1
|
Roh H, Kannimuthu D. Genomic and Transcriptomic Diversification of Flagellin Genes Provides Insight into Environmental Adaptation and Phylogeographic Characteristics in Aeromonas hydrophila. MICROBIAL ECOLOGY 2024; 87:65. [PMID: 38695873 PMCID: PMC11065939 DOI: 10.1007/s00248-024-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Aeromonas hydrophila is an opportunistic motile pathogen with a broad host range, infecting both terrestrial and aquatic animals. Environmental and geographical conditions exert selective pressure on both geno- and phenotypes of pathogens. Flagellin, directly exposed to external environments and containing important immunogenic epitopes, may display significant variability in response to external conditions. In this study, we conducted a comparative analysis of ~ 150 A. hydrophila genomes, leading to the identification of six subunits of the flagellin gene (fla-1 to fla-4, flaA, and flaB). Individual strains harbored different composition of flagellin subunits and copies. The composition of subunits showed distinct patterns depending on environmental sources. Strains from aquatic environments were mainly comprised of fla-1 to fla-4 subunits, while terrestrial strains predominated in groups harboring flaA and flaB subunits. Each flagellin showed varying levels of expression, with flaA and flaB demonstrating significantly higher expression compared to others. One of the chemotaxis pathways that control flagellin movement through a two-component system was significantly upregulated in flaA(+ 1)/flaB(+ 1) group, whereas flaA and flaB showed different transcriptomic expressions. The genes positively correlated with flaA expression were relevant to biofilm formation and bacterial chemotaxis, but flaB showed a negative correlation with the genes in ABC transporters and quorum sensing pathway. However, the expression patterns of fla-2 to fla-4 were identical. This suggests various types of flagellin subunits may have different biological functions. The composition and expression levels of flagellin subunits could provide valuable insights into the adaptation of A. hydrophila and the differences among strains in response to various external environments.
Collapse
Affiliation(s)
- HyeongJin Roh
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870 Nordnes 5870, Bergen, Norway.
| | - Dhamotharan Kannimuthu
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870 Nordnes 5870, Bergen, Norway
| |
Collapse
|
2
|
Li Y, Liu C, Sun Y, Wang R, Wu C, Zhao H, Zhang L, Song D, Gao Q. Construction of the flagellin F mutant of Vibrio parahaemolyticus and its toxic effects on silver pomfret (Pampus argenteus) cells. Int J Biol Macromol 2024; 259:129395. [PMID: 38218285 DOI: 10.1016/j.ijbiomac.2024.129395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Vibrio parahaemolyticus causes diseases in aquatic organisms, leading to substantial financial losses to the aquaculture industry; its flagellin F (flaF) protein triggers severe inflammation in host cells. To enhance the understanding of the function of flaF in V. parahaemolyticus infection, in this study, a flaF-deficient mutant was constructed by employing two-step homologous recombination. The flaF-deficient mutant induced a significantly lower toll-like receptor 5 (TLR5) expression and apoptosis in fish intestinal epithelial cells than the wild-type V. parahaemolyticus. Furthermore, fluorescence labelling and microscopy analysis of TLR5 showed that V. parahaemolyticus and its mutant strain significantly enhanced TLR5 expression. Additionally, the findings suggest that flaF deletion did not significantly affect the expression of myeloid differentiation factor 88 (MyD88) and interleukin-8 (IL-8) induced by V.parahaemolyticus. In summary, V. parahaemolyticus induced a TLR5-dependent inflammatory response and apoptosis through MyD88, which was observed to be influenced by flaF deletion. In this study, we obtained stable mutants of V. parahaemolyticus via target gene deletion-which is a rapid and effective approach-and compared the induction of inflammatory response and apoptosis by V. parahaemolyticus and its mutant strain, providing novel perspectives for functional gene research in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yang Li
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Chao Liu
- Songjiang Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 201699, PR China
| | - Yuechen Sun
- Haidian Foreign Language Academy, Beijing 100195, PR China
| | - Ruijun Wang
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Choufei Wu
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Hanqu Zhao
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Liqin Zhang
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Dawei Song
- College of Life Science, Huzhou University, Huzhou 313000, PR China.
