1
|
Cereijo AE, Ferretti MV, Iglesias AA, Álvarez HM, Asencion Diez MD. Study of two glycosyltransferases related to polysaccharide biosynthesis in Rhodococcus jostii RHA1. Biol Chem 2024; 405:325-340. [PMID: 38487862 DOI: 10.1515/hsz-2023-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024]
Abstract
The bacterial genus Rhodococcus comprises organisms performing oleaginous behaviors under certain growth conditions and ratios of carbon and nitrogen availability. Rhodococci are outstanding producers of biofuel precursors, where lipid and glycogen metabolisms are closely related. Thus, a better understanding of rhodococcal carbon partitioning requires identifying catalytic steps redirecting sugar moieties to storage molecules. Here, we analyzed two GT4 glycosyl-transferases from Rhodococcus jostii (RjoGlgAb and RjoGlgAc) annotated as α-glucan-α-1,4-glucosyl transferases, putatively involved in glycogen synthesis. Both enzymes were produced in Escherichia coli cells, purified to homogeneity, and kinetically characterized. RjoGlgAb and RjoGlgAc presented the "canonical" glycogen synthase activity and were actives as maltose-1P synthases, although to a different extent. Then, RjoGlgAc is a homologous enzyme to the mycobacterial GlgM, with similar kinetic behavior and glucosyl-donor preference. RjoGlgAc was two orders of magnitude more efficient to glucosylate glucose-1P than glycogen, also using glucosamine-1P as a catalytically efficient aglycon. Instead, RjoGlgAb exhibited both activities with similar kinetic efficiency and preference for short-branched α-1,4-glucans. Curiously, RjoGlgAb presented a super-oligomeric conformation (higher than 15 subunits), representing a novel enzyme with a unique structure-to-function relationship. Kinetic results presented herein constitute a hint to infer on polysaccharides biosynthesis in rhodococci from an enzymological point of view.
Collapse
Affiliation(s)
- Antonela Estefania Cereijo
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - María Victoria Ferretti
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Alberto Alvaro Iglesias
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Héctor Manuel Álvarez
- Instituto de Biociencias de la Patagonia (INBIOP), 28226 Universidad Nacional de la Patagonia San Juan Bosco y CONICET , Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Matías Damian Asencion Diez
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| |
Collapse
|
2
|
Hartman MD, Rojas BE, Ferrero DML, Leyva A, Durán R, Iglesias AA, Figueroa CM. Phosphorylation of aldose-6-phosphate reductase from Prunus persica leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:461-469. [PMID: 36508780 DOI: 10.1016/j.plaphy.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Sugar-alcohols are major photosynthates in plants from the Rosaceae family. Expression of the gene encoding aldose-6-phosphate reductase (Ald6PRase), the critical enzyme for glucitol synthesis in rosaceous species, is regulated by physiological and environmental cues. Additionally, Ald6PRase is inhibited by small molecules (hexose-phosphates and inorganic orthophosphate) and oxidizing compounds. This work demonstrates that Ald6PRase from peach leaves is phosphorylated in planta at the N-terminus. We also show in vitro phosphorylation of recombinant Ald6PRase by a partially purified kinase extract from peach leaves containing Ca2+-dependent protein kinases (CDPKs). Moreover, phosphorylation of recombinant Ald6PRase was inhibited by hexose-phosphates, phosphoenolpyruvate and pyrophosphate. We further show that phosphorylation of recombinant Ald6PRase was maximal using recombinant CDPKs. Overall, our results suggest that phosphorylation could fine-tune the activity of Ald6PRase.
Collapse
Affiliation(s)
- Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Danisa M L Ferrero
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alejandro Leyva
- Unidad de Bioquímica y Proteómica Analíticas, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina.
| |
Collapse
|
3
|
Alghamdi MA, Hussien RA, Zheng Y, Patel HP, Asencion Diez MD, A. Iglesias A, Liu D, Ballicora MA. Site-directed mutagenesis of Serine-72 reveals the location of the fructose 6-phosphate regulatory site of the Agrobacterium tumefaciens ADP-glucose pyrophosphorylase. Protein Sci 2022; 31:e4376. [PMID: 35762722 PMCID: PMC9234290 DOI: 10.1002/pro.4376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
The allosteric regulation of ADP-glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme from Agrobacterium tumefaciens is activated by fructose 6-phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of the A. tumefaciens ADP-glucose pyrophosphorylase. By X-ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate-binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP-glucose pyrophosphorylase from A. tumefaciens have two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis.
