E. coli: a bacterial nucleolus. Genes Dev 2017; 30:2272-2285. [PMID: 27898392 PMCID: PMC5110994 DOI: 10.1101/gad.290312.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023]
Abstract
Gaal et al. examined the relative positions of the ribosomal RNA operons in space. The results show that E. coli bacterial chromosome folding in three dimensions is not dictated entirely by genetic position but rather includes functionally related, genetically distant loci that come into close proximity, with rRNA operons forming a structure reminiscent of the eukaryotic nucleolus. The spatial organization of DNA within the bacterial nucleoid remains unclear. To investigate chromosome organization in Escherichia coli, we examined the relative positions of the ribosomal RNA (rRNA) operons in space. The seven rRNA operons are nearly identical and separated from each other by as much as 180° on the circular genetic map, a distance of ≥2 million base pairs. By inserting binding sites for fluorescent proteins adjacent to the rRNA operons and then examining their positions pairwise in live cells by epifluorescence microscopy, we found that all but rrnC are in close proximity. Colocalization of the rRNA operons required the rrn P1 promoter region but not the rrn P2 promoter or the rRNA structural genes and occurred with and without active transcription. Non-rRNA operon pairs did not colocalize, and the magnitude of their physical separation generally correlated with that of their genetic separation. Our results show that E. coli bacterial chromosome folding in three dimensions is not dictated entirely by genetic position but rather includes functionally related, genetically distant loci that come into close proximity, with rRNA operons forming a structure reminiscent of the eukaryotic nucleolus.
Collapse
Affiliation(s)
- Tamas Gaal
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Benjamin P Bratton
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Alexander Sliwicki
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kristine Sliwicki
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Andrew Vegel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel Pannu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Stracy M, Kapanidis AN. Single-molecule and super-resolution imaging of transcription in living bacteria. Methods 2017; 120:103-114. [PMID: 28414097 PMCID: PMC5670121 DOI: 10.1016/j.ymeth.2017.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
In vivo single-molecule and super-resolution techniques are transforming our ability to study transcription as it takes place in its native environment in living cells. This review will detail the methods for imaging single molecules in cells, and the data-analysis tools which can be used to extract quantitative information on the spatial organization, mobility, and kinetics of the transcription machinery from these experiments. Furthermore, we will highlight studies which have applied these techniques to shed new light on bacterial transcription.
Collapse
Affiliation(s)
- Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
13
|
Ding H, Jiang H, Zhao N, Hou Z. Diffusion of a Rouse chain in porous media: A mode-coupling-theory study. Phys Rev E 2017; 95:012121. [PMID: 28208313 DOI: 10.1103/physreve.95.012121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Indexed: 11/07/2022]
Abstract
We use a kinetic mode-coupling theory (MCT) combining with generalized Langevin equation (GLE) to study the diffusion and conformational dynamics of a bead-spring Rouse chain (RC) dissolved in porous media. The media contains fluid particles and immobile matrix ones wherein the latter leads to the lack of translational invariance. The friction kernel ζ(t) used in the GLE can be obtained directly by adopting a simple density-functional approach in which the density correlators calculated by MCT equations of porous media serve as inputs. Due to cage effects generated by surrounding particles, ζ(t) shows a very long tail memory in the high volume fraction of fluid and matrix. It is found that the long-time center-of-mass diffusion constant D_{CM} of the RC decreases with the increment of volume fraction, influencing more strongly by the matrix particles than by the fluid ones. The auto-correlation function (ACF) of the end-to-end distance fluctuation can also be calculated theoretically based on GLE. Of particular interest is that the power-law region of ACF has a nearly fixed length in logarithmic scale when it shifts to longer time range, with increasing the volume fraction of media particles. Moreover, the effect of lack of translational invariance has been investigated by comparing the results between fluid-matrix and pure fluid cases under identical total volume fraction.
