1
|
Duan Z, Liao L, Lai T, Yang R, Zhang J, Chen B. Dynamic and intricate regulation by the Csr sRNAs in the Arctic Pseudoalteromonas fuliginea. Commun Biol 2025; 8:369. [PMID: 40044903 PMCID: PMC11882849 DOI: 10.1038/s42003-025-07780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The Csr (Carbon Storage Regulator) system is pivotal in controlling various cellular functions in most bacteria, primarily through the CsrA protein and its antagonistic sRNAs. However, riboregulatory networks are less explored in non-model organisms, particularly those in extreme environments. In this study, we discovered two new sRNAs of the Csr system, Pf2 and Pf3, in the Arctic bacterium Pseudoalteromonas fuliginea BSW20308, along with the previously known Pf1. By studying the impact of these Pf sRNAs on CsrA targetomes and physiological processes, we found a significant influence on various cellular functions and a collective effect on the interaction dynamics between CsrA and RNAs. Furthermore, we identified additional sRNAs that can interact with CsrA and mRNAs. Overall, our results emphasize the growing influence of the Csr system on cellular physiology through intricate sRNA regulation of CsrA, revealing riboregulatory network complexity and significance in non-model organisms.
Collapse
Affiliation(s)
- Zedong Duan
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Li Liao
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China.
| | - Tingyi Lai
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Ruyi Yang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
2
|
Lukasiewicz AJ, Leistra AN, Hoefner L, Monzon E, Gode CJ, Zorn BT, Janssen KH, Yahr TL, Wolfgang MC, Contreras LM. Thermodynamic modeling of RsmA - mRNA interactions capture novel direct binding across the Pseudomonas aeruginosa transcriptome. Front Mol Biosci 2025; 12:1493891. [PMID: 40051501 PMCID: PMC11882435 DOI: 10.3389/fmolb.2025.1493891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Pseudomonas aeruginosa (PA) is a ubiquitous, Gram-negative, bacteria that can attribute its survivability to numerous sensing and signaling pathways; conferring fitness due to speed of response. Post-transcriptional regulation is an energy efficient approach to quickly shift gene expression in response to the environment. The conserved post-transcriptional regulator RsmA is involved in regulating translation of genes involved in pathways that contribute to virulence, metabolism, and antibiotic resistance. Prior high-throughput approaches to map the full regulatory landscape of RsmA have estimated a target pool of approximately 500 genes; however, these approaches have been limited to a narrow range of growth phase, strain, and media conditions. Computational modeling presents a condition-independent approach to generating predictions for binding between the RsmA protein and highest affinity mRNAs. In this study, we improve upon a two-state thermodynamic model to predict the likelihood of RsmA binding to the 5' UTR sequence of genes present in the PA genome. Our modeling approach predicts 1043 direct RsmA-mRNA binding interactions, including 457 novel mRNA targets. We then perform GO term enrichment tests on our predictions that reveal significant enrichment for DNA binding transcriptional regulators. In addition, quorum sensing, biofilm formation, and two-component signaling pathways were represented in KEGG enrichment analysis. We confirm binding predictions using in vitro binding assays, and regulatory effects using in vivo translational reporters. These reveal RsmA binding and regulation of a broader number of genes not previously reported. An important new observation of this work is the direct regulation of several novel mRNA targets encoding for factors involved in Quorum Sensing and the Type IV Secretion system, such as rsaL and mvaT. Our study demonstrates the utility of thermodynamic modeling for predicting interactions independent of complex and environmentally-sensitive systems, specifically for profiling the post-transcriptional regulator RsmA. Our experimental validation of RsmA binding to novel targets both supports our model and expands upon the pool of characterized target genes in PA. Overall, our findings demonstrate that a modeling approach can differentiate direct from indirect binding interactions and predict specific sites of binding for this global regulatory protein, thus broadening our understanding of the role of RsmA regulation in this relevant pathogen.