Collapse
Affiliation(s)
- Mashael A. Alghamdi
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Department of ChemistryImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Rania A. Hussien
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Department of ChemistryAl Baha UniversityAl BahaSaudi Arabia
| | - Yuanzhang Zheng
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Hiral P. Patel
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Matías D. Asencion Diez
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
- Instituto de Agrobiotecnología del Litoral (UNL‐CONICET)FBCB Paraje “El Pozo”, CCT‐Santa FeSanta FeArgentina
| | - Alberto A. Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL‐CONICET)FBCB Paraje “El Pozo”, CCT‐Santa FeSanta FeArgentina
| | - Dali Liu
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| | - Miguel A. Ballicora
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinois
| |
Collapse
|
4
|
Bhayani J, Iglesias MJ, Minen RI, Cereijo AE, Ballicora MA, Iglesias AA, Asencion Diez MD. Carbohydrate Metabolism in Bacteria: Alternative Specificities in ADP-Glucose Pyrophosphorylases Open Novel Metabolic Scenarios and Biotechnological Tools. Front Microbiol 2022; 13:867384. [PMID: 35572620 PMCID: PMC9093745 DOI: 10.3389/fmicb.2022.867384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
We explored the ability of ADP-glucose pyrophosphorylase (ADP-Glc PPase) from different bacteria to use glucosamine (GlcN) metabolites as a substrate or allosteric effectors. The enzyme from the actinobacteria Kocuria rhizophila exhibited marked and distinctive sensitivity to allosteric activation by GlcN-6P when producing ADP-Glc from glucose-1-phosphate (Glc-1P) and ATP. This behavior is also seen in the enzyme from Rhodococcus spp., the only one known so far to portray this activation. GlcN-6P had a more modest effect on the enzyme from other Actinobacteria (Streptomyces coelicolor), Firmicutes (Ruminococcus albus), and Proteobacteria (Agrobacterium tumefaciens) groups. In addition, we studied the catalytic capacity of ADP-Glc PPases from the different sources using GlcN-1P as a substrate when assayed in the presence of their respective allosteric activators. In all cases, the catalytic efficiency of Glc-1P was 1-2 orders of magnitude higher than GlcN-1P, except for the unregulated heterotetrameric protein (GlgC/GgD) from Geobacillus stearothermophilus. The Glc-1P substrate preference is explained using a model of ADP-Glc PPase from A. tumefaciens based on the crystallographic structure of the enzyme from potato tuber. The substrate-binding domain localizes near the N-terminal of an α-helix, which has a partial positive charge, thus favoring the interaction with a hydroxyl rather than a charged primary amine group. Results support the scenario where the ability of ADP-Glc PPases to use GlcN-1P as an alternative occurred during evolution despite the enzyme being selected to use Glc-1P and ATP for α-glucans synthesis. As an associated consequence in such a process, certain bacteria could have improved their ability to metabolize GlcN. The work also provides insights in designing molecular tools for producing oligo and polysaccharides with amino moieties.
Collapse
Affiliation(s)
- Jaina Bhayani
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Maria Josefina Iglesias
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Romina I. Minen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Antonela E. Cereijo
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Alberto A. Iglesias
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Matias D. Asencion Diez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|
5
|
Ferretti MV, Hussien RA, Ballicora MA, Iglesias AA, Figueroa CM, Asencion Diez MD. The ADP-glucose pyrophosphorylase from Melainabacteria: a comparative study between photosynthetic and non-photosynthetic bacterial sources. Biochimie 2021; 192:30-37. [PMID: 34560201 DOI: 10.1016/j.biochi.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Until recently, the cyanobacterial phylum only included oxygenic photosynthesizer members. The discovery of Melainabacteria as a group of supposed non-photosynthetic cyanobacteria asked to revisit such scenario. From metagenomic data, we were able to identify sequences encoding putative ADP-glucose pyrophosphorylases (ADP-GlcPPase) from free-living and intestinal Melainabacteria. The respective genes were de novo synthesized and over-expressed in Escherichia coli. The purified recombinant proteins from both Melainabacteria species were active as ADP-GlcPPases, exhibiting Vmax values of 2.3 (free-living) and 7.1 U/mg (intestinal). The enzymes showed similar S0.5 values (∼0.3 mM) for ATP, while the one from the intestinal source exhibited a 6-fold higher affinity toward glucose-1P. Both recombinant ADP-GlcPPases were sensitive to glucose-6P activation (A0.5 ∼0.3 mM) and Pi and ADP inhibition (I0.5 between 0.2 and 3 mM). Interestingly, the enzymes from Melainabacteria were insensitive to 3-phosphoglycerate, which is the principal activator of ADP-GlcPPases from photosynthetic cyanobacteria. As far as we know, this is the first biochemical characterization of an active enzyme from Melainabacteria. This work contributes to a better understanding of the evolution of allosteric regulation in the ADP-GlcPPase family, which is critical for synthesizing the main reserve polysaccharide in prokaryotes (glycogen) and plants (starch). In addition, our results offer further information to discussions regarding the phylogenetic position of Melainabacteria.
Collapse
Affiliation(s)
- María V Ferretti
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Rania A Hussien
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA; Department of Chemistry, Al Baha University, Al Baha, Saudi Arabia
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Matías D Asencion Diez
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina.
| |
Collapse
|
6
|
Cereijo AE, Kuhn ML, Hernández MA, Ballicora MA, Iglesias AA, Alvarez HM, Asencion Diez MD. Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim Biophys Acta Gen Subj 2020; 1865:129727. [PMID: 32890704 DOI: 10.1016/j.bbagen.2020.129727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGOUND Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.
Collapse
Affiliation(s)
- A E Cereijo
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, CA, United States
| | - M A Hernández
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - M A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL 60660, United States
| | - A A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - H M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| | - M D Asencion Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
7
|
Cifuente JO, Comino N, D'Angelo C, Marina A, Gil-Carton D, Albesa-Jové D, Guerin ME. The allosteric control mechanism of bacterial glycogen biosynthesis disclosed by cryoEM. Curr Res Struct Biol 2020; 2:89-103. [PMID: 34235472 PMCID: PMC8244506 DOI: 10.1016/j.crstbi.2020.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 11/10/2022] Open
Abstract
Glycogen and starch are the major carbon and energy reserve polysaccharides in nature, providing living organisms with a survival advantage. The evolution of the enzymatic machinery responsible for the biosynthesis and degradation of such polysaccharides, led the development of mechanisms to control the assembly and disassembly rate, to store and recover glucose according to cell energy demands. The tetrameric enzyme ADP-glucose pyrophosphorylase (AGPase) catalyzes and regulates the initial step in the biosynthesis of both α-polyglucans. AGPase displays cooperativity and allosteric regulation by sensing metabolites from the cell energy flux. The understanding of the allosteric signal transduction mechanisms in AGPase arises as a long-standing challenge. In this work, we disclose the cryoEM structures of the paradigmatic homotetrameric AGPase from Escherichia coli (EcAGPase), in complex with either positive or negative physiological allosteric regulators, fructose-1,6-bisphosphate (FBP) and AMP respectively, both at 3.0 Å resolution. Strikingly, the structures reveal that FBP binds deeply into the allosteric cleft and overlaps the AMP site. As a consequence, FBP promotes a concerted conformational switch of a regulatory loop, RL2, from a "locked" to a "free" state, modulating ATP binding and activating the enzyme. This notion is strongly supported by our complementary biophysical and bioinformatics evidence, and a careful analysis of vast enzyme kinetics data on single-point mutants of EcAGPase. The cryoEM structures uncover the residue interaction networks (RIN) between the allosteric and the catalytic components of the enzyme, providing unique details on how the signaling information is transmitted across the tetramer, from which cooperativity emerges. Altogether, the conformational states visualized by cryoEM reveal the regulatory mechanism of EcAGPase, laying the foundations to understand the allosteric control of bacterial glycogen biosynthesis at the molecular level of detail.