Collapse
Affiliation(s)
- Huai Ding
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Lloyd-Price J, Startceva S, Kandavalli V, Chandraseelan JG, Goncalves N, Oliveira SMD, Häkkinen A, Ribeiro AS. Dissecting the stochastic transcription initiation process in live Escherichia coli. DNA Res 2016; 23:203-14. [PMID: 27026687 PMCID: PMC4909308 DOI: 10.1093/dnares/dsw009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/11/2016] [Indexed: 02/01/2023] Open
Abstract
We investigate the hypothesis that, in Escherichia coli, while the concentration of RNA polymerases differs in different growth conditions, the fraction of RNA polymerases free for transcription remains approximately constant within a certain range of these conditions. After establishing this, we apply a standard model-fitting procedure to fully characterize the in vivo kinetics of the rate-limiting steps in transcription initiation of the Plac/ara-1 promoter from distributions of intervals between transcription events in cells with different RNA polymerase concentrations. We find that, under full induction, the closed complex lasts ∼788 s while subsequent steps last ∼193 s, on average. We then establish that the closed complex formation usually occurs multiple times prior to each successful initiation event. Furthermore, the promoter intermittently switches to an inactive state that, on average, lasts ∼87 s. This is shown to arise from the intermittent repression of the promoter by LacI. The methods employed here should be of use to resolve the rate-limiting steps governing the in vivo dynamics of initiation of prokaryotic promoters, similar to established steady-state assays to resolve the in vitro dynamics.
Collapse
Affiliation(s)
- Jason Lloyd-Price
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Sofia Startceva
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Vinodh Kandavalli
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Jerome G Chandraseelan
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Nadia Goncalves
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Samuel M D Oliveira
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Antti Häkkinen
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| |
Collapse
|
15
|
Izard J, Gomez Balderas CDC, Ropers D, Lacour S, Song X, Yang Y, Lindner AB, Geiselmann J, de Jong H. A synthetic growth switch based on controlled expression of RNA polymerase. Mol Syst Biol 2015; 11:840. [PMID: 26596932 PMCID: PMC4670729 DOI: 10.15252/msb.20156382] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability to control growth is essential for fundamental studies of bacterial physiology and biotechnological applications. We have engineered an Escherichia coli strain in which the transcription of a key component of the gene expression machinery, RNA polymerase, is under the control of an inducible promoter. By changing the inducer concentration in the medium, we can adjust the RNA polymerase concentration and thereby switch bacterial growth between zero and the maximal growth rate supported by the medium. We show that our synthetic growth switch functions in a medium-independent and reversible way, and we provide evidence that the switching phenotype arises from the ultrasensitive response of the growth rate to the concentration of RNA polymerase. We present an application of the growth switch in which both the wild-type E. coli strain and our modified strain are endowed with the capacity to produce glycerol when growing on glucose. Cells in which growth has been switched off continue to be metabolically active and harness the energy gain to produce glycerol at a twofold higher yield than in cells with natural control of RNA polymerase expression. Remarkably, without any further optimization, the improved yield is close to the theoretical maximum computed from a flux balance model of E. coli metabolism. The proposed synthetic growth switch is a promising tool for gaining a better understanding of bacterial physiology and for applications in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Jérôme Izard
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Cindy D C Gomez Balderas
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Delphine Ropers
- INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Stephan Lacour
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Xiaohu Song
- Center for Research and Interdisciplinarity, INSERM U1001, Medicine Faculty, Site Cochin Port-Royal, University Paris Descartes, Paris, France
| | - Yifan Yang
- Center for Research and Interdisciplinarity, INSERM U1001, Medicine Faculty, Site Cochin Port-Royal, University Paris Descartes, Paris, France
| | - Ariel B Lindner
- Center for Research and Interdisciplinarity, INSERM U1001, Medicine Faculty, Site Cochin Port-Royal, University Paris Descartes, Paris, France
| | - Johannes Geiselmann
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Hidde de Jong
- INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| |
Collapse
|
16
|
Abstract
The frequencies of transcription initiation of regulated and constitutive genes depend on the concentration of free RNA polymerase holoenzyme [Rf] near their promoters. Although RNA polymerase is largely confined to the nucleoid, it is difficult to determine absolute concentrations of [Rf] at particular locations within the nucleoid structure. However, relative concentrations of free RNA polymerase at different growth rates, [Rf]rel, can be estimated from the activities of constitutive promoters. Previous studies indicated that the rrnB P2 promoter is constitutive and that [Rf]rel in the vicinity of rrnB P2 increases with increasing growth rate. Recently it has become possible to directly visualize Rf in growing Escherichia coli cells. Here we examine some of the important issues relating to gene expression based on these new observations. We conclude that: (i) At a growth rate of 2 doublings/h, there are about 1000 free and 2350 non-specifically DNA-bound RNA polymerase molecules per average cell (12 and 28%, respectively, of 8400 total) which are in rapid equilibrium. (ii) The reversibility of the non-specific binding generates more than 1000 free RNA polymerase molecules every second in the immediate vicinity of the DNA. Of these, most rebind non-specifically to the DNA within a few ms; the frequency of non-specific binding is at least two orders of magnitude greater than specific binding and transcript initiation. (iii) At a given amount of RNA polymerase per cell, [Rf] and the density of non-specifically DNA-bound RNA polymerase molecules along the DNA both vary reciprocally with the amount of DNA in the cell. (iv) At 2 doublings/h an E. coli cell contains, on the average, about 1 non-specifically bound RNA polymerase per 9 kbp of DNA and 1 free RNA polymerase per 20 kbp of DNA. However some DNA regions (i.e. near active rRNA operons) may have significantly higher than average [Rf].