Collapse
Affiliation(s)
- Alexandra J. Lukasiewicz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Lily Hoefner
- Department of Biology, The University of Texas at Austin, Austin, TX, United States
| | - Erika Monzon
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Cindy J. Gode
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bryan T. Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kayley H. Janssen
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, United States
| | - Timothy L. Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, United States
- Bellin College, Green Bay, WI, United States
| | - Matthew C. Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Mey AR, Midgett CR, Kull FJ, Payne SM. Vibrio cholerae CsrA controls ToxR levels by increasing the stability and translation of toxR mRNA. mBio 2024; 15:e0285324. [PMID: 39555915 PMCID: PMC11633198 DOI: 10.1128/mbio.02853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Intestinal colonization and virulence factor production in response to environmental cues is mediated through several regulatory factors in Vibrio cholerae, including the highly conserved RNA-binding global regulatory protein CsrA. We have shown previously that CsrA increases synthesis of the virulence-associated transcription factor ToxR in response to specific amino acids (NRES) and is required for the virulence of V. cholerae in the infant mouse model of cholera. In this study, we mapped the 5' untranslated region (5' UTR) of toxR and showed that CsrA can bind directly to an RNA sequence encompassing the 5' UTR, indicating that the regulation of ToxR levels by CsrA is direct. Consistent with this observation, the 5' UTR of toxR contains multiple putative CsrA binding sequences (GGA motifs), and mutating these motifs disrupted the CsrA-mediated increase in ToxR. Optimal binding of CsrA to a defined RNA oligonucleotide required the bridging of two GGA motifs within a single RNA strand. To determine the mechanism of regulation by CsrA, we assayed toxR transcript levels, stability, and efficiency of translation. Both the amount of toxR mRNA in NRES and the stability of the toxR transcript were increased by CsrA. Using an in vitro translation assay, we further showed that synthesis of ToxR was greatly enhanced in the presence of purified CsrA, suggesting a direct role for CsrA in the translation of toxR mRNA. We propose a model in which CsrA binding to the 5' UTR of the toxR transcript promotes ribosomal access while precluding interactions with RNA-degrading enzymes.IMPORTANCEVibrio cholerae is uniquely adapted to marine environments as well as the human intestinal tract. Global regulators, such as CsrA, which help translate environmental cues into an appropriate cellular response, are critical for switching between these distinct environments. Understanding the pathways involved in relaying environmental signals is essential for understanding both the environmental persistence and the intestinal pathogenesis of this devastating human pathogen. In this study, we demonstrate that CsrA directly regulates the synthesis of ToxR, a key virulence factor of V. cholerae. Under conditions favoring high levels of active CsrA in the cell, such as in the presence of particular amino acids, CsrA increases ToxR protein levels by binding to the toxR transcript and enhancing both its stability and translation. By responding to nutrient availability, CsrA is perfectly poised to activate the virulence gene regulatory cascade at the preferred site of colonization in the human host, the nutrient-rich small intestinal mucosa.
Collapse
Affiliation(s)
- Alexandra R. Mey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| | | | - F. Jon Kull
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Shelley M. Payne
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Mey AR, Midgett CR, Kull FJ, Payne SM. Vibrio cholerae CsrA controls ToxR levels by increasing the stability and translation of toxR mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615275. [PMID: 39386630 PMCID: PMC11463376 DOI: 10.1101/2024.09.26.615275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulation of colonization and virulence factor production in response to environmental cues is mediated through several regulatory factors in Vibrio cholerae , including the highly conserved RNA-binding global regulatory protein CsrA. We have shown previously that CsrA increases synthesis of the virulence-associated transcription factor ToxR in response to specific amino acids (NRES) and is required for the virulence of V. cholerae in the infant mouse model of cholera. In this study, we mapped the 5' untranslated region (5' UTR) of toxR and showed that CsrA can bind directly to an RNA sequence encompassing the 5' UTR, indicating that the regulation of ToxR levels by CsrA is direct. Consistent with this observation, the 5' UTR of toxR contains multiple putative CsrA binding sequences (GGA motifs), and mutating these motifs disrupted the CsrA-mediated increase in ToxR. Optimal binding of CsrA to a defined RNA oligonucleotide required the bridging of two GGA motifs within a single RNA strand. To determine the mechanism of CsrA regulation, we assayed toxR transcript levels, stability, and efficiency of translation. Both the amount of toxR mRNA in NRES and the stability of the toxR transcript were increased by CsrA. Using an in vitro translation assay, we further showed that synthesis of ToxR was greatly enhanced in the presence of purified CsrA, suggesting a direct role for CsrA in the translation of toxR mRNA. We propose a model in which CsrA binding to the 5' UTR of the toxR transcript promotes ribosomal access while precluding interactions with RNA-degrading enzymes. IMPORTANCE Vibrio cholerae is uniquely adapted to life in marine environments as well as in the human intestinal tract. Global regulators such as CsrA, which help translate environmental cues into an appropriate cellular response, are critical for switching between these distinct environments. Understanding the pathways involved in relaying environmental signals is essential for understanding both the environmental persistence and the intestinal pathogenesis of this devastating human pathogen. In this study, we demonstrate that CsrA directly regulates synthesis of ToxR, a key virulence factor of V. cholerae . Under conditions favoring high levels of active CsrA in the cell, such as in the presence of particular amino acids, CsrA increases ToxR protein levels by binding to the toxR transcript and enhancing both its stability and translation. By responding to nutrient availability, CsrA is perfectly poised to activate the virulence gene regulatory cascade at the preferred site of colonization, the nutrient-rich small intestinal mucosa.