| | - Quanxin Gao
- College of Life Science, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
3
|
Sonani RR, Palmer LK, Esteves NC, Horton AA, Sebastian AL, Kelly RJ, Wang F, Kreutzberger MAB, Russell WK, Leiman PG, Scharf BE, Egelman EH. An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano. Nat Commun 2024; 15:756. [PMID: 38272938 PMCID: PMC10811340 DOI: 10.1038/s41467-024-44959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness. The contractile tail of Agrobacterium tumefaciens bacteriophage Milano is flexible and bent to varying degrees, which sets it apart from other contractile tail-like systems. Here, we report structures of the Milano tail including the sheath-tube complex, baseplate, and putative receptor-binding proteins. The flexible-to-rigid transformation of the Milano tail upon contraction can be explained by unique electrostatic properties of the tail tube and sheath. All components of the Milano tail, including sheath subunits, are crosslinked by disulfides, some of which must be reduced for contraction to occur. The putative receptor-binding complex of Milano contains a tailspike, a tail fiber, and at least two small proteins that form a garland around the distal ends of the tailspikes and tail fibers. Despite being flagellotropic, Milano lacks thread-like tail filaments that can wrap around the flagellum, and is thus likely to employ a different binding mechanism.
Collapse
Affiliation(s)
- Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Lee K Palmer
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nathaniel C Esteves
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Abigail A Horton
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rebecca J Kelly
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - William K Russell
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
4
|
Zhuang Z, Chen Y, Zheng J, Chen S. The role of TRIF protein in regulating the proliferation and antigen presentation ability of myeloid dendritic cells through the ERK1/2 signaling pathway in chronic low-grade inflammation of intestinal mucosa mediated by flagellin-TLR5 complex signal. PeerJ 2024; 12:e16716. [PMID: 38188180 PMCID: PMC10768658 DOI: 10.7717/peerj.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Objective The objective is to explore whether the flagellin-TLR5 complex signal can enhance the antigen presentation ability of myeloid DCs through the TRIF-ERK1/2 pathway, and the correlation between this pathway and intestinal mucosal inflammation response. Methods Mouse bone marrow-derived DC line DC2.4 was divided into four groups: control group (BC) was DC2.4 cells cultured normally; flagellin single signal stimulation group (DC2.4+CBLB502) was DC2.4 cells stimulated with flagellin derivative CBLB502 during culture; TLR5-flagellin complex signal stimulation group (ov-TLR5-DC2.4+CBLB502) was flagellin derivative CBLB502 stimulated ov-TLR5-DC2.4 cells with TLR5 gene overexpression; TRIF signal interference group (ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA) was ov-TLR5-DC2.4 cells with TLR5 gene overexpression stimulated with flagellin derivative CBLB502 and intervened with TRIF-specific inhibitor Pepinh-TRIFTFA. WB was used to detect the expression of TRIF and p-ERK1/2 proteins in each group of cells; CCK8 was used to detect cell proliferation in each group; flow cytometry was used to detect the expression of surface molecules MHCI, MHCII, CD80, 86 in each group of cells; ELISA was used to detect the levels of IL-12 and IL-4 cytokines in each group. Results Compared with the BC group, DC2.4+CBLB502 group, and ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, the expression of TRIF protein and p-ERK1/2 protein in ov-TLR5-DC2.4+CBLB502 group was significantly upregulated (TRIF: p = 0.02, = 0.007, = 0.048) (ERK1: p < 0.001, =0.0003, = 0.0004; ERK2:p = 0.0003, = 0.0012, = 0.0022). The cell proliferation activity in ov-TLR5-DC2.4+CBLB502 group was enhanced compared with the other groups (p = 0.0001, p < 0.0001, p = 0.0015); at the same time, the expression of surface molecules MHCI, MHCII, CD80, 86 on DCs was upregulated (p < 0.05); and the secretion of IL-12 and IL-4 cytokines was increased, with significant differences (IL-12: p < 0.0001, p < 0.0001, p = 0.0005; IL-4: p = < 0.0001, p = < 0.0001, p = 0.0001). However, the ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, which was treated with TRIF signal interference, showed a decrease in intracellular TRIF protein and p-ERK1/2 protein, as well as a decrease in cell proliferation ability and surface stimulation molecules, and a decrease in the secretion of IL-12 and IL-4 cytokines (p < 0.05). Conclusion After stimulation of flagellin protein-TLR5 complex signal, TRIF protein and p-ERK1/2 protein expression in myeloid dendritic cells were significantly up-regulated, accompanied by increased proliferation activity and maturity of DCs, enhanced antigen presentation function, increased secretion of pro-inflammatory cytokines IL-12 and IL-4. This process can be inhibited by the specific inhibitor of TRIF signal, suggesting that the TLR5-TRIF-ERK1/2 pathway may play an important role in abnormal immune response and mucosal chronic inflammation infiltration mediated by flagellin protein in DCs, which can provide a basis for our subsequent animal experiments.
Collapse
Affiliation(s)
- Zhaomeng Zhuang
- Gastroenterology, Zhejiang Chinese Medical University Affifiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Chen
- Gastroenterology, Zhejiang Chinese Medical University Affifiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Juanhong Zheng
- Gastroenterology, Zhejiang Chinese Medical University Affifiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Shuo Chen
- Gastroenterology, Zhejiang Chinese Medical University Affifiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Fanelli F, Montemurro M, Chieffi D, Cho GS, Low HZ, Hille F, Franz CMAP, Fusco V. Motility in Periweissella Species: Genomic and Phenotypic Characterization and Update on Motility in Lactobacillaceae. Microorganisms 2023; 11:2923. [PMID: 38138067 PMCID: PMC10745875 DOI: 10.3390/microorganisms11122923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The genus Weissella and the recently described genus Periweissella, to which some previously named Weissella species have been reclassified as a result of a taxogenomic assessment, includes lactic acid bacteria species with high biotechnological and probiotic potential. Only one species, namely, Periweissella (P.) beninensis, whose type strain has been shown to possess probiotic features, has so far been described to be motile. However, the availability of numerous genome sequences of Weissella and Periweissella species prompted the possibility to screen for the presence of the genetic determinants encoding motility in Weissella and Periweissellas spp. other than P. beninensis. Herein, we performed a comprehensive genomic analysis to identify motility-related proteins in all Weissella and Periweissella species described so far, and extended the analysis to the recently sequenced Lactobacillaceae spp. Furthermore, we performed motility assays and transmission electron microscopy (TEM) on Periweissella type strains to confirm the genomic prediction. The homology-based analysis revealed genes coding for motility proteins only in the type strains of P. beninensis, P. fabalis, P. fabaria and P. ghanensis genomes. However, only the P. beninensis type strain was positive in the motility assay and displayed run-and-tumble behavior. Many peritrichous and long flagella on bacterial cells were visualized via TEM, as well. As for the Lactobacillaceae, in addition to the species previously described to harbor motility proteins, the genetic determinants of motility were also found in the genomes of the type strains of Lactobacillus rogosae and Ligilactobacillus salitolerans. This study, which is one of the first to analyze the genomes of Weissella, Periweissella and the recently sequenced Lactobacillaceae spp. for the presence of genes coding for motility proteins and which assesses the associated motility phenotypes, provides novel results that expand knowledge on these genera and are useful in the further characterization of lactic acid bacteria.
Collapse
Affiliation(s)
- Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (F.F.); (M.M.); (D.C.)
| | - Marco Montemurro
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (F.F.); (M.M.); (D.C.)
| | - Daniele Chieffi
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (F.F.); (M.M.); (D.C.)
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (G.-S.C.); (H.-Z.L.); (F.H.)
| | - Hui-Zhi Low
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (G.-S.C.); (H.-Z.L.); (F.H.)
| | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (G.-S.C.); (H.-Z.L.); (F.H.)
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (G.-S.C.); (H.-Z.L.); (F.H.)
| | - Vincenzina Fusco
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (F.F.); (M.M.); (D.C.)
| |
Collapse
|
6
|
Brown PJB, Chang JH, Fuqua C. Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. J Bacteriol 2023; 205:e0000523. [PMID: 36892285 PMCID: PMC10127608 DOI: 10.1128/jb.00005-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.
Collapse
Affiliation(s)
- Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Calvopina-Chavez DG, Howarth RE, Memmott AK, Pech Gonzalez OH, Hafen CB, Jensen KT, Benedict AB, Altman JD, Burnside BS, Childs JS, Dallon SW, DeMarco AC, Flindt KC, Grover SA, Heninger E, Iverson CS, Johnson AK, Lopez JB, Meinzer MA, Moulder BA, Moulton RI, Russell HS, Scott TM, Shiobara Y, Taylor MD, Tippets KE, Vainerere KM, Von Wallwitz IC, Wagley M, Wiley MS, Young NJ, Griffitts JS. A large-scale genetic screen identifies genes essential for motility in Agrobacterium fabrum. PLoS One 2023; 18:e0279936. [PMID: 36598925 PMCID: PMC9812332 DOI: 10.1371/journal.pone.0279936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023] Open
Abstract
The genetic and molecular basis of flagellar motility has been investigated for several decades, with innovative research strategies propelling advances at a steady pace. Furthermore, as the phenomenon is examined in diverse bacteria, new taxon-specific regulatory and structural features are being elucidated. Motility is also a straightforward bacterial phenotype that can allow undergraduate researchers to explore the palette of molecular genetic tools available to microbiologists. This study, driven primarily by undergraduate researchers, evaluated hundreds of flagellar motility mutants in the Gram-negative plant-associated bacterium Agrobacterium fabrum. The nearly saturating screen implicates a total of 37 genes in flagellar biosynthesis, including genes of previously unknown function.
Collapse
Affiliation(s)
- Diana G. Calvopina-Chavez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Robyn E. Howarth
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Audrey K. Memmott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Oscar H. Pech Gonzalez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Caleb B. Hafen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kyson T. Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Alex B. Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Jessica D. Altman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Brittany S. Burnside
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Justin S. Childs
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Samuel W. Dallon
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Alexa C. DeMarco
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kirsten C. Flindt
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Sarah A. Grover
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Elizabeth Heninger
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Christina S. Iverson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Abigail K. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Jack B. Lopez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - McKay A. Meinzer
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Brook A. Moulder
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Rebecca I. Moulton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Hyrum S. Russell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Tiana M. Scott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Yuka Shiobara
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Mason D. Taylor
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kathryn E. Tippets
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kayla M. Vainerere
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Isabella C. Von Wallwitz
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Madison Wagley
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Megumi S. Wiley
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Naomi J. Young
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhuang Z, Huang C, Zhang Y, Lv B. Effects of Massa Medicata Fermentata on the intestinal pathogenic flagella bacteria and visceral hypersensitivity in rats with irritable bowel syndrome. Front Physiol 2022; 13:1039804. [PMID: 36505059 PMCID: PMC9730278 DOI: 10.3389/fphys.2022.1039804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: To investigate the effect of Massa Medicata Fermentata (MMF) on the changes of pathogenic flagellar bacteria and visceral hypersensitivity in rats with diarrhea irritable bowel syndrome (IBS-D). Methods: Thirty adult SD rats were randomly divided into normal control group (n = 10), model control group (n = 10), and MMF group (n = 10). Acetic acid enema combined with restraint stress was used to build the IBS-D visceral hypersensitivity model; Abdominal withdrawal reflex (AWR) test was used to assess the visceral sensitivity of rats; 16SrRNA sequencing was used to analyze the changes of intestinal bacteria in each group, and the content of pathogenic flagellated bacteria were quantitatively counted; The content of flagellin in colonic mucosa was detected by ELISA; TLR5 protein in colonic mucosa of rats was detected by Western Blot. Results: After IBS-D modeling, the visceral sensitivity of rats was significantly higher in the model control group than that in the normal control group (p = 0.0061), while it was significantly decreased in MMF group compared with the model control group (p = 0.0217), but without significant difference compared with the normal control group (p = 0.6851). The number of fecal Bifidobacterium and Lactobacillus in the model group were significantly decreased compared with the normal control group (p < 0.0001); While they were significantly increased in the MMF group compared with the model control group and normal control group (p = 0.009; p < 0.0001). The amount of fecal pathogenic flagellated bacteria in the model group was significantly increased compared with the normal control group (p = 0.001); However it was significantly reduced in MMF group compared with the model group (p = 0.026), which has no statistically difference with the normal control group (p = 0.6486). The content of flagellin in colonic mucosa was significantly increased in the model group when compared with the normal control group (p < 0.0001), and it was decreased in MMF group compared with the normal control group (p < 0.0001), but there was no statistical difference with the normal control group (p = 0.6545). The expression level of TLR5 protein in colonic mucosa of rat was significantly increased in model control group compared with the normal control group (p = 0.0034), However, it was significantly decreased in MMF group compared with normal control group (p = 0.0019), but it was no statistical difference with the normal control group (p = 0.7519). Conclusion: MMF can reduce visceral hypersensitivity by decreasing the content of pathogenic flagellated bacteria and their flagellin and inhibiting its specific receptor TLR5 protein expression in colonic mucosa in IBS-D rats.
Collapse
Affiliation(s)
- Zhaomeng Zhuang
- Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China,Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Chen Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yiguang Zhang
- Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,*Correspondence: Bin Lv, ,
| |
Collapse
|
9
|
Pan D, Wang XY, Zhou JW, Yang L, Khan A, Wei DQ, Li JJ, Jia AQ. Virulence and Biofilm Inhibition of 3-Methoxycinnamic Acid against Agrobacterium tumefaciens. J Appl Microbiol 2022; 133:3161-3175. [PMID: 35951737 DOI: 10.1111/jam.15774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
AIMS In the current study the anti-virulence and anti-biofilm activities of the cinnamic acid derivative, 3-methoxycinnamic acid, was investigated against Agrobacterium tumefaciens. METHODS AND RESULTS Based on the disc diffusion test and β-galactosidase activity assay, 3-methoxycinnamic acid was shown to interfere with the quorum sensing (QS) system of A. tumefaciens. Crystal violet staining assay, phenol-sulfuric acid method, Bradford protein assay and confocal laser scanning microscopy (CLSM) revealed that the biofilm formation of A. tumefaciens was inhibited after the treatment of 3-methoxycinnamic acid. Employing high performance liquid chromatography (HPLC) analysis of culture supernatant revealed that the production of 3-oxo-octanoylhomoserine lactone (3-oxo-C8-HSL) decreased concentration-dependently after treatment with 3-methoxycinnamic acid. Swimming and chemotaxis assays also indicated that 3-methoxycinnamic acid had a good effect on reducing the motility and chemotaxis of A. tumefaciens. In addition, the RT-qPCR, molecular docking and simulations further demonstrated that 3-methoxycinnamic acid could competitively inhibit the binding of 3-oxo-C8-HSL to TraR and down-regulate virulence-related genes. CONCLUSIONS 3-Methoxycinnamic acid is proved to have good anti-virulence and anti-biofilm activities against A. tumefaciens. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that investigates the anti-virulence and anti-biofilm activities of 3-methoxycinnamic acid against A. tumefaciens. With its potential QS-related virulence and biofilm inhibitory activities, 3-methoxycinnamic acid is expected to be developed as a potent pesticide or adjuvant for the prevention and treatment of crown gall caused by A. tumefaciens.
Collapse
Affiliation(s)
- Deng Pan
- School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228, Haikou, China
| | - Xing-Yun Wang
- School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Jin-Wei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, 221018, Xuzhou, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.,Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.,Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China
| | - Jun-Jian Li
- School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228, Haikou, China
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228, Haikou, China.,One Health Institute, Hainan University, 570228, Haikou, China
| |
Collapse
|
10
|
MURATA K, KAWAI S, HASHIMOTO W. Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:529-552. [PMID: 36504195 PMCID: PMC9751261 DOI: 10.2183/pjab.98.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.
Collapse
Affiliation(s)
| | - Shigeyuki KAWAI
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Wataru HASHIMOTO
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
11
|
Alakavuklar MA, Heckel BC, Stoner AM, Stembel JA, Fuqua C. Motility control through an anti-activation mechanism in Agrobacterium tumefaciens. Mol Microbiol 2021; 116:1281-1297. [PMID: 34581467 DOI: 10.1111/mmi.14823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
Many bacteria can migrate from a free-living, planktonic state to an attached, biofilm existence. One factor regulating this transition in the facultative plant pathogen Agrobacterium tumefaciens is the ExoR-ChvG-ChvI system. Periplasmic ExoR regulates the activity of the ChvG-ChvI two-component system in response to environmental stress, most notably low pH. ChvI impacts hundreds of genes, including those required for type VI secretion, virulence, biofilm formation, and flagellar motility. Previous studies revealed that activated ChvG-ChvI represses expression of most of class II and class III flagellar biogenesis genes, but not the master motility regulator genes visN, visR, and rem. In this study, we characterized the integration of the ExoR-ChvG-ChvI and VisNR-Rem pathways. We isolated motile suppressors of the non-motile ΔexoR mutant and thereby identified the previously unannotated mirA gene encoding a 76 amino acid protein. We report that the MirA protein interacts directly with the Rem DNA-binding domain, sequestering Rem and preventing motility gene activation. The ChvG-ChvI pathway activates mirA expression and elevated mirA is sufficient to block motility. This study reveals how the ExoR-ChvG-ChvI pathway prevents flagellar motility in A. tumefaciens. MirA is also conserved among other members of the Rhizobiales suggesting similar mechanisms of motility regulation.
Collapse
Affiliation(s)
| | - Brynn C Heckel
- Indiana University, Bloomington, Indiana, USA.,California State University, Dominguez Hills, Carson, California, USA
| | - Ari M Stoner
- Indiana University, Bloomington, Indiana, USA.,Indiana University Medical School, Indianapolis, Indiana, USA
| | - Joseph A Stembel
- Indiana University, Bloomington, Indiana, USA.,University of Washington, Seattle, Washington, USA
| | - Clay Fuqua
- Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
12
|
Eguchi N, Suzuki S, Yokota K, Igimi S, Kajikawa A. Ligilactobacillus agilis BKN88 possesses thermo-/acid-stable heteropolymeric flagellar filaments. MICROBIOLOGY-SGM 2021; 167. [PMID: 33502302 DOI: 10.1099/mic.0.001020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many flagellated bacteria possess multiple flagellins, but the roles and the compositions of each flagellin are diverse and poorly understood. In Ligilactobacillus agilis BKN88, there are two active flagellin gene paralogues but their function and composition in its flagellar filaments have not been described. The aim of this study is to find the function and composition of the flagellins by employing mutant strains each of which expresses a single flagellin or a modified flagellin. Two single flagellin-expressing strains were both flagellated while the number of flagella per cell in the single flagellin-expressing derivatives was lower than that in the wild type. Nonetheless, these derivative strains were apparently equally motile as the wild type. This indicates that either flagellin is sufficient for cell motility. The immunological activity via Toll-like receptor 5 of the single flagellin-expressing strains or purified single flagellins was readily detectable but mostly variably weaker than that of the wild type. The flagellar filaments of wild type L. agilis BKN88 were more acid-/thermo-stable than those of single flagellin-expressing derivatives. Using a combination of immunoprecipitation and flagellin-specific staining, wild type BKN88 appeared to possess heteropolymeric flagellar filaments consisting of both flagellins and each flagellin appeared to be equally distributed throughout the filaments. The results of this study suggest that the two flagellins together form a more robust filament than either alone and are thus functionally complementary.
Collapse
Affiliation(s)
- Naoto Eguchi
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shunya Suzuki
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kenji Yokota
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shizunobu Igimi
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Akinobu Kajikawa
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
13
|
Gao Q, Yi S, Luo J, Xing Q, Lv J, Wang P, Wang C, Li Y. Construction of a Vibrio anguillarum flagellin B mutant and analysis of its immuno-stimulation effects on Macrobrachium rosenbergii. Int J Biol Macromol 2021; 174:457-465. [PMID: 33493561 DOI: 10.1016/j.ijbiomac.2021.01.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/16/2023]
Abstract
Vibrio anguillarum is a globally distributed aquatic pathogen, and its flagellin B (FlaB) protein can evoke innate immune responses in hosts. In order to explore the role of FlaB in V. anguillarum infection, we constructed a FlaB-deficient mutant using overlapping PCR and two-step homologous recombination, and gene sequencing confirmed successful knockout of the FlaB gene. Scanning electron microscopy showed no significant differences in the morphological structure of the flagellum between wild-type and FlaB-deficient strains. The mutant was subsequently injected into the freshwater prawn (Macrobrachium rosenbergii) to explore its pathogenicity in the host, and expression of myeloid differentiation factor 88, prophenoloxidase, catalase, superoxide dismutase and glutathione peroxidase was investigated by real-time PCR. The results showed that deletion of FlaB had little effect on V. anguillarum-induced expression of these immune-related genes (p > 0.05). In general, the FlaB mutant displayed similar flagella morphology and immune characteristics to the wild-type strain, hence we speculated that knockout of FlaB might promote the expression and function of other flagellin proteins. Furthermore, this study provides a rapid and simple method for obtaining stable mutants of V. anguillarum free from foreign plasmid DNA.
Collapse
Affiliation(s)
- Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Jinping Luo
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Qianqian Xing
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Jiali Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Panhuang Wang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Cuihua Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, People's Republic of China.
| | - Yang Li
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
14
|
Eckhard U, Blöchl C, Jenkins BGL, Mansfield MJ, Huber CG, Doxey AC, Brandstetter H. Identification and characterization of the proteolytic flagellin from the common freshwater bacterium Hylemonella gracilis. Sci Rep 2020; 10:19052. [PMID: 33149258 PMCID: PMC7643111 DOI: 10.1038/s41598-020-76010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Flagellins are the protein components of bacterial flagella and assemble in up to 20,000 copies to form extracellular flagellar filaments. An unusual family of flagellins was recently discovered that contains a unique metalloprotease domain within its surface-exposed hypervariable region. To date, these proteolytic flagellins (also termed flagellinolysins) have only been characterized in the Gram-positive organism Clostridium haemolyticum, where flagellinolysin was shown to be proteolytically active and capable of cleaving extracellular protein substrates. The biological function of flagellinolysin and its activity in other organisms, however, remain unclear. Here, using molecular biochemistry and proteomics, we have performed an initial characterization of a novel flagellinolysin identified from Hylemonella gracilis, a Gram-negative organism originally isolated from pond water. We demonstrate that H. gracilis flagellinolysin (HgrFlaMP) is an active calcium-dependent zinc metallopeptidase and characterize its cleavage specificity profile using both trypsin and GluC-derived peptide libraries and protein substrates. Based on high-throughput degradomic assays, HgrFlaMP cleaved 784 unique peptides and displayed a cleavage site specificity similar to flagellinolysin from C. haemolyticum. Additionally, by using a set of six protein substrates, we identified 206 protein-embedded cleavage sites, further refining the substrate preference of HgrFlaMP, which is dominated by large hydrophobic amino acids in P1', and small hydrophobic or medium-sized polar residues on the amino-terminal side of the scissile bond. Intriguingly, recombinant HgrFlaMP was also capable of cleaving full-length flagellins from another species, suggesting its potential involvement in interbacterial interactions. Our study reports the first experimentally characterized proteolytic flagellin in a Gram-negative organism, and provides new insights into flagellum-mediated enzymatic activity.
Collapse
Affiliation(s)
- Ulrich Eckhard
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria. .,Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac, 15-21, 08028, Barcelona, Catalonia, Spain.
| | - Constantin Blöchl
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Benjamin G L Jenkins
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Michael J Mansfield
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.,Genomics and Regulatory Sytems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Christian G Huber
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
15
|
Andrade MO, Pang Z, Achor DS, Wang H, Yao T, Singer BH, Wang N. The flagella of 'Candidatus Liberibacter asiaticus' and its movement in planta. MOLECULAR PLANT PATHOLOGY 2020; 21:109-123. [PMID: 31721403 PMCID: PMC6913195 DOI: 10.1111/mpp.12884] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. 'Candidatus Liberibacter asiaticus' (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.
Collapse
Affiliation(s)
- Maxuel O. Andrade
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Zhiqian Pang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Diann S. Achor
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Han Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Tingshan Yao
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest UniversityChongqing400712People’s Republic of China
| | - Burton H. Singer
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Nian Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| |
Collapse
|
16
|
Comparative Analysis of Ionic Strength Tolerance between Freshwater and Marine Caulobacterales Adhesins. J Bacteriol 2019; 201:JB.00061-19. [PMID: 30858293 DOI: 10.1128/jb.00061-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial adhesion is affected by environmental factors, such as ionic strength, pH, temperature, and shear forces. Therefore, marine bacteria must have developed adhesins with different compositions and structures than those of their freshwater counterparts to adapt to their natural environment. The dimorphic alphaproteobacterium Hirschia baltica is a marine budding bacterium in the clade Caulobacterales H. baltica uses a polar adhesin, the holdfast, located at the cell pole opposite the reproductive stalk, for surface attachment and cell-cell adhesion. The holdfast adhesin has been best characterized in Caulobacter crescentus, a freshwater member of the Caulobacterales, and little is known about holdfast compositions and properties in marine Caulobacterales Here, we use H. baltica as a model to characterize holdfast properties in marine Caulobacterales We show that freshwater and marine Caulobacterales use similar genes in holdfast biogenesis and that these genes are highly conserved among the species in the two genera. We determine that H. baltica produces a larger holdfast than C. crescentus and that the holdfasts have different chemical compositions, as they contain N-acetylglucosamine and galactose monosaccharide residues and proteins but lack DNA. Finally, we show that H. baltica holdfasts tolerate higher ionic strength than those of C. crescentus We conclude that marine Caulobacterales holdfasts have physicochemical properties that maximize binding in high-ionic-strength environments.IMPORTANCE Most bacteria spend a large part of their life spans attached to surfaces, forming complex multicellular communities called biofilms. Bacteria can colonize virtually any surface, and therefore, they have adapted to bind efficiently in very different environments. In this study, we compare the adhesive holdfasts produced by the freshwater bacterium C. crescentus and a relative, the marine bacterium H. baltica We show that H. baltica holdfasts have a different morphology and chemical composition and tolerate high ionic strength. Our results show that the H. baltica holdfast is an excellent model to study the effect of ionic strength on adhesion and provides insights into the physicochemical properties required for adhesion in the marine environment.
Collapse
|
17
|
Flagella-Driven Motility of Bacteria. Biomolecules 2019; 9:biom9070279. [PMID: 31337100 PMCID: PMC6680979 DOI: 10.3390/biom9070279] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/17/2023] Open
Abstract
The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species, flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple transmembrane stator units and converts the ion flux through an ion channel of each stator unit into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways regulate the direction of flagella-driven motility in response to changes in the environments, allowing bacteria to migrate towards more desirable environments for their survival. Recent experimental and theoretical studies have been deepening our understanding of the molecular mechanisms of the flagellar motor. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
|