Collapse
|
17
|
Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 2015. [PMID: 26224838 DOI: 10.1073/pnas.1507592112] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the fundamental importance of transcription, a comprehensive analysis of RNA polymerase (RNAP) behavior and its role in the nucleoid organization in vivo is lacking. Here, we used superresolution microscopy to study the localization and dynamics of the transcription machinery and DNA in live bacterial cells, at both the single-molecule and the population level. We used photoactivated single-molecule tracking to discriminate between mobile RNAPs and RNAPs specifically bound to DNA, either on promoters or transcribed genes. Mobile RNAPs can explore the whole nucleoid while searching for promoters, and spend 85% of their search time in nonspecific interactions with DNA. On the other hand, the distribution of specifically bound RNAPs shows that low levels of transcription can occur throughout the nucleoid. Further, clustering analysis and 3D structured illumination microscopy (SIM) show that dense clusters of transcribing RNAPs form almost exclusively at the nucleoid periphery. Treatment with rifampicin shows that active transcription is necessary for maintaining this spatial organization. In faster growth conditions, the fraction of transcribing RNAPs increases, as well as their clustering. Under these conditions, we observed dramatic phase separation between the densest clusters of RNAPs and the densest regions of the nucleoid. These findings show that transcription can cause spatial reorganization of the nucleoid, with movement of gene loci out of the bulk of DNA as levels of transcription increase. This work provides a global view of the organization of RNA polymerase and transcription in living cells.
Collapse
|
18
|
Bakshi S, Choi H, Weisshaar JC. The spatial biology of transcription and translation in rapidly growing Escherichia coli. Front Microbiol 2015; 6:636. [PMID: 26191045 PMCID: PMC4488752 DOI: 10.3389/fmicb.2015.00636] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/12/2015] [Indexed: 11/21/2022] Open
Abstract
Single-molecule fluorescence provides high resolution spatial distributions of ribosomes and RNA polymerase (RNAP) in live, rapidly growing Escherichia coli. Ribosomes are more strongly segregated from the nucleoids (chromosomal DNA) than previous widefield fluorescence studies suggested. While most transcription may be co-translational, the evidence indicates that most translation occurs on free mRNA copies that have diffused from the nucleoids to a ribosome-rich region. Analysis of time-resolved images of the nucleoid spatial distribution after treatment with the transcription-halting drug rifampicin and the translation-halting drug chloramphenicol shows that both drugs cause nucleoid contraction on the 0–3 min timescale. This is consistent with the transertion hypothesis. We suggest that the longer-term (20–30 min) nucleoid expansion after Rif treatment arises from conversion of 70S-polysomes to 30S and 50S subunits, which readily penetrate the nucleoids. Monte Carlo simulations of a polymer bead model built to mimic the chromosomal DNA and ribosomes (either 70S-polysomes or 30S and 50S subunits) explain spatial segregation or mixing of ribosomes and nucleoids in terms of excluded volume and entropic effects alone. A comprehensive model of the transcription-translation-transertion system incorporates this new information about the spatial organization of the E. coli cytoplasm. We propose that transertion, which radially expands the nucleoids, is essential for recycling of 30S and 50S subunits from ribosome-rich regions back into the nucleoids. There they initiate co-transcriptional translation, which is an important mechanism for maintaining RNAP forward progress and protecting the nascent mRNA chain. Segregation of 70S-polysomes from the nucleoid may facilitate rapid growth by shortening the search time for ribosomes to find free mRNA concentrated outside the nucleoid and the search time for RNAP concentrated within the nucleoid to find transcription initiation sites.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry and Molecular Biophysics Program, University of Wisconsin-Madison, Madison WI, USA
| | - Heejun Choi
- Department of Chemistry and Molecular Biophysics Program, University of Wisconsin-Madison, Madison WI, USA
| | - James C Weisshaar
- Department of Chemistry and Molecular Biophysics Program, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
19
|
Gupta A, Lloyd-Price J, Neeli-Venkata R, Oliveira SMD, Ribeiro AS. In vivo kinetics of segregation and polar retention of MS2-GFP-RNA complexes in Escherichia coli. Biophys J 2014; 106:1928-37. [PMID: 24806925 DOI: 10.1016/j.bpj.2014.03.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022] Open
Abstract