Collapse
|
5
|
Rojano-Nisimura AM, Grismore KB, Ruzek JS, Avila JL, Contreras LM. The Post-Transcriptional Regulatory Protein CsrA Amplifies Its Targetome through Direct Interactions with Stress-Response Regulatory Hubs: The EvgA and AcnA Cases. Microorganisms 2024; 12:636. [PMID: 38674581 PMCID: PMC11052181 DOI: 10.3390/microorganisms12040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Global rewiring of bacterial gene expressions in response to environmental cues is mediated by regulatory proteins such as the CsrA global regulator from E. coli. Several direct mRNA and sRNA targets of this protein have been identified; however, high-throughput studies suggest an expanded RNA targetome for this protein. In this work, we demonstrate that CsrA can extend its network by directly binding and regulating the evgA and acnA transcripts, encoding for regulatory proteins. CsrA represses EvgA and AcnA expression and disrupting the CsrA binding sites of evgA and acnA, results in broader gene expression changes to stress response networks. Specifically, altering CsrA-evgA binding impacts the genes related to acidic stress adaptation, and disrupting the CsrA-acnA interaction affects the genes involved in metal-induced oxidative stress responses. We show that these interactions are biologically relevant, as evidenced by the improved tolerance of evgA and acnA genomic mutants depleted of CsrA binding sites when challenged with acid and metal ions, respectively. We conclude that EvgA and AcnA are intermediate regulatory hubs through which CsrA can expand its regulatory role. The indirect CsrA regulation of gene networks coordinated by EvgA and AcnA likely contributes to optimizing cellular resources to promote exponential growth in the absence of stress.
Collapse
Affiliation(s)
| | - Kobe B. Grismore
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Josie S. Ruzek
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Jacqueline L. Avila
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Lydia M. Contreras
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, TX 78712, USA;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| |
Collapse
|
6
|
Hashemzaei M, Ghoshoon MB, Jamshidi M, Moradbeygi F, Hashemzehi A. A Review on Romiplostim Mechanism of Action and the Expressive Approach in E. coli. Recent Pat Biotechnol 2024; 18:95-109. [PMID: 38282441 DOI: 10.2174/1872208317666230503094451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 01/30/2024]
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disorder determined by immune-mediated platelet demolition and reduction of platelet production. Romiplostim is a new thrombopoiesis motivating peptibody that binds and stimulates the human thrombopoietin receptor the patent of which was registered in 2008. It is used to treat thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Romiplostim is a 60 kDa peptibody designed to inhibit cross-reacting immune responses. It consists of four high-affinity TPO-receptor binding domains for the Mpl receptor and one human IgG1 Fc domain. Escherichia coli is a good host for the fabrication of recombinant proteins such as romiplostim. The expression of a gene intended in E. coli is dependent on many factors such as a protein's inherent ability to fold, mRNA's secondary structure, its solubility, its toxicity preferential codon use, and its need for post-translational modification (PTM). This review focuses on the structure, function, mechanism of action, and expressive approach to romiplostim in E. coli.
