1
|
Yang R, Han S, Yu Y, Li H, Helmann JD, Schaufler K, Johnson MDL, Yang QE, Rensing C. The Klebsiella pneumoniae tellurium resistance gene terC contributes to both tellurite and zinc resistance. Microbiol Spectr 2025:e0263424. [PMID: 40202338 DOI: 10.1128/spectrum.02634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Klebsiella pneumoniae is widely recognized as a pathogen responsible for hospital-acquired infections and community-acquired invasive infections. It has rapidly become a significant global public health threat due to the emergence of hypervirulent and multidrug-resistant strains, which have increased the challenges associated with treating life-threatening infections. Tellurium resistance genes are widespread on virulence plasmids in K. pneumoniae isolates. However, the core function of the ter operon (terZABCDEF) in K. pneumoniae remains unclear. In this study, the multidrug-resistant K. pneumoniae P1927 strain was isolated from the sputum of a hospitalized pneumonia patient. The ter operon, along with antimicrobial resistance and virulence genes, was identified on a large hybrid plasmid in K. pneumoniae P1927. We generated a terC deletion mutant and demonstrated that this mutant exhibited reduced virulence in a Galleria mellonella larva infection model. Further physiological functional analysis revealed that terC is not only important for Te(IV) resistance but also for resistance to Zn(II), Mn(II), and phage infection. All genes of the ter operon were highly inducible by Zn(II), which is a stronger inducer than Te(IV), and the terBCDE genes were also induced by Mn(II). Collectively, our study demonstrates novel physiological functions of TerC in Zn(II) resistance and virulence in K. pneumoniae.IMPORTANCEKlebsiella pneumoniae has rapidly become a global threat to public health. Although the ter operon is widely identified in clinical isolates, its physiological function remains unclear. It has been proposed that proteins encoded by the ter operon form a multi-site metal-binding complex, but its exact function is still unknown. TerC, a central component of the tellurium resistance determinant, was previously shown to interact with outer membrane proteins OmpA and KpsD in Escherichia coli, suggesting potential changes in outer membrane structure and properties. Here, we report that TerC confers resistance to Zn(II), Mn(II), and phage infection, and Zn(II) was shown to be a strong inducer of the ter operon. Furthermore, TerC was identified as a novel virulence factor. Taken together, our results expand our understanding of the physiological functions encoded by the ter operon and its role in the virulence of K. pneumoniae, providing deeper insights into the link between heavy metal(loid) resistance determinants and virulence in pathogenic bacteria.
Collapse
Affiliation(s)
- Ruixiang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongru Li
- Fujian Provincial Key Laboratory of Medical Big Data Engineering, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Centre for Infection Research HZI, Helmholtz Institute for One Health, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Michael D L Johnson
- Department of Immunobiology, The University of Arizona College of Medicine Tucson, Tucson, Arizona, USA
| | - Qiu E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Gao Y, Xie N, Ma T, Tan CE, Wang Z, Zhang R, Ma S, Deng Z, Wang Y, Shen J. VirBR counter-silences HppX3 to promote conjugation of blaNDM-IncX3 plasmids. Nucleic Acids Res 2025; 53:gkaf182. [PMID: 40103225 PMCID: PMC11915502 DOI: 10.1093/nar/gkaf182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
New Delhi metallo-β-lactamases (NDM), encoded by the blaNDM gene, mediate carbapenem resistance, posing serious threats to public health due to their global presence across diverse hosts and environments. The blaNDM is prominently carried by the IncX3 plasmid, which encodes a Type IV secretion system (T4SS) responsible for plasmid conjugation. This T4SS has been shown to be phenotypically silenced by a plasmid-borne H-NS family protein; however, the underlying mechanisms of both silencing and silencing relief remain unclear. Herein, we identified HppX3, an H-NS family protein encoded by the IncX3 plasmid, as a transcription repressor. HppX3 binds to the T4SS promoter (PactX), downregulates T4SS expression, thereby inhibits plasmid conjugation. RNA-seq analysis revealed that T4SS genes are co-regulated by HppX3 and VirBR, a transcription activator encoded by the same plasmid. Mechanistically, VirBR acts as a counter-silencer by displacing HppX3 from PactX, restoring T4SS expression and promoting plasmid conjugation. A similar counter-silencing mechanism was identified in the T4SSs of IncX1 and IncX2 plasmids. These findings provide new insights into the regulatory mechanisms controlling T4SS expression on multiple IncX plasmids, including the IncX3, explaining the persistence and widespread of blaNDM-IncX3 plasmid, and highlight potential strategies to combat the spread of NDM-positive Enterobacterales by targeting plasmid-encoded regulators.
Collapse
Affiliation(s)
- Yuan Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ning Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Tengfei Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chun E Tan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhuo Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhaoju Deng
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Large Animal Clinical Veterinary Research Center, College of Clinical Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
3
|
Bhattacharya S, Bejerano-Sagie M, Ravins M, Zeroni L, Kaur P, Gopu V, Rosenshine I, Ben-Yehuda S. Flagellar rotation facilitates the transfer of a bacterial conjugative plasmid. EMBO J 2025; 44:587-611. [PMID: 39623141 PMCID: PMC11730352 DOI: 10.1038/s44318-024-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 01/15/2025] Open
Abstract
Conjugation-mediated DNA delivery is the primary mode for antibiotic resistance spread in bacteria; yet, molecular mechanisms regulating the conjugation process remain largely unexplored. While conjugative plasmids typically require bacterial attachment to solid surfaces for facilitation of donor-to-recipient proximity, the pLS20 conjugative plasmid, prevalent among Gram-positive Bacillus spp., uniquely requires fluid environments to enhance its transfer. Here, we show that pLS20, carried by Bacillus subtilis, induces multicellular clustering, which can accommodate various species, hence offering a stable platform for DNA delivery in a liquid milieu. We further discovered that induction of pLS20 promoters, governing crucial conjugative genes, is dependent on the presence of donor cell flagella, the major bacterial motility organelle. Moreover, the pLS20 regulatory circuit is controlled by a mechanosensing signal transduction pathway responsive to flagella rotation, thus activating conjugation gene expression exclusively during the host motile phase. This flagella-conjugation coupling strategy may allow the dissemination of the plasmid to remote destinations, allowing infiltration into new niches.
Collapse
Affiliation(s)
- Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Liat Zeroni
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Prabhjot Kaur
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Venkadesaperumal Gopu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
4
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Zhang H, Xu L, Hou X, Li Y, Niu L, Zhang J, Wang X. Ketoprofen promotes the conjugative transfer of antibiotic resistance among antibiotic resistant bacteria in natural aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124676. [PMID: 39103039 DOI: 10.1016/j.envpol.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
The emergence and spread of antibiotic resistance in the environment pose a serious threat to global public health. It is acknowledged that non-antibiotic stresses, including disinfectants, pharmaceuticals and organic pollutants, play a crucial role in horizontal transmission of antibiotic resistance genes (ARGs). Despite the widespread presence of non-steroidal anti-inflammatory drugs (NSAIDs), notably in surface water, their contributions to the transfer of ARGs have not been systematically explored. Furthermore, previous studies have primarily concentrated on model strains to investigate whether contaminants promote the conjugative transfer of ARGs, leaving the mechanisms of ARG transmission among antibiotic resistant bacteria in natural aqueous environments under the selective pressures of non-antibiotic contaminants remains unclear. In this study, the Escherichia coli (E. coli) K12 carrying RP4 plasmid was used as the donor strain, indigenous strain Aeromonas veronii containing rifampicin resistance genes in Taihu Lake, and E. coli HB101 were used as receptor strains to establish inter-genus and intra-genus conjugative transfer systems, examining the conjugative transfer frequency under the stress of ketoprofen. The results indicated that ketoprofen accelerated the environmental spread of ARGs through several mechanisms. Ketoprofen promoted cell-to-cell contact by increasing cell surface hydrophobicity and reducing cell surface charge, thereby mitigating cell-to-cell repulsion. Furthermore, ketoprofen induced increased levels of reactive oxygen species (ROS) production, activated the DNA damage-induced response (SOS), and enhanced cell membrane permeability, facilitating ARG transmission in intra-genus and inter-genus systems. The upregulation of outer membrane proteins, oxidative stress, SOS response, mating pair formation (Mpf) system, and DNA transfer and replication (Dtr) system related genes, as well as the inhibition of global regulatory genes, all contributed to higher transfer efficiency under ketoprofen treatment. These findings served as an early warning for a comprehensive assessment of the roles of NSAIDs in the spread of antibiotic resistance in natural aqueous environments.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linyun Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jie Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xixi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Feng J, Zheng Y, Ma W, Weng D, Peng D, Xu Y, Wang Z, Wang X. A synthetic antibiotic class with a deeply-optimized design for overcoming bacterial resistance. Nat Commun 2024; 15:6040. [PMID: 39019927 PMCID: PMC11255307 DOI: 10.1038/s41467-024-50453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The lack of new drugs that are effective against antibiotic-resistant bacteria has caused increasing concern in global public health. Based on this study, we report development of a modified antimicrobial drug through structure-based drug design (SBDD) and modular synthesis. The optimal modified compound, F8, was identified, which demonstrated in vitro and in vivo broad-spectrum antibacterial activity against drug-resistant bacteria and effectively mitigated the development of resistance. F8 exhibits significant bactericidal activity against bacteria resistant to antibiotics such as methicillin, polymyxin B, florfenicol (FLO), doxycycline, ampicillin and sulfamethoxazole. In a mouse model of drug-resistant bacteremia, F8 was found to increase survival and significantly reduce bacterial load in infected mice. Multi-omics analysis (transcriptomics, proteomics, and metabolomics) have indicated that ornithine carbamoyl transferase (arcB) is a antimicrobial target of F8. Further molecular docking, Isothermal Titration Calorimetry (ITC), and Differential Scanning Fluorimetry (DSF) studies verified arcB as a effective target for F8. Finally, mechanistic studies suggest that F8 competitively binds to arcB, disrupting the bacterial cell membrane and inducing a certain degree of oxidative damage. Here, we report F8 as a promising candidate drug for the development of antibiotic formulations to combat antibiotic-resistant bacteria-associated infections.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wanqing Ma
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Defeng Weng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry and Veterinary Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry and Veterinary Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Cooke MB, Herman C. Conjugation's Toolkit: the Roles of Nonstructural Proteins in Bacterial Sex. J Bacteriol 2023; 205:e0043822. [PMID: 36847532 PMCID: PMC10029717 DOI: 10.1128/jb.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Bacterial conjugation, a form of horizontal gene transfer, relies on a type 4 secretion system (T4SS) and a set of nonstructural genes that are closely linked. These nonstructural genes aid in the mobile lifestyle of conjugative elements but are not part of the T4SS apparatus for conjugative transfer, such as the membrane pore and relaxosome, or the plasmid maintenance and replication machineries. While these nonstructural genes are not essential for conjugation, they assist in core conjugative functions and mitigate the cellular burden on the host. This review compiles and categorizes known functions of nonstructural genes by the stage of conjugation they modulate: dormancy, transfer, and new host establishment. Themes include establishing a commensalistic relationship with the host, manipulating the host for efficient T4SS assembly and function and assisting in conjugative evasion of recipient cell immune functions. These genes, taken in a broad ecological context, play important roles in ensuring proper propagation of the conjugation system in a natural environment.
Collapse
Affiliation(s)
- Matthew B. Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Turton JF, Perry C, Claxton A. Do plasmids containing heavy metal resistance genes play a role in neonatal sepsis and invasive disease caused by Klebsiella pneumoniae and Klebsiella variicola? J Med Microbiol 2022; 71. [PMID: 35972879 DOI: 10.1099/jmm.0.001486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Introduction. Klebsiella species are some of those most implicated in neonatal sepsis. However, many isolates from infections appear unremarkable; they are generally susceptible to antibiotics and often of sporadic types not associated with virulence.Hypothesis/Gap Statement. Investigation is needed to identify if such isolates have virulence characteristics.Aim. To sequence multiple isolates of a range of types from cases of neonatal invasive disease to identify elements that may explain their virulence, and to determine if such elements are more common among these isolates than generally.Methodology. In total, 14 isolates of K. pneumoniae/K. variicola belonging to 13 distinct types from blood or CSF from neonatal infections were sequenced using long-read nanopore technology. PCR assays were used to screen a general set of isolates for heavy metal resistance genes arsC, silS and merR.Results. Overall, 12/14 isolates carried one or more plasmids. Ten carried a large plasmid (186 to 310 kb) containing heavy metal resistance genes associated with hypervirulence plasmids, with most (nine) carrying genes for resistance to copper, silver and one other heavy metal (arsenic, tellurite or mercury), but lacking the genes encoding capsule-upregulation and siderophores. Most isolates (9/14) lacked any additional antibiotic resistance genes other than those intrinsic in the species. However, a representative of an outbreak strain carried a plasmid containing bla CTX-M-15, qnrS1, aac3_IIa, dfrA17, sul1, mph(A), tet(A), bla TEM1B and aadA5, but no heavy metal resistance genes. arsC, silS and merR were widely found among 100 further isolates screened, with most carbapenemase-gene-positive isolates (20/27) carrying at least one.Conclusion. Plasmids containing heavy metal resistance genes were a striking feature of isolates from neonatal sepsis but are widely found. They share elements in common with virulence and antibiotic resistance plasmids, perhaps providing a basis from which such plasmids evolve.
Collapse
Affiliation(s)
- Jane F Turton
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, London, UK
| | - Claire Perry
- Reference Services Division, UK Health Security Agency, London, UK
| | - Alleyna Claxton
- Homerton University Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Gopalkrishnan S, Ross W, Akbari MS, Li X, Haycocks JRJ, Grainger DC, Court DL, Gourse RL. Homologs of the Escherichia coli F Element Protein TraR, Including Phage Lambda Orf73, Directly Reprogram Host Transcription. mBio 2022; 13:e0095222. [PMID: 35583320 PMCID: PMC9239242 DOI: 10.1128/mbio.00952-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial cells and their associated plasmids and bacteriophages encode numerous small proteins of unknown function. One example, the 73-amino-acid protein TraR, is encoded by the transfer operon of the conjugative F plasmid of Escherichia coli. TraR is a distant homolog of DksA, a protein found in almost all proteobacterial species that is required for ppGpp to regulate transcription during the stringent response. TraR and DksA increase or decrease transcription initiation depending on the kinetic features of the promoter by binding directly to RNA polymerase without binding to DNA. Unlike DksA, whose full activity requires ppGpp as a cofactor, TraR is fully active by itself and unaffected by ppGpp. TraR belongs to a family of divergent proteins encoded by proteobacterial bacteriophages and other mobile elements. Here, we experimentally addressed whether other members of the TraR family function like the F element-encoded TraR. Purified TraR and all 5 homologs that were examined bound to RNA polymerase, functioned at lower concentrations than DksA, and complemented a dksA-null strain for growth on minimal medium. One of the homologs, λ Orf73, encoded by bacteriophage lambda, was examined in greater detail. λ Orf73 slowed host growth and increased phage burst size. Mutational analysis suggested that λ Orf73 and TraR have a similar mechanism for inhibiting rRNA and r-protein promoters. We suggest that TraR and its homologs regulate host transcription to divert cellular resources to phage propagation or conjugation without induction of ppGpp and a stringent response. IMPORTANCE TraR is a distant homolog of the transcription factor DksA and the founding member of a large family of small proteins encoded by proteobacterial phages and conjugative plasmids. Reprogramming transcription during the stringent response requires the interaction of DksA not only with RNA polymerase but also with the stress-induced regulatory nucleotide ppGpp. We show here that five phage TraR homologs by themselves, without ppGpp, regulate transcription of host promoters, mimicking the effects of DksA and ppGpp together. During a stringent response, ppGpp independently binds directly to, and inhibits the activities of, many proteins in addition to RNA polymerase, including translation factors, enzymes needed for ribonucleotide biosynthesis, and other metabolic enzymes. Here, we suggest a physiological role for TraR-like proteins: bacteriophages utilize TraR homologs to reprogram host transcription in the absence of ppGpp induction and thus without inhibiting host enzymes needed for phage development.
Collapse
Affiliation(s)
- Saumya Gopalkrishnan
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| | - Wilma Ross
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| | - Madeline S. Akbari
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| | - Xintian Li
- RNA Biology Laboratory, Center for Cancer Research, The National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - James R. J. Haycocks
- University of Birmingham, Institute of Microbiology and Infection, School of Biosciences, Edgbaston, Birmingham, United Kingdom
| | - David C. Grainger
- University of Birmingham, Institute of Microbiology and Infection, School of Biosciences, Edgbaston, Birmingham, United Kingdom
| | - Donald L. Court
- RNA Biology Laboratory, Center for Cancer Research, The National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Richard L. Gourse
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Brown AN, Anderson MT, Bachman MA, Mobley HLT. The ArcAB Two-Component System: Function in Metabolism, Redox Control, and Infection. Microbiol Mol Biol Rev 2022; 86:e0011021. [PMID: 35442087 PMCID: PMC9199408 DOI: 10.1128/mmbr.00110-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ArcAB, also known as the Arc system, is a member of the two-component system family of bacterial transcriptional regulators and is composed of sensor kinase ArcB and response regulator ArcA. In this review, we describe the structure and function of these proteins and assess the state of the literature regarding ArcAB as a sensor of oxygen consumption. The bacterial quinone pool is the primary modulator of ArcAB activity, but questions remain for how this regulation occurs. This review highlights the role of quinones and their oxidation state in activating and deactivating ArcB and compares competing models of the regulatory mechanism. The cellular processes linked to ArcAB regulation of central metabolic pathways and potential interactions of the Arc system with other regulatory systems are also reviewed. Recent evidence for the function of ArcAB under aerobic conditions is challenging the long-standing characterization of this system as strictly an anaerobic global regulator, and the support for additional ArcAB functionality in this context is explored. Lastly, ArcAB-controlled cellular processes with relevance to infection are assessed.
Collapse
Affiliation(s)
- Aric N. Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark T. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Shen Z, Tang CM, Liu GY. Towards a better understanding of antimicrobial resistance dissemination: what can be learnt from studying model conjugative plasmids? Mil Med Res 2022; 9:3. [PMID: 35012680 PMCID: PMC8744291 DOI: 10.1186/s40779-021-00362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.
Collapse
Affiliation(s)
- Zhen Shen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.,Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Guang-Yu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
12
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
13
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|
14
|
Bischof K, Schiffer D, Trunk S, Höfler T, Hopfer A, Rechberger G, Koraimann G. Regulation of R1 Plasmid Transfer by H-NS, ArcA, TraJ, and DNA Sequence Elements. Front Microbiol 2020; 11:1254. [PMID: 32595626 PMCID: PMC7303359 DOI: 10.3389/fmicb.2020.01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
In conjugative elements such as integrating conjugative elements (ICEs) or conjugative plasmids (CPs) transcription of DNA transfer genes is a prerequisite for cells to become transfer competent, i.e., capable of delivering plasmid DNA via bacterial conjugation into new host bacteria. In the large family of F-like plasmids belonging to the MobF12A group, transcription of DNA transfer genes is tightly controlled and dependent on the activation of a single promoter, designated PY. Plasmid encoded TraJ and chromosomally encoded ArcA proteins are known activators, whereas the nucleoid associated protein heat-stable nucleoid structuring (H-NS) silences the PY promoter. To better understand the role of these proteins in PY promoter activation, we performed in vitro DNA binding studies using purified H-NS, ArcA, and TraJR1 (TraJ encoded by the conjugative resistance plasmid R1). All proteins could bind to R1PY DNA with high affinities; however, only ArcA was found to be highly sequence specific. DNase I footprinting studies revealed three H-NS binding sites, confirmed the binding site for ArcA, and suggested that TraJ contacts a dyad symmetry DNA sequence located between −51 and −38 in the R1PY promoter region. Moreover, TraJR1 and ArcA supplied together changed the H-NS specific protection pattern suggesting that these proteins are able to replace H-NS from R1PY regions proximal to the transcription start site. Our findings were corroborated by PY-lacZ reporter fusions with a series of site specific R1PY promoter mutations. Sequential changes of some critical DNA bases in the TraJ binding site (jbs) from plasmid R1 to plasmid F led to a remarkable specificity switch: The PY promoter became activatable by F encoded TraJ whereas TraJR1 lost its activation function. The R1PY mutagenesis approach also confirmed the requirement for the host-encoded response-regulator ArcA and indicated that the sequence context, especially in the −35 region is critical for PY regulation and function.
Collapse
Affiliation(s)
- Karin Bischof
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Doris Schiffer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Sarah Trunk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Höfler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anja Hopfer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Rechberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|