The cytoplasm of Escherichia coli is a crowded, heterogeneous environment. From single cell live imaging, we investigated the spatial kinetics and heterogeneities of synthetic RNA-protein complexes. First, although their known tendency to accumulate at the cell poles does not appear to introduce asymmetries between older and newer cell poles within a cell lifetime, these emerge with cell divisions. This suggests strong polar retention of the complexes, which we verified in their history of positions and mean escape time from the poles. Next, we show that the polar retention relies on anisotropies in the displacement distribution in the region between midcell and poles, whereas the speed is homogeneous along the major cell axis. Afterward, we establish that these regions are at the border of the nucleoid and shift outward with cell growth, due to the nucleoid's replication. Overall, the spatiotemporal kinetics of the complexes, which is robust to suboptimal temperatures, suggests that nucleoid occlusion is a source of dynamic heterogeneities of macromolecules in E. coli that ultimately generate phenotypic differences between sister cells.
Collapse
Affiliation(s)
- Abhishekh Gupta
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Jason Lloyd-Price
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Ramakanth Neeli-Venkata
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Samuel M D Oliveira
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland.
| |
Collapse
|
20
|
Trovato F, Tozzini V. Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules. Biophys J 2014; 107:2579-91. [PMID: 25468337 DOI: 10.1016/j.bpj.2014.09.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 01/07/2023] Open
Abstract
Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1-10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger.
Collapse
Affiliation(s)
- Fabio Trovato
- Istituto Nanoscienze del Cnr, NEST-Scuola Normale Superiore, Pisa, Italy; Center for Nanotechnology and Innovation@NEST-Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.
| | - Valentina Tozzini
- Istituto Nanoscienze del Cnr, NEST-Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
21
|
Bakshi S, Dalrymple RM, Li W, Choi H, Weisshaar JC. Partitioning of RNA polymerase activity in live Escherichia coli from analysis of single-molecule diffusive trajectories. Biophys J 2014; 105:2676-86. [PMID: 24359739 DOI: 10.1016/j.bpj.2013.10.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022] Open
Abstract
Superresolution fluorescence microscopy is used to locate single copies of RNA polymerase (RNAP) in live Escherichia coli and track their diffusive motion. On a timescale of 0.1-1 s, most copies separate remarkably cleanly into two diffusive states. The "slow" RNAPs, which move indistinguishably from DNA loci, are assigned to specifically bound copies (with fractional population ftrxn) that are initiating transcription, elongating, pausing, or awaiting termination. The "mixed-state" RNAP copies, with effective diffusion constant Dmixed = 0.21 μm(2) s(-1), are assigned as a rapidly exchanging mixture of nonspecifically bound copies (fns) and copies undergoing free, three-dimensional diffusion within the nucleoids (ffree). Longer trajectories of 7-s duration reveal transitions between the slow and mixed states, corroborating the assignments. Short trajectories of 20-ms duration enable direct observation of the freely diffusing RNAP copies, yielding Dfree = 0.7 μm(2) s(-1). Analysis of single-particle trajectories provides quantitative estimates of the partitioning of RNAP into different states of activity: ftrxn = 0.54 ± 0.07, fns = 0.28 ± 0.05, ffree = 0.12 ± 0.03, and fnb = 0.06 ± 0.05 (fraction unable to bind to DNA on a 1-s timescale). These fractions disagree with earlier estimates.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Renée M Dalrymple
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wenting Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heejun Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin; Molecular Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
22
|
Segall-Shapiro TH, Meyer AJ, Ellington AD, Sontag ED, Voigt CA. A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol 2014; 10:742. [PMID: 25080493 PMCID: PMC4299498 DOI: 10.15252/msb.20145299] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic genetic systems share resources with the host, including machinery for transcription
and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate
high expression. However, they can exhibit toxicity and lack accessory proteins (σ factors
and activators) that enable switching between different promoters and modulation of activity. Here,
we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be
co-expressed to function. The DNA-binding loop is encoded in a C-terminal 285-aa ‘σ
fragment’, and fragments with different specificity can direct the remaining 601-aa
‘core fragment’ to different promoters. Using these parts, we have built a resource
allocator that sets the core fragment concentration, which is then shared by multiple σ
fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional
capacity available to a synthetic system. Further, positive and negative regulation is implemented
using a 67-aa N-terminal ‘α fragment’ and a null (inactivated) σ
fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters
responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via
different schemes, which we demonstrate by building a system which adjusts promoter activity to
compensate for the difference in copy number of two plasmids.