Collapse
Key Words
- AGPase, ADP-glucose pyrophosphorylase
- AMP, adenosine 5′-monophosphate
- ATP, adenosine 5′-triphosphate
- EcAGPase, AGPase from E. coli
- Enzyme allosterism
- FBP, fructose 1,6-bisphosphate
- G1P, α-d-glucose-1-phosphate
- GBE, glycogen branching enzyme
- GDE, glycogen debranching enzyme
- GP, glycogen phosphorylase
- GS, glycogen synthase
- GTA-like, glycosyltransferase-A like domain
- Glycogen biosynthesis
- Glycogen regulation
- LβH, left-handed β-helix domain
- Nucleotide sugar biosynthesis
- PPi, pyrophosphate
- RIN, residue interaction network
- SM, sensory motif
Collapse
Affiliation(s)
- Javier O. Cifuente
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Natalia Comino
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Cecilia D'Angelo
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Alberto Marina
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - David Gil-Carton
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - David Albesa-Jové
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Marcelo E. Guerin
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
8
|
Asencion Diez MD, Figueroa CM, Esper MC, Mascarenhas R, Aleanzi MC, Liu D, Ballicora MA, Iglesias AA. On the simultaneous activation of Agrobacterium tumefaciens ADP-glucose pyrophosphorylase by pyruvate and fructose 6-phosphate. Biochimie 2020; 171-172:23-30. [PMID: 32014504 DOI: 10.1016/j.biochi.2020.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022]
Abstract
Bacterial ADP-glucose pyrophosphorylases are allosterically regulated by metabolites that are key intermediates of central pathways in the respective microorganism. Pyruvate (Pyr) and fructose 6-phosphate (Fru6P) activate the enzyme from Agrobacterium tumefaciens by increasing Vmax about 10- and 20-fold, respectively. Here, we studied the combined effect of both metabolites on the enzyme activation. Our results support a model in which there is a synergistic binding of these two activators to two distinct sites and that each activator leads the enzyme to distinct active forms with different properties. In presence of both activators, Pyr had a catalytically dominant effect over Fru6P determining the active conformational state. By mutagenesis we obtained enzyme variants still sensitive to Pyr activation, but in which the allosteric signal by Fru6P was disrupted. This indicated that the activation mechanism for each effector was not the same. The ability for this enzyme to have more than one allosteric activator site, active forms, and allosteric signaling mechanisms is critical to expand the evolvability of its regulation. These synergistic interactions between allosteric activators may represent a feature in other allosteric enzymes.
Collapse
Affiliation(s)
- Matías D Asencion Diez
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina; Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina
| | - María C Esper
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina
| | - Romila Mascarenhas
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Mabel C Aleanzi
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología Del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina.
| |
Collapse
|
9
|
Structural basis of glycogen metabolism in bacteria. Biochem J 2019; 476:2059-2092. [PMID: 31366571 DOI: 10.1042/bcj20170558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023]
Abstract
The evolution of metabolic pathways is a major force behind natural selection. In the spotlight of such process lies the structural evolution of the enzymatic machinery responsible for the central energy metabolism. Specifically, glycogen metabolism has emerged to allow organisms to save available environmental surplus of carbon and energy, using dedicated glucose polymers as a storage compartment that can be mobilized at future demand. The origins of such adaptive advantage rely on the acquisition of an enzymatic system for the biosynthesis and degradation of glycogen, along with mechanisms to balance the assembly and disassembly rate of this polysaccharide, in order to store and recover glucose according to cell energy needs. The first step in the classical bacterial glycogen biosynthetic pathway is carried out by the adenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase. This allosteric enzyme synthesizes ADP-glucose and acts as a point of regulation. The second step is carried out by the glycogen synthase, an enzyme that generates linear α-(1→4)-linked glucose chains, whereas the third step catalyzed by the branching enzyme produces α-(1→6)-linked glucan branches in the polymer. Two enzymes facilitate glycogen degradation: glycogen phosphorylase, which functions as an α-(1→4)-depolymerizing enzyme, and the debranching enzyme that catalyzes the removal of α-(1→6)-linked ramifications. In this work, we rationalize the structural basis of glycogen metabolism in bacteria to the light of the current knowledge. We describe and discuss the remarkable progress made in the understanding of the molecular mechanisms of substrate recognition and product release, allosteric regulation and catalysis of all those enzymes.
Collapse
|
10
|
Regulatory Properties of the ADP-Glucose Pyrophosphorylase from the Clostridial Firmicutes Member Ruminococcus albus. J Bacteriol 2018; 200:JB.00172-18. [PMID: 29941423 DOI: 10.1128/jb.00172-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/19/2018] [Indexed: 11/20/2022] Open
Abstract
ADP-glucose pyrophosphorylase from Firmicutes is encoded by two genes (glgC and glgD) leading to a heterotetrameric protein structure, unlike those in other bacterial phyla. The enzymes from two groups of Firmicutes, Bacillales and Lactobacillales, present dissimilar kinetic and regulatory properties. Nevertheless, no ADP-glucose pyrophosphorylase from Clostridiales, the third group in Firmicutes, has been characterized. For this reason, we cloned the glgC and glgD genes from Ruminococcus albus Different quaternary forms of the enzyme (GlgC, GlgD, and GlgC/GlgD) were purified to homogeneity and their kinetic parameters were analyzed. We observed that GlgD is an inactive monomer when expressed alone but increased the catalytic efficiency of the heterotetramer (GlgC/GlgD) compared to the homotetramer (GlgC). The heterotetramer is regulated by fructose-1,6-bisphosphate, phosphoenolpyruvate, and NAD(P)H. The first characterization of the Bacillales enzyme suggested that heterotetrameric ADP-glucose pyrophosphorylases from Firmicutes were unregulated. Our results, together with data from Lactobacillales, indicate that heterotetrameric Firmicutes enzymes are mostly regulated. Thus, the ADP-glucose pyrophosphorylase from Bacillales seems to have distinctive insensitivity to regulation.IMPORTANCE The enzymes involved in glycogen synthesis from Firmicutes have been less characterized in comparison with other bacterial groups. We performed kinetic and regulatory characterization of the ADP-glucose pyrophosphorylase from Ruminococcus albus Our results showed that this protein that belongs to different groups from Firmicutes (Bacillales, Lactobacillales, and Clostridiales) presents dissimilar features. This study contributes to the understanding of how this critical enzyme for glycogen biosynthesis is regulated in the Firmicutes group, whereby we propose that these heterotetrameric enzymes, with the exception of Bacillales, are allosterically regulated. Our results provide a better understanding of the evolutionary relationship of this enzyme family in Firmicutes.
Collapse
|
11
|
Ebrecht AC, Solamen L, Hill BL, Iglesias AA, Olsen KW, Ballicora MA. Allosteric Control of Substrate Specificity of the Escherichia coli ADP-Glucose Pyrophosphorylase. Front Chem 2017; 5:41. [PMID: 28674689 PMCID: PMC5474683 DOI: 10.3389/fchem.2017.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022] Open
Abstract
The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism toward the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme toward the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near ~600-fold higher that other nucleotides, whereas in the absence of activator was only ~3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States.,Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), CCT CONICETSanta Fe, Argentina
| | - Ligin Solamen
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States
| | - Benjamin L Hill
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), CCT CONICETSanta Fe, Argentina
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University ChicagoChicago, IL, United States
| |
Collapse
|
12
|
Nazarian-Firouzabadi F, Visser RGF. Potato starch synthases: Functions and relationships. Biochem Biophys Rep 2017; 10:7-16. [PMID: 29114568 PMCID: PMC5637242 DOI: 10.1016/j.bbrep.2017.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 01/28/2023] Open
Abstract
Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still insufficient. Starch biosynthesis requires the action of several enzymes. Soluble starch synthases (SSs) are a group of key players in starch biosynthesis which have proven their impact on different aspects of the starch biosynthesis and functionalities. These enzymes have been studied in different plant species and organs in detail, however, there seem to be key differences among species regarding their contributions to the starch synthesis. In this review, we consider an update on various SSs with an emphasis on potato SSs as a model for storage organs. The genetics and regulatory mechanisms of potato starch synthases will be highlighted. Different aspects of various isoforms of SSs are also discussed.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, P.O.Box 465, Khorramabad, Iran
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| |
Collapse
|
13
|
Monofluorophosphate Blocks Internal Polysaccharide Synthesis in Streptococcus mutans. PLoS One 2017; 12:e0170483. [PMID: 28125652 PMCID: PMC5268466 DOI: 10.1371/journal.pone.0170483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/05/2017] [Indexed: 02/03/2023] Open
Abstract
Streptococcus mutans is the leading cause of dental caries worldwide by accumulating a glycogen-like internal polysaccharide (IPS) that contributes to cariogenicity when sugars are in excess. Sodium monofluorophosphate (MFP) is an active anticariogenic compound in toothpastes. Herein, we show that MFP inhibits (with an I0.5 of 1.5 mM) the S. mutans ADP-glucose pyrophosphorylase (EC 2.7.7.27), which catalyzes the key step in IPS biosynthesis. Enzyme inhibition by MFP is similar to orthophosphate (Pi), except that the effect caused by MFP is not reverted by fructose-1,6-bisP, as occurs with Pi. Inhibition was correlated with a decrease in acidogenesis and IPS accumulation in S. mutans cells cultured with 2 mM sodium MFP. These effects were not mimicked by sodium fluoride. Considering that glycogen synthesis occurs by different pathways in mammals and bacteria, ADP-glucose pyrophosphorylase could be visualized as a molecular target for controlling S. mutans virulence. Our results strongly suggest that MFP is a suitable compound to affect such a target, inducing an anticariogenic effect primarily by inhibiting a key step in IPS synthesis.
Collapse
|
14
|
Cifuente JO, Comino N, Madariaga-Marcos J, López-Fernández S, García-Alija M, Agirre J, Albesa-Jové D, Guerin ME. Structural Basis of Glycogen Biosynthesis Regulation in Bacteria. Structure 2016; 24:1613-22. [PMID: 27545622 DOI: 10.1016/j.str.2016.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step of bacterial glycogen and plant starch biosynthesis, the most common carbon storage polysaccharides in nature. A major challenge is to understand how AGPase activity is regulated by metabolites in the energetic flux within the cell. Here we report crystal structures of the homotetrameric AGPase from Escherichia coli in complex with its physiological positive and negative allosteric regulators, fructose-1,6-bisphosphate (FBP) and AMP, and sucrose in the active site. FBP and AMP bind to partially overlapping sites located in a deep cleft between glycosyltransferase A-like and left-handed β helix domains of neighboring protomers, accounting for the fact that sensitivity to inhibition by AMP is modulated by the concentration of the activator FBP. We propose a model in which the energy reporters regulate EcAGPase catalytic activity by intra-protomer interactions and inter-protomer crosstalk, with a sensory motif and two regulatory loops playing a prominent role.