Collapse
Affiliation(s)
- Masoud Hashemzaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehrnaz Jamshidi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradbeygi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hashemzehi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA selectively modulates sRNA-mRNA regulator outcomes. Front Mol Biosci 2023; 10:1249528. [PMID: 38116378 PMCID: PMC10729762 DOI: 10.3389/fmolb.2023.1249528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/21/2023] Open
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact directly with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcases CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA Shows Selective Regulation of sRNA-mRNA Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534774. [PMID: 37034808 PMCID: PMC10081199 DOI: 10.1101/2023.03.29.534774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcase CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, 100 E. 24th Street Stop A6500, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
9
|
Spatial Structure Formation by RsmE-Regulated Extracellular Secretions in Pseudomonas fluorescens Pf0-1. J Bacteriol 2022; 204:e0028522. [PMID: 36165622 PMCID: PMC9578434 DOI: 10.1128/jb.00285-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells in microbial communities on surfaces live and divide in close proximity, which greatly enhances the potential for social interactions. Spatiogenetic structures are manifested through competitive and cooperative interactions among the same and different genotypes within a shared space, and extracellular secretions appear to function dynamically at the forefront. A previous experimental evolution study utilizing Pseudomonas fluorescens Pf0-1 colonies demonstrated that diverse mutations in the rsmE gene were repeatedly and exclusively selected through the formation of a dominant spatial structure. RsmE's primary molecular function is translation repression, and its homologs regulate various social and virulence phenotypes. Pseudomonas spp. possess multiple paralogs of Rsm proteins, and RsmA, RsmE, and RsmI are the most prevalent. Here, we demonstrate that the production of a mucoid polymer and a biosurfactant are exclusively regulated through RsmE, contradicting the generalized notion of functional redundancy among the Rsm paralogs. Furthermore, we identified the biosurfactant as the cyclic lipopeptide gacamide A. Competition and microscopy analyses showed that the mucoid polymer is solely responsible for creating a space of low cellular density, which is shared exclusively by the same genotype. Gacamide A and other RsmE-regulated products appear to establish a physical boundary that prevents the encroachment of the competing genotype into the newly created space. Although cyclic lipopeptides and other biosurfactants are best known for their antimicrobial properties and reducing surface tension to promote the spreading of cells on various surfaces, they also appear to help define spatial structure formation within a dense community. IMPORTANCE In densely populated colonies of the bacterium Pseudomonas fluorescens Pf0-1, diverse mutations in the rsmE gene are naturally selected by solving the problem of overcrowding. Here, we show that RsmE-regulated secretions function together to create and protect space of low cell density. A biosurfactant generally promotes the spreading of bacterial cells on abiotic surfaces; however, it appears to function atypically within a crowded population by physically defining genotypic boundaries. Another significant finding is that these secretions are not regulated by RsmE's paralogs that share high sequence similarity. The experimental pipeline described in this study is highly tractable and should facilitate future studies to explore additional RsmE-regulated products and address why RsmE is functionally unique from its paralogs.
Collapse
|
10
|
Jha T, Mendel J, Cho H, Choudhary M. Prediction of Bacterial sRNAs Using Sequence-Derived Features and Machine Learning. Bioinform Biol Insights 2022; 16:11779322221118335. [PMID: 36016866 PMCID: PMC9397377 DOI: 10.1177/11779322221118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Small ribonucleic acid (sRNA) sequences are 50–500 nucleotide long, noncoding RNA (ncRNA) sequences that play an important role in regulating transcription and translation within a bacterial cell. As such, identifying sRNA sequences within an organism’s genome is essential to understand the impact of the RNA molecules on cellular processes. Recently, numerous machine learning models have been applied to predict sRNAs within bacterial genomes. In this study, we considered the sRNA prediction as an imbalanced binary classification problem to distinguish minor positive sRNAs from major negative ones within imbalanced data and then performed a comparative study with six learning algorithms and seven assessment metrics. First, we collected numerical feature groups extracted from known sRNAs previously identified in Salmonella typhimurium LT2 (SLT2) and Escherichia coli K12 (E. coli K12) genomes. Second, as a preliminary study, we characterized the sRNA-size distribution with the conformity test for Benford’s law. Third, we applied six traditional classification algorithms to sRNA features and assessed classification performance with seven metrics, varying positive-to-negative instance ratios, and utilizing stratified 10-fold cross-validation. We revisited important individual features and feature groups and found that classification with combined features perform better than with either an individual feature or a single feature group in terms of Area Under Precision-Recall curve (AUPR). We reconfirmed that AUPR properly measures classification performance on imbalanced data with varying imbalance ratios, which is consistent with previous studies on classification metrics for imbalanced data. Overall, eXtreme Gradient Boosting (XGBoost), even without exploiting optimal hyperparameter values, performed better than the other five algorithms with specific optimal parameter settings. As a future work, we plan to extend XGBoost further to a large amount of published sRNAs in bacterial genomes and compare its classification performance with recent machine learning models’ performance.