Collapse
Affiliation(s)
- Thomas H Segall-Shapiro
- Department of Biological Engineering, Synthetic Biology Center Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam J Meyer
- Institute for Cellular and Molecular Biology University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology University of Texas at Austin, Austin, TX, USA
| | - Eduardo D Sontag
- Department of Mathematics, Rutgers University, Piscataway, NJ, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Synthetic Biology Center Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
23
|
Weng X, Xiao J. Spatial organization of transcription in bacterial cells. Trends Genet 2014; 30:287-97. [PMID: 24862529 DOI: 10.1016/j.tig.2014.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/27/2022]
Abstract
Prokaryotic transcription has been extensively studied over the past half a century. However, there often exists a gap between the structural, mechanistic description of transcription obtained from in vitro biochemical studies, and the cellular, phenomenological observations from in vivo genetic studies. It is now accepted that a living bacterial cell is a complex entity; the heterogeneous cellular environment is drastically different from the homogenous, well-mixed situation in vitro. Where molecules are inside a cell may be important for their function; hence, the spatial organization of different molecular components may provide a new means of transcription regulation in vivo, possibly bridging this gap. In this review, we survey current evidence for the spatial organization of four major components of transcription [genes, transcription factors, RNA polymerase (RNAP) and RNAs] and critically analyze their biological significance.
Collapse
Affiliation(s)
- Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Stracy M, Uphoff S, Garza de Leon F, Kapanidis AN. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett 2014; 588:3585-94. [PMID: 24859634 DOI: 10.1016/j.febslet.2014.05.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/25/2022]
Abstract
In vivo single-molecule experiments offer new perspectives on the behaviour of DNA binding proteins, from the molecular level to the length scale of whole bacterial cells. With technological advances in instrumentation and data analysis, fluorescence microscopy can detect single molecules in live cells, opening the doors to directly follow individual proteins binding to DNA in real time. In this review, we describe key technical considerations for implementing in vivo single-molecule fluorescence microscopy. We discuss how single-molecule tracking and quantitative super-resolution microscopy can be adapted to extract DNA binding kinetics, spatial distributions, and copy numbers of proteins, as well as stoichiometries of protein complexes. We highlight experiments which have exploited these techniques to answer important questions in the field of bacterial gene regulation and transcription, as well as chromosome replication, organisation and repair. Together, these studies demonstrate how single-molecule imaging is transforming our understanding of DNA-binding proteins in cells.
Collapse
Affiliation(s)
- Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; Department of Systems Biology, Harvard Medical School, Boston, MA 02138, USA
| | - Federico Garza de Leon
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
25
|
Spahn C, Endesfelder U, Heilemann M. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J Struct Biol 2014; 185:243-9. [DOI: 10.1016/j.jsb.2014.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 11/25/2022]
|
26
|
Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M. Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys J 2014; 105:172-81. [PMID: 23823236 DOI: 10.1016/j.bpj.2013.05.048] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/10/2013] [Accepted: 05/29/2013] [Indexed: 12/26/2022] Open
Abstract
Nucleic acid synthesis is spatially organized in many organisms. In bacteria, however, the spatial distribution of transcription remains obscure, owing largely to the diffraction limit of conventional light microscopy (200-300 nm). Here, we use photoactivated localization microscopy to localize individual molecules of RNA polymerase (RNAP) in Escherichia coli with a spatial resolution of ∼40 nm. In cells growing rapidly in nutrient-rich media, we find that RNAP is organized in 2-8 bands. The band number scaled directly with cell size (and so with the chromosome number), and bands often contained clusters of >70 tightly packed RNAPs (possibly engaged on one long ribosomal RNA operon of 6000 bp) and clusters of such clusters (perhaps reflecting a structure like the eukaryotic nucleolus where many different ribosomal RNA operons are transcribed). In nutrient-poor media, RNAPs were located in only 1-2 bands; within these bands, a disproportionate number of RNAPs were found in clusters containing ∼20-50 RNAPs. Apart from their importance for bacterial transcription, our studies pave the way for molecular-level analysis of several cellular processes at the nanometer scale.
Collapse
Affiliation(s)
- Ulrike Endesfelder
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
27
|
SANCHEZ-OSORIO ISMAEL, RAMOS FERNANDO, MAYORGA PEDRO, DANTAN EDGAR. FOUNDATIONS FOR MODELING THE DYNAMICS OF GENE REGULATORY NETWORKS: A MULTILEVEL-PERSPECTIVE REVIEW. J Bioinform Comput Biol 2014; 12:1330003. [DOI: 10.1142/s0219720013300037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A promising alternative for unraveling the principles under which the dynamic interactions among genes lead to cellular phenotypes relies on mathematical and computational models at different levels of abstraction, from the molecular level of protein-DNA interactions to the system level of functional relationships among genes. This review article presents, under a bottom–up perspective, a hierarchy of approaches to modeling gene regulatory network dynamics, from microscopic descriptions at the single-molecule level in the spatial context of an individual cell to macroscopic models providing phenomenological descriptions at the population-average level. The reviewed modeling approaches include Molecular Dynamics, Particle-Based Brownian Dynamics, the Master Equation approach, Ordinary Differential Equations, and the Boolean logic abstraction. Each of these frameworks is motivated by a particular biological context and the nature of the insight being pursued. The setting of gene network dynamic models from such frameworks involves assumptions and mathematical artifacts often ignored by the non-specialist. This article aims at providing an entry point for biologists new to the field and computer scientists not acquainted with some recent biophysically-inspired models of gene regulation. The connections promoting intuition between different abstraction levels and the role that approximations play in the modeling process are highlighted throughout the paper.
Collapse
Affiliation(s)
- ISMAEL SANCHEZ-OSORIO
- Department of Computer Science, Monterrey Institute of Technology and Higher Education Campus Cuernavaca, Autopista del Sol km 104, Xochitepec, Morelos 62790, Mexico
| | - FERNANDO RAMOS
- Department of Computer Science, Monterrey Institute of Technology and Higher Education Campus Cuernavaca, Autopista del Sol km 104, Xochitepec, Morelos 62790, Mexico
| | - PEDRO MAYORGA
- Department of Computer Science, Monterrey Institute of Technology and Higher Education Campus Cuernavaca, Autopista del Sol km 104, Xochitepec, Morelos 62790, Mexico
| | - EDGAR DANTAN
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico
| |
Collapse
|
28
|
Guillon L, Altenburger S, Graumann PL, Schalk IJ. Deciphering protein dynamics of the siderophore pyoverdine pathway in Pseudomonas aeruginosa. PLoS One 2013; 8:e79111. [PMID: 24205369 PMCID: PMC3813593 DOI: 10.1371/journal.pone.0079111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa produces the siderophore, pyoverdine (PVD), to obtain iron. Siderophore pathways involve complex mechanisms, and the machineries responsible for biosynthesis, secretion and uptake of the ferri-siderophore span both membranes of Gram-negative bacteria. Most proteins involved in the PVD pathway have been identified and characterized but the way the system functions as a whole remains unknown. By generating strains expressing fluorescent fusion proteins, we show that most of the proteins are homogeneously distributed throughout the bacterial cell. We also studied the dynamics of these proteins using fluorescence recovery after photobleaching (FRAP). This led to the first diffusion coefficients ever determined in P. aeruginosa. Cytoplasmic and periplamic diffusion appeared to be slower than in Escherichia coli but membrane proteins seemed to behave similarly in the two species. The diffusion of cytoplasmic and periplasmic tagged proteins involved in the PVD pathway was dependent on the interaction network to which they belong. Importantly, the TonB protein, motor of the PVD-Fe uptake process, was mostly immobile but its mobility increased substantially in the presence of PVD-Fe.
Collapse
Affiliation(s)
| | - Stephan Altenburger
- SYMMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Peter L. Graumann
- SYMMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, University of Marburg, Marburg, Germany
| | | |
Collapse
|
29
|
Shimamoto N. Nanobiology of RNA polymerase: biological consequence of inhomogeneity in reactant. Chem Rev 2013; 113:8400-22. [PMID: 24074222 DOI: 10.1021/cr400006b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nobuo Shimamoto
- Faculty of Life Sciences, Kyoto Sangyo University , Kamigamo-Motoyama, Kita-Ku, Kyoto, 603-8555 Japan
| |
Collapse
|
30
|
Abstract
Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening.
Collapse
Affiliation(s)
- Andrey Feklistov
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York 10065, USA.
| |
Collapse
|
31
|
Abstract
Many aspects of biology depend on the ability of DNA-binding proteins to locate specific binding sites within the genome. Interest in this target search problem has been reinvigorated through the recent development of microscopy-based technologies capable of tracking individual proteins in real-time as they search for binding sites. In this review we discuss how two different proteins, lac repressor and RNA polymerase, have solved the target search problem through seemingly different mechanisms, with an emphasis on how recent in vitro single-molecule studies have influenced our understanding of these reactions.
Collapse
Affiliation(s)
- Sy Redding
- Department of Chemistry, Columbia University, New York, NY 10032, United States
| | | |
Collapse
|
32
|
Lennon CW, Ross W, Martin-Tumasz S, Toulokhonov I, Vrentas CE, Rutherford ST, Lee JH, Butcher SE, Gourse RL. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. Genes Dev 2013. [PMID: 23207918 DOI: 10.1101/gad.204693.112] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Escherichia coli DksA is a transcription factor that binds to RNA polymerase (RNAP) without binding to DNA, destabilizing RNAP-promoter interactions, sensitizing RNAP to the global regulator ppGpp, and regulating transcription of several hundred target genes, including those encoding rRNA. Previously, we described promoter sequences and kinetic properties that account for DksA's promoter specificity, but how DksA exerts its effects on RNAP has remained unclear. To better understand DksA's mechanism of action, we incorporated benzoyl-phenylalanine at specific positions in DksA and mapped its cross-links to RNAP, constraining computational docking of the two proteins. The resulting evidence-based model of the DksA-RNAP complex as well as additional genetic and biochemical approaches confirmed that DksA binds to the RNAP secondary channel, defined the orientation of DksA in the channel, and predicted a network of DksA interactions with RNAP that includes the rim helices and the mobile trigger loop (TL) domain. Engineered cysteine substitutions in the TL and DksA coiled-coil tip generated a disulfide bond between them, and the interacting residues were absolutely required for DksA function. We suggest that DksA traps the TL in a conformation that destabilizes promoter complexes, an interaction explaining the requirement for the DksA tip and its effects on transcription.
Collapse
Affiliation(s)
- Christopher W Lennon
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cagliero C, Jin DJ. Dissociation and re-association of RNA polymerase with DNA during osmotic stress response in Escherichia coli. Nucleic Acids Res 2013; 41:315-26. [PMID: 23093594 PMCID: PMC3592413 DOI: 10.1093/nar/gks988] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/12/2022] Open
Abstract
The thermodynamic association of RNA polymerase (RNAP) with DNA is sensitive to salt concentration in vitro. Paradoxically, previous studies of changes in osmolarity during steady-state cell growth found no dependence between the association of RNAP to DNA and K(+) concentration in Escherichia coli. We reevaluated this issue by following the interaction of RNAP and genomic DNA in time-course experiments during the hyper-osmotic response. Our results show that the interaction is temporally controlled by the same physical chemistry principle in the cell as in vitro. RNAP rapidly dissociates from the genome during the initial response when the cytoplasmic K(+) accumulates transiently, and concurrently the nucleoid becomes hyper-condensed. The freed RNAP re-associates with the genome during a subsequent osmoadaptation phase when organic osmoprotectants accumulate as K(+) levels decrease. RNAP first surrounds the hyper-condensed nucleoid forming a sphere of RNAP before it progressively moves in to the center of the nucleoid. Our findings reinterpret the dynamic protein-DNA interactions during osmotic stress response. We discuss the implications of the dissociation/association of RNAP for osmotic protection and nucleoid structure.
Collapse
Affiliation(s)
| | - Ding Jun Jin
- Transcription control section, Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
34
|
Ehrenberg M, Bremer H, Dennis PP. Medium-dependent control of the bacterial growth rate. Biochimie 2012; 95:643-58. [PMID: 23228516 DOI: 10.1016/j.biochi.2012.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/22/2012] [Indexed: 11/26/2022]
Abstract
By combining results from previous studies of nutritional up-shifts we here re-investigate how bacteria adapt to different nutritional environments by adjusting their macromolecular composition for optimal growth. We demonstrate that, in contrast to a commonly held view the macromolecular composition of bacteria does not depend on the growth rate as an independent variable, but on three factors: (i) the genetic background (i.e. the strain used), (ii) the physiological history of the bacteria used for inoculation of a given growth medium, and (iii) the kind of nutrients in the growth medium. These factors determine the ribosome concentration and the average rate of protein synthesis per ribosome, and thus the growth rate. Immediately after a nutritional up-shift, the average number of ribosomes in the bacterial population increases exponentially with time at a rate which eventually is attained as the final post-shift growth rate of all cell components. After a nutritional up-shift from one minimal medium to another minimal medium of higher nutritional quality, ribosome and RNA polymerase syntheses are co-regulated and immediately increase by the same factor equal to the increase in the final growth rate. However, after an up-shift from a minimal medium to a medium containing all 20 amino acids, RNA polymerase and ribosome syntheses are no longer coregulated; a smaller rate of synthesis of RNA polymerase is compensated by a gradual increase in the fraction of free RNA polymerase, possibly due to a gradual saturation of mRNA promoters. We have also analyzed data from a recent publication, in which it was concluded that the macromolecular composition in terms of RNA/protein and RNA/DNA ratios is solely determined by the effector molecule ppGpp. Our analysis indicates that this is true only in special cases and that, in general, medium adaptation also depends on factors other than ppGpp.
Collapse
Affiliation(s)
- Måns Ehrenberg
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
35
|
A whole-cell computational model predicts phenotype from genotype. Cell 2012; 150:389-401. [PMID: 22817898 DOI: 10.1016/j.cell.2012.05.044] [Citation(s) in RCA: 767] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/20/2012] [Accepted: 05/14/2012] [Indexed: 11/20/2022]
Abstract
Understanding how complex phenotypes arise from individual molecules and their interactions is a primary challenge in biology that computational approaches are poised to tackle. We report a whole-cell computational model of the life cycle of the human pathogen Mycoplasma genitalium that includes all of its molecular components and their interactions. An integrative approach to modeling that combines diverse mathematics enabled the simultaneous inclusion of fundamentally different cellular processes and experimental measurements. Our whole-cell model accounts for all annotated gene functions and was validated against a broad range of data. The model provides insights into many previously unobserved cellular behaviors, including in vivo rates of protein-DNA association and an inverse relationship between the durations of DNA replication initiation and replication. In addition, experimental analysis directed by model predictions identified previously undetected kinetic parameters and biological functions. We conclude that comprehensive whole-cell models can be used to facilitate biological discovery.
Collapse
|
36
|
Basic mechanism of transcription by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:20-8. [PMID: 22982365 DOI: 10.1016/j.bbagrm.2012.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 11/21/2022]
Abstract
RNA polymerase II-like enzymes carry out transcription of genomes in Eukaryota, Archaea, and some viruses. They also exhibit fundamental similarity to RNA polymerases from bacteria, chloroplasts, and mitochondria. In this review we take an inventory of recent studies illuminating different steps of basic transcription mechanism, likely common for most multi-subunit RNA polymerases. Through the amalgamation of structural and computational chemistry data we attempt to highlight the most feasible reaction pathway for the two-metal nucleotidyl transfer mechanism, and to evaluate the way catalysis can be linked to translocation in the mechano-chemical cycle catalyzed by RNA polymerase II. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
37
|
Bakshi S, Siryaporn A, Goulian M, Weisshaar JC. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 2012; 85:21-38. [PMID: 22624875 DOI: 10.1111/j.1365-2958.2012.08081.x] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (RNAP; β'-yGFP) in live Escherichia coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10-15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is D(ribo) = 0.04 µm(2) s(-1), attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of subdiffusion, as would arise from tethering of ribosomes to the DNA. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|