Collapse
Affiliation(s)
- Javier O Cifuente
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Natalia Comino
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Julene Madariaga-Marcos
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Sonia López-Fernández
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Mikel García-Alija
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD, UK
| | - David Albesa-Jové
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
15
|
Cereijo AE, Asencion Diez MD, Dávila Costa JS, Alvarez HM, Iglesias AA. On the Kinetic and Allosteric Regulatory Properties of the ADP-Glucose Pyrophosphorylase from Rhodococcus jostii: An Approach to Evaluate Glycogen Metabolism in Oleaginous Bacteria. Front Microbiol 2016; 7:830. [PMID: 27313571 PMCID: PMC4890535 DOI: 10.3389/fmicb.2016.00830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/17/2016] [Indexed: 01/29/2023] Open
Abstract
Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions.
Collapse
Affiliation(s)
- Antonela E Cereijo
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| | - Matías D Asencion Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| | - José S Dávila Costa
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales Universidad Nacional de la Patagonia San Juan Bosco Comodoro Rivadavia, Argentina
| | - Héctor M Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales Universidad Nacional de la Patagonia San Juan Bosco Comodoro Rivadavia, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| |
Collapse
|
16
|
Abstract
Glycogen accumulation occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited because of the lack of a growth nutrient, e.g., a nitrogen source. This review describes the enzymatic reactions involved in glycogen synthesis and the allosteric regulation of the first enzyme, ADP-glucose pyrophosphorylase. The properties of the enzymes involved in glycogen synthesis, ADP-glucose pyrophosphorylase, glycogen synthase, and branching enzyme are also characterized. The data describing the genetic regulation of the glycogen synthesis are also presented. An alternate pathway for glycogen synthesis in mycobacteria is also described.
Collapse
|
17
|
Ebrecht AC, Orlof AM, Sasoni N, Figueroa CM, Iglesias AA, Ballicora MA. On the Ancestral UDP-Glucose Pyrophosphorylase Activity of GalF from Escherichia coli. Front Microbiol 2015; 6:1253. [PMID: 26617591 PMCID: PMC4643126 DOI: 10.3389/fmicb.2015.01253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
In bacteria, UDP-glucose is a central intermediate in carbohydrate metabolism. The enzyme responsible for its synthesis is encoded by the galU gene and its deletion generates cells unable to ferment galactose. In some bacteria, there is a second gene, galF, encoding for a protein with high sequence identity to GalU. However, the role of GalF has been contradictory regarding its catalytic capability and not well understood. In this work we show that GalF derives from a catalytic (UDP-glucose pyrophosphorylase) ancestor, but its activity is very low compared to GalU. We demonstrated that GalF has some residual UDP-glucose pyrophosphorylase activity by in vitro and in vivo experiments in which the phenotype of a galU (-) strain was reverted by the over-expression of GalF and its mutant. To demonstrate its evolutionary path of "enzyme inactivation" we enhanced the catalysis by mutagenesis and showed the importance of the quaternary structure. This study provides important information to understand the structural and functional evolutionary origin of the protein GalF in enteric bacteria.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina ; Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| | - Agnieszka M Orlof
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| | - Natalia Sasoni
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| |
Collapse
|
18
|
Hill BL, Wong J, May BM, Huerta FB, Manley TE, Sullivan PRF, Olsen KW, Ballicora MA. Conserved residues of the Pro103-Arg115 loop are involved in triggering the allosteric response of the Escherichia coli ADP-glucose pyrophosphorylase. Protein Sci 2015; 24:714-28. [PMID: 25620658 DOI: 10.1002/pro.2644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/09/2022]
Abstract
The synthesis of glycogen in bacteria and starch in plants is allosterically controlled by the production of ADP-glucose by ADP-glucose pyrophosphorylase. Using computational studies, site-directed mutagenesis, and kinetic characterization, we found a critical region for transmitting the allosteric signal in the Escherichia coli ADP-glucose pyrophosphorylase. Molecular dynamics simulations and structural comparisons with other ADP-glucose pyrophosphorylases provided information to hypothesize that a Pro103-Arg115 loop is part of an activation path. It had strongly correlated movements with regions of the enzyme associated with regulation and ATP binding, and a network analysis showed that the optimal network pathways linking ATP and the activator binding Lys39 mainly involved residues of this loop. This hypothesis was biochemically tested by mutagenesis. We found that several alanine mutants of the Pro103-Arg115 loop had altered activation profiles for fructose-1,6-bisphosphate. Mutants P103A, Q106A, R107A, W113A, Y114A, and R115A had the most altered kinetic profiles, primarily characterized by a lack of response to fructose-1,6-bisphosphate. This loop is a distinct insertional element present only in allosterically regulated sugar nucleotide pyrophosphorylases that could have been acquired to build a triggering mechanism to link proto-allosteric and catalytic sites.
Collapse
Affiliation(s)
- Benjamin L Hill
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W Sheridan Road, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
19
|
The UDP-glucose pyrophosphorylase from Giardia lamblia is redox regulated and exhibits promiscuity to use galactose-1-phosphate. Biochim Biophys Acta Gen Subj 2015; 1850:88-96. [DOI: 10.1016/j.bbagen.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022]
|
20
|
Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 2014; 1850:13-21. [PMID: 25277548 PMCID: PMC4331664 DOI: 10.1016/j.bbagen.2014.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. Results In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. Conclusions Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. General significance This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen. Nucleotide-glucose synthesis in Mycobacterium tuberculosis was analyzed. The characterization of four enzymes involved in glucose-1P partitioning is reported. Mycobacterial ADP-glucose pyrophosphorylase is allosterically regulated. Trehalose-6P synthase exhibits higher catalytic efficiency for ADP-glucose. Trehalose-6P synthase is activated by fructose-6P.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Ana M Demonte
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Andrii Gorelik
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
21
|
Structural comparison, substrate specificity, and inhibitor binding of AGPase small subunit from monocot and dicot: present insight and future potential. BIOMED RESEARCH INTERNATIONAL 2014; 2014:583606. [PMID: 25276800 PMCID: PMC4167649 DOI: 10.1155/2014/583606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/08/2014] [Accepted: 04/21/2014] [Indexed: 11/18/2022]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide.
Collapse
|
22
|
Asención Diez MD, Aleanzi MC, Iglesias AA, Ballicora MA. A novel dual allosteric activation mechanism of Escherichia coli ADP-glucose pyrophosphorylase: the role of pyruvate. PLoS One 2014; 9:e103888. [PMID: 25102309 PMCID: PMC4125136 DOI: 10.1371/journal.pone.0103888] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/07/2014] [Indexed: 11/23/2022] Open
Abstract
Fructose-1,6-bisphosphate activates ADP-glucose pyrophosphorylase and the synthesis of glycogen in Escherichia coli. Here, we show that although pyruvate is a weak activator by itself, it synergically enhances the fructose-1,6-bisphosphate activation. They increase the enzyme affinity for each other, and the combination increases Vmax, substrate apparent affinity, and decreases AMP inhibition. Our results indicate that there are two distinct interacting allosteric sites for activation. Hence, pyruvate modulates E. coli glycogen metabolism by orchestrating a functional network of allosteric regulators. We postulate that this novel dual activator mechanism increases the evolvability of ADP-glucose pyrophosphorylase and its related metabolic control.
Collapse
Affiliation(s)
- Matías D. Asención Diez
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), FBCB Ciudad Universitaria, Santa Fe, Argentina
| | - Mabel C. Aleanzi
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), FBCB Ciudad Universitaria, Santa Fe, Argentina
| | - Alberto A. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), FBCB Ciudad Universitaria, Santa Fe, Argentina
| | - Miguel A. Ballicora
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Demonte A, Diez M, Guerrero S, Ballicora M, Iglesias A. Iodine Staining of Escherichia coli Expressing Genes Involved in the Synthesis of Bacterial Glycogen. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
24
|
Asención Diez MD, Demonte AM, Guerrero SA, Ballicora MA, Iglesias AA. The ADP-glucose pyrophosphorylase from Streptococcus mutans provides evidence for the regulation of polysaccharide biosynthesis in Firmicutes. Mol Microbiol 2013; 90:1011-27. [PMID: 24112771 DOI: 10.1111/mmi.12413] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans is the leading cause of dental caries worldwide. The bacterium accumulates a glycogen-like internal polysaccharide, which mainly contributes to its carionegic capacity. S.mutans has two genes (glgC and glgD) respectively encoding putative ADP-glucose pyrophosphorylases (ADP-Glc PPase), a key enzyme for glycogen synthesis in most bacteria. Herein, we report the molecular cloning and recombinant expression of both genes (separately or together) followed by the characterization of the respective enzymes. When expressed individually GlgC had ADP-Glc PPase activity, whereas GlgD was inactive. Interestingly, the coexpressed GlgC/GlgD protein was one order of magnitude more active than GlgC alone. Kinetic characterization of GlgC and GlgC/GlgD pointed out remarkable differences between them. Fructose-1,6-bis-phosphate activated GlgC by twofold, but had no effect on GlgC/GlgD. Conversely, phospho-enol-pyruvate and inorganic salts inhibited GlgC/GlgD without affecting GlgC. However, in the presence of fructose-1,6-bis-phosphate GlgC acquired a GlgC/GlgD-like behaviour, becoming sensitive to the stated inhibitors. Results indicate that S. mutans ADP-Glc PPase is an allosteric regulatory enzyme exhibiting sensitivity to modulation by key intermediates of carbohydrates metabolism in the cell. The particular regulatory properties of the S.mutans enzyme agree with phylogenetic analysis, where GlgC and GlgD proteins found in other Firmicutes arrange in distinctive clusters.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje 'El Pozo' CC 242, S3000ZAA, Santa Fe, Argentina; Department of Chemistry and Biochemistry, Loyola University Chicago, 1068, W Sheridan Rd., Chicago, IL, 60660, USA
| | | | | | | | | |
Collapse
|
25
|
Figueroa CM, Kuhn ML, Falaschetti CA, Solamen L, Olsen KW, Ballicora MA, Iglesias AA. Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase. PLoS One 2013; 8:e66824. [PMID: 23826149 PMCID: PMC3691274 DOI: 10.1371/journal.pone.0066824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/10/2013] [Indexed: 11/20/2022] Open
Abstract
ADP-glucose pyrophosphorylase regulates the synthesis of glycogen in bacteria and of starch in plants. The enzyme from plants is mainly activated by 3-phosphoglycerate and is a heterotetramer comprising two small and two large subunits. Here, we found that two highly conserved residues are critical for triggering the activation of the potato tuber ADP-glucose pyrophosphorylase, as shown by site-directed mutagenesis. Mutations in the small subunit, which bears the catalytic function in this potato tuber form, had a more dramatic effect on disrupting the allosteric activation than those introduced in the large subunit, which is mainly modulatory. Our results strongly agree with a model where the modified residues are located in loops responsible for triggering the allosteric activation signal for this enzyme, and the sensitivity to this activation correlates with the dynamics of these loops. In addition, previous biochemical data indicates that the triggering mechanism is widespread in the enzyme family, even though the activator and the quaternary structure are not conserved.
Collapse
Affiliation(s)
- Carlos M. Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Santa Fe, Argentina
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Christine A. Falaschetti
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Ligin Solamen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Alberto A. Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Santa Fe, Argentina
- * E-mail:
| |
Collapse
|
26
|
A Chimeric UDP-glucose pyrophosphorylase produced by protein engineering exhibits sensitivity to allosteric regulators. Int J Mol Sci 2013; 14:9703-21. [PMID: 23648478 PMCID: PMC3676807 DOI: 10.3390/ijms14059703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 11/17/2022] Open
Abstract
In bacteria, glycogen or oligosaccharide accumulation involves glucose-1-phosphate partitioning into either ADP-glucose (ADP-Glc) or UDP-Glc. Their respective synthesis is catalyzed by allosterically regulated ADP-Glc pyrophosphorylase (EC 2.7.7.27, ADP-Glc PPase) or unregulated UDP-Glc PPase (EC 2.7.7.9). In this work, we characterized the UDP-Glc PPase from Streptococcus mutans. In addition, we constructed a chimeric protein by cutting the C-terminal domain of the ADP-Glc PPase from Escherichia coli and pasting it to the entire S. mutans UDP-Glc PPase. Both proteins were fully active as UDP-Glc PPases and their kinetic parameters were measured. The chimeric enzyme had a slightly higher affinity for substrates than the native S. mutans UDP-Glc PPase, but the maximal activity was four times lower. Interestingly, the chimeric protein was sensitive to regulation by pyruvate, 3-phosphoglyceric acid and fructose-1,6-bis-phosphate, which are known to be effectors of ADP-Glc PPases from different sources. The three compounds activated the chimeric enzyme up to three-fold, and increased the affinity for substrates. This chimeric protein is the first reported UDP-Glc PPase with allosteric regulatory properties. In addition, this is a pioneer work dealing with a chimeric enzyme constructed as a hybrid of two pyrophosphorylases with different specificity toward nucleoside-diphospho-glucose and our results turn to be relevant for a deeper understanding of the evolution of allosterism in this family of enzymes.
Collapse
|
27
|
Insights into glycogen metabolism in chemolithoautotrophic bacteria from distinctive kinetic and regulatory properties of ADP-glucose pyrophosphorylase from Nitrosomonas europaea. J Bacteriol 2012; 194:6056-65. [PMID: 22961847 DOI: 10.1128/jb.00810-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO(2) via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms.
Collapse
|
28
|
Characterization of recombinant UDP- and ADP-glucose pyrophosphorylases and glycogen synthase to elucidate glucose-1-phosphate partitioning into oligo- and polysaccharides in Streptomyces coelicolor. J Bacteriol 2011; 194:1485-93. [PMID: 22210767 DOI: 10.1128/jb.06377-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V(max) in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V(max) of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium.
Collapse
|
29
|
Understanding the allosteric trigger for the fructose-1,6-bisphosphate regulation of the ADP-glucose pyrophosphorylase from Escherichia coli. Biochimie 2011; 93:1816-23. [DOI: 10.1016/j.biochi.2011.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022]
|
30
|
Corbi J, Debieu M, Rousselet A, Montalent P, Le Guilloux M, Manicacci D, Tenaillon MI. Contrasted patterns of selection since maize domestication on duplicated genes encoding a starch pathway enzyme. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:705-22. [PMID: 21060986 DOI: 10.1007/s00122-010-1480-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/22/2010] [Indexed: 05/08/2023]
Abstract
Maize domestication from teosinte (Zea mays ssp. parviglumis) was accompanied by an increase of kernel size in landraces. Subsequent breeding has led to a diversification of kernel size and starch content among major groups of inbred lines. We aim at investigating the effect of domestication on duplicated genes encoding a key enzyme of the starch pathway, the ADP-glucose pyrophosphorylase (AGPase). Three pairs of paralogs encode the AGPase small (SSU) and large (LSU) subunits mainly expressed in the endosperm, the embryo and the leaf. We first validated the putative sequence of LSU(leaf) through a comparative expression assay of the six genes. Second, we investigated the patterns of molecular evolution on a 2 kb coding region homologous among the six genes in three panels: teosintes, landraces, and inbred lines. We corrected for demographic effects by relying on empirical distributions built from 580 previously sequenced ESTs. We found contrasted patterns of selection among duplicates: three genes exhibit patterns of directional selection during domestication (SSU(end), LSU(emb)) or breeding (LSU(leaf)), two exhibit patterns consistent with diversifying (SSU(leaf)) and balancing selection (SSU(emb)) accompanying maize breeding. While patterns of linkage disequilibrium did not reveal sign of coevolution between genes expressed in the same organ, we detected an excess of non-synonymous substitutions in the small subunit functional domains highlighting their role in AGPase evolution. Our results offer a different picture on AGPase evolution than the one depicted at the Angiosperm level and reveal how genetic redundancy can provide flexibility in the response to selection.
Collapse
Affiliation(s)
- J Corbi
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Kuhn ML, Figueroa CM, Aleanzi M, Olsen KW, Iglesias AA, Ballicora MA. Bi-national and interdisciplinary course in enzyme engineering. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 38:370-379. [PMID: 21567865 DOI: 10.1002/bmb.20438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Higher education institutions and scientific funding agencies are emphasizing international projects that involve the integration and synergy between research groups, particularly if different disciplines are involved. Students with an education that reflects these trends will have more tools to succeed in the future, but it is challenging to provide this type of learning experience. Here we present the organization of a bi-national course with the goals to teach students protein structure/function relationships, which give them actual research experience in both computational and experimental laboratories, and engage them in an international networking experience. Two collaborative learning courses were organized at Loyola University Chicago (USA) and Universidad Nacional del Litoral (Argentina) for graduate and advanced undergraduate students. Multiple instructors at different stages in their careers gave lectures during the course and were able to interact with students on a one-on-one basis. Nearly every student from both institutions thoroughly enjoyed this approach, and they learned more about protein structure and gained important tools for their own research. We believe that this type of course design is applicable and transferable to other institutions and areas of science. We found that the combination of international networking and incorporation of actual research projects ignited the enthusiasm of students and instructors. Due to the success of these courses, we planned to incorporate them as regular series in our curriculum.
Collapse
Affiliation(s)
- Misty L Kuhn
- Department of Chemistry, Loyola University Chicago, 6525 N. Sheridan Road, Chicago, Illinois 60626, USA
| | | | | | | | | | | |
Collapse
|
32
|
Characterization of the CI repressor protein encoded by the temperate lactococcal phage TP901-1. J Bacteriol 2010; 192:2102-10. [PMID: 20118255 DOI: 10.1128/jb.01387-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene regulatory mechanism determining the developmental pathway of the temperate bacteriophage TP901-1 is regulated by two phage-encoded proteins, CI and MOR. Functional domains of the CI repressor were investigated by introducing linkers of 15 bp at various positions in cI and by limited proteolysis of purified CI protein. We show that insertions of five amino acids at positions in the N-terminal half of CI resulted in mutant proteins that could no longer repress transcription from the lytic promoter, P(L). We confirmed that the N-terminal domain of CI contains the DNA binding site, and we showed that this part of the protein is tightly folded, whereas the central part and the C-terminal part of CI seem to contain more flexible structures. Furthermore, insertions at several different positions in the central part of the CI protein reduced the cooperative binding of CI to the operator sites and possibly altered the interaction with MOR.
Collapse
|
33
|
Seibold GM, Hagmann CT, Schietzel M, Emer D, Auchter M, Schreiner J, Eikmanns BJ. The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2010; 156:1256-1263. [PMID: 20056699 DOI: 10.1099/mic.0.036756-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When grown in glucose-, fructose- or sucrose-containing medium, the amino acid producer Corynebacterium glutamicum transiently accumulates large amounts of glycogen (up to 10% of its dry weight), whereas only a marginal amount of glycogen is formed during growth with acetate. This carbon-source-dependent regulation is at least partially due to transcriptional control of glgC, encoding ADP-glucose pyrophosphorylase, the first enzyme of glycogen synthesis from glucose-1-phosphate. Here, we have analysed a possible regulatory role for the transcriptional regulators RamA and RamB on glycogen content of the cells and on control of expression of glgC and of glgA, which encodes the second enzyme of glycogen synthesis, glycogen synthase. Determination of the glycogen content of RamA- and RamB-deficient C. glutamicum indicated that RamA and RamB influence glycogen synthesis positively and negatively, respectively. In accordance with the identification of putative RamA and RamB binding sites upstream of glgC and glgA, both regulators were found to bind specifically to the glgC-glgA intergenic promoter region. Promoter activity assays in wild-type and RamA- and RamB-deficient strains of C. glutamicum revealed that (i) RamA is a positive regulator of glgC and glgA, (ii) RamB is a negative regulator of glgA and (iii) neither RamA nor RamB alone is responsible for the carbon-source-dependent regulation of glycogen synthesis in C. glutamicum.
Collapse
Affiliation(s)
- Gerd M Seibold
- Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany.,Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Christian T Hagmann
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Melanie Schietzel
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Denise Emer
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Marc Auchter
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Joy Schreiner
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
34
|
Georgelis N, Shaw JR, Hannah LC. Phylogenetic analysis of ADP-glucose pyrophosphorylase subunits reveals a role of subunit interfaces in the allosteric properties of the enzyme. PLANT PHYSIOLOGY 2009; 151:67-77. [PMID: 19625637 PMCID: PMC2735977 DOI: 10.1104/pp.109.138933] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in glycogen and starch synthesis in bacteria and plants, respectively. Plant AGPase consists of two large and two small subunits that were derived by gene duplication. AGPase large subunits have functionally diverged, leading to different kinetic and allosteric properties. Amino acid changes that could account for these differences were identified previously by evolutionary analysis. In this study, these large subunit residues were mapped onto a modeled structure of the maize (Zea mays) endosperm enzyme. Surprisingly, of 29 amino acids identified via evolutionary considerations, 17 were located at subunit interfaces. Fourteen of the 29 amino acids were mutagenized in the maize endosperm large subunit (SHRUNKEN-2 [SH2]), and resulting variants were expressed in Escherichia coli with the maize endosperm small subunit (BT2). Comparisons of the amount of glycogen produced in E. coli, and the kinetic and allosteric properties of the variants with wild-type SH2/BT2, indicate that 11 variants differ from the wild type in enzyme properties or in vivo glycogen level. More interestingly, six of nine residues located at subunit interfaces exhibit altered allosteric properties. These results indicate that the interfaces between the large and small subunits are important for the allosteric properties of AGPase, and changes at these interfaces contribute to AGPase functional specialization. Our results also demonstrate that evolutionary analysis can greatly facilitate enzyme structure-function analyses.
Collapse
Affiliation(s)
- Nikolaos Georgelis
- Program in Plant Molecular and Cellular Biology and Horticultural Sciences, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | |
Collapse
|
35
|
Abstract
The accumulation of glycogen occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited due to the lack of a growth nutrient, e.g., a nitrogen source. The structural genes of the glycogen biosynthetic enzymes of E. coli and S. serovar Typhimurium have been cloned previously, and that has provided insights in the genetic regulation of glycogen synthesis. An important aspect of the regulation of glycogen synthesis is the allosteric regulation of the ADP-Glc PPase. The current information, views, and concepts regarding the regulation of enzyme activity and the expression of the glycogen biosynthetic enzymes are presented in this review. The recent information on the amino acid residues critical for the activity of both glycogen synthase and branching enzyme (BE) is also presented. The residue involved in catalysis in the E. coli ADP-Glc PPase was determined by comparing a predicted structure of the enzyme with the known three-dimensional structures of sugar-nucleotide PPase domains. The molecular cloning of the E. coliglg K-12 structural genes greatly facilitated the subsequent study of the genetic regulation of bacterial glycogen biosynthesis. Results from studies of glycogen excess E. coli B mutants SG3 and AC70R1, which exhibit enhanced levels of the enzymes in the glycogen synthesis pathway (i.e., they are derepressed mutants), suggested that glycogen synthesis is under negative genetic regulation.
Collapse
|