Collapse
Affiliation(s)
- Tony Jha
- Department of Mathematics, University of California, Berkeley, Berkeley, CA, USA
| | - Jovinna Mendel
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Hyuk Cho
- Department of Computer Science, Sam Houston State University, Huntsville, TX, USA
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
11
|
Sun Z, Zhou N, Zhang W, Xu Y, Yao YF. Dual role of CsrA in regulating the hemolytic activity of Escherichia coli O157:H7. Virulence 2022; 13:859-874. [PMID: 35609307 PMCID: PMC9132389 DOI: 10.1080/21505594.2022.2073023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Post-transcriptional global carbon storage regulator A (CsrA) is a sequence-specific RNA-binding protein involved in the regulation of multiple bacterial processes. Hemolysin is an important virulence factor in the enterohemorrhagic Escherichia coli O157:H7 (EHEC). Here, we show that CsrA plays a dual role in the regulation of hemolysis in EHEC. CsrA significantly represses plasmid-borne enterohemolysin (EhxA)-mediated hemolysis and activates chromosome-borne hemolysin E (HlyE)-mediated hemolysis through different mechanisms. RNA structure prediction revealed a well-matched stem-loop structure with two potential CsrA binding sites located on the 5' untranslated region (UTR) of ehxB, which encodes a translocator required for EhxA secretion. CsrA inhibits EhxA secretion by directly binding to the RNA leader sequence of ehxB to repress its expression in two different ways: CsrA either binds to the Shine–Dalgarno sequence of ehxB to block ribosome access or to ehxB transcript to promote its mRNA decay. The predicted CsrA-binding site 1 of ehxB is essential for its regulation. There is a single potential CsrA-binding site at the 5'-end of the hlyE transcript, and its mutation completely abolishes CsrA-dependent activation. CsrA can also stabilize hlyE mRNA by directly binding to its 5' UTR. Overall, our results indicate that CsrA acts as a hemolysis modulator to regulate pathogenicity under certain conditions.
Collapse
Affiliation(s)
- Zhibin Sun
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Zhou
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenting Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
12
|
Lai YJ, Yakhnin H, Pannuri A, Pourciau C, Babitzke P, Romeo T. CsrA regulation via binding to the base-pairing small RNA Spot 42. Mol Microbiol 2022; 117:32-53. [PMID: 34107125 PMCID: PMC10000020 DOI: 10.1111/mmi.14769] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 02/03/2023]
Abstract
The carbon storage regulator system and base-pairing small RNAs (sRNAs) represent two predominant modes of bacterial post-transcriptional regulation, which globally influence gene expression. Binding of CsrA protein to the 5' UTR or initial mRNA coding sequences can affect translation, RNA stability, and/or transcript elongation. Base-pairing sRNAs also regulate these processes, often requiring assistance from the RNA chaperone Hfq. Transcriptomics studies in Escherichia coli have identified many new CsrA targets, including Spot 42 and other base-pairing sRNAs. Spot 42 synthesis is repressed by cAMP-CRP, induced by the presence of glucose, and Spot 42 post-transcriptionally represses operons that facilitate metabolism of nonpreferred carbon sources. CsrA activity is also increased by glucose via effects on CsrA sRNA antagonists, CsrB/C. Here, we elucidate a mechanism wherein CsrA binds to and protects Spot 42 sRNA from RNase E-mediated cleavage. This protection leads to enhanced repression of srlA by Spot 42, a gene required for sorbitol uptake. A second, independent mechanism by which CsrA represses srlA is by binding to and inhibiting translation of srlM mRNA, encoding a transcriptional activator of srlA. Our findings demonstrate a novel means of regulation, by CsrA binding to a sRNA, and indicate that such interactions can help to shape complex bacterial regulatory circuitry.
Collapse
Affiliation(s)
- Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Katsuya-Gaviria K, Paris G, Dendooven T, Bandyra KJ. Bacterial RNA chaperones and chaperone-like riboregulators: behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol 2021; 19:419-436. [PMID: 35438047 PMCID: PMC9037510 DOI: 10.1080/15476286.2022.2048565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/26/2022] [Indexed: 11/02/2022] Open
Abstract
In all domains of life, RNA chaperones safeguard and guide the fate of the cellular RNA pool. RNA chaperones comprise structurally diverse proteins that ensure proper folding, stability, and ribonuclease resistance of RNA, and they support regulatory activities mediated by RNA. RNA chaperones constitute a topologically diverse group of proteins that often present an unstructured region and bind RNA with limited nucleotide sequence preferences. In bacteria, three main proteins - Hfq, ProQ, and CsrA - have been shown to regulate numerous complex processes, including bacterial growth, stress response and virulence. Hfq and ProQ have well-studied activities as global chaperones with pleiotropic impact, while CsrA has a chaperone-like role with more defined riboregulatory function. Here, we describe relevant novel insights into their common features, including RNA binding properties, unstructured domains, and interplay with other proteins important to RNA metabolism.
Collapse
Affiliation(s)
- Kai Katsuya-Gaviria
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CambridgeCB2 1GA, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CambridgeCB2 1GA, UK
| | - Tom Dendooven
- Department of Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Katarzyna J. Bandyra
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 02-089Warsaw, Poland
| |
Collapse
|
14
|
Basu P, Altuvia S. RelA binding of mRNAs modulates translation or sRNA-mRNA basepairing depending on the position of the GGAG site. Mol Microbiol 2021; 117:143-159. [PMID: 34523176 DOI: 10.1111/mmi.14812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
Previously, we reported that RelA protein facilitates Hfq-mediated mRNA-sRNA regulation by binding sRNAs carrying a Shine-Dalgarno-like GGAG sequence. In turn, sRNA-Hfq monomers are stabilized, enabling the attachment of more Hfq subunits to form a functional hexamer. Here, using CLIP-seq, we present a global analysis of RelA-bound RNAs showing that RelA interacts with sRNAs as well as with mRNAs carrying a GGAG motif. RelA binding of mRNAs carrying GGAG at position -7 relative to the initiation codon (AUG) inhibits translation by interfering with the binding of 30S ribosomes. The extent of inhibition depends on the distance of GGAG relative to the AUG, as shortening the spacing between GGAG and AUG abrogates RelA-mediated inhibition. Interestingly, RelA binding of target mRNAs carrying GGAG in the coding sequence or close to AUG facilitates target gene regulation by sRNA partners that lack GGAG. However, translation inhibition caused by RelA binding of mRNAs carrying GGAG at position -7 relative to the AUG renders sRNA-mRNA basepairing regulation ineffective. Our study indicates that by binding RNAs carrying GGAG the ribosome-associated RelA protein inhibits translation of specific newly synthesized incoming mRNAs or enables basepairing regulation by their respective sRNA partners, thereby introducing a new regulatory concept for the bacterial response.
Collapse
Affiliation(s)
- Pallabi Basu
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
15
|
CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the hmsT mRNA. mBio 2021; 12:e0135821. [PMID: 34340543 PMCID: PMC8406273 DOI: 10.1128/mbio.01358-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plague-causing Yersinia pestis is transmitted through regurgitation when it forms a biofilm-mediated blockage in the foregut of its flea vector. This biofilm is composed of an extracellular polysaccharide substance (EPS) produced when cyclic-di-GMP (c-di-GMP) levels are elevated. The Y. pestis diguanylate cyclase enzymes HmsD and HmsT synthesize c-di-GMP. HmsD is required for biofilm blockage formation but contributes minimally to in vitro biofilms. HmsT, however, is necessary for in vitro biofilms and contributes to intermediate rates of biofilm blockage. C-di-GMP synthesis is regulated at the transcriptional and posttranscriptional levels. In this, the global RNA chaperone, Hfq, posttranscriptionally represses hmsT mRNA translation. How c-di-GMP levels and biofilm blockage formation is modulated by nutritional stimuli encountered in the flea gut is unknown. Here, the RNA-binding regulator protein CsrA, which controls c-di-GMP-mediated biofilm formation and central carbon metabolism responses in many Gammaproteobacteria, was assessed for its role in Y. pestis biofilm formation. We determined that CsrA was required for markedly greater c-di-GMP and EPS levels when Y. pestis was cultivated on alternative sugars implicated in flea biofilm blockage metabolism. Our assays, composed of mobility shifts, quantification of mRNA translation, stability, and abundance, and epistasis analyses of a csrA hfq double mutant strain substantiated that CsrA represses hfq mRNA translation, thereby alleviating Hfq-dependent repression of hmsT mRNA translation. Additionally, a csrA mutant exhibited intermediately reduced biofilm blockage rates, resembling an hmsT mutant. Hence, we reveal CsrA-mediated control of c-di-GMP synthesis in Y. pestis as a tiered, posttranscriptional regulatory process that enhances biofilm blockage-mediated transmission from fleas.
Collapse
|
16
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Carzaniga T, Falchi FA, Forti F, Antoniani D, Landini P, Briani F. Different csrA Expression Levels in C versus K-12 E. coli Strains Affect Biofilm Formation and Impact the Regulatory Mechanism Presided by the CsrB and CsrC Small RNAs. Microorganisms 2021; 9:microorganisms9051010. [PMID: 34067197 PMCID: PMC8151843 DOI: 10.3390/microorganisms9051010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli C is a strong biofilm producer in comparison to E. coli K-12 laboratory strains due to higher expression of the pgaABCD operon encoding the enzymes for the biosynthesis of the extracellular polysaccharide poly-β-1,6-N-acetylglucosamine (PNAG). The pgaABCD operon is negatively regulated at the post-transcriptional level by two factors, namely CsrA, a conserved RNA-binding protein controlling multiple pathways, and the RNA exonuclease polynucleotide phosphorylase (PNPase). In this work, we investigated the molecular bases of different PNAG production in C-1a and MG1655 strains taken as representative of E. coli C and K-12 strains, respectively. We found that pgaABCD operon expression is significantly lower in MG1655 than in C-1a; consistently, CsrA protein levels were much higher in MG1655. In contrast, we show that the negative effect exerted by PNPase on pgaABCD expression is much stronger in C-1a than in MG1655. The amount of CsrA and of the small RNAs CsrB, CsrC, and McaS sRNAs regulating CsrA activity is dramatically different in the two strains, whereas PNPase level is similar. Finally, the compensatory regulation acting between CsrB and CsrC in MG1655 does not occur in E. coli C. Our results suggest that PNPase preserves CsrA-dependent regulation by indirectly modulating csrA expression.
Collapse
Affiliation(s)
- Thomas Carzaniga
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy; (T.C.); (F.A.F.); (F.F.); (D.A.); (P.L.)
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, 20054 Milan, Italy
| | - Federica A. Falchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy; (T.C.); (F.A.F.); (F.F.); (D.A.); (P.L.)
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy; (T.C.); (F.A.F.); (F.F.); (D.A.); (P.L.)
| | - Davide Antoniani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy; (T.C.); (F.A.F.); (F.F.); (D.A.); (P.L.)
| | - Paolo Landini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy; (T.C.); (F.A.F.); (F.F.); (D.A.); (P.L.)
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy; (T.C.); (F.A.F.); (F.F.); (D.A.); (P.L.)
- Correspondence:
| |
Collapse
|
18
|
Huertas-Rosales Ó, Romero M, Chan KG, Hong KW, Cámara M, Heeb S, Barrientos-Moreno L, Molina-Henares MA, Travieso ML, Ramos-González MI, Espinosa-Urgel M. Genome-Wide Analysis of Targets for Post-Transcriptional Regulation by Rsm Proteins in Pseudomonas putida. Front Mol Biosci 2021; 8:624061. [PMID: 33693029 PMCID: PMC7937890 DOI: 10.3389/fmolb.2021.624061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Post-transcriptional regulation is an important step in the control of bacterial gene expression in response to environmental and cellular signals. Pseudomonas putida KT2440 harbors three known members of the CsrA/RsmA family of post-transcriptional regulators: RsmA, RsmE and RsmI. We have carried out a global analysis to identify RNA sequences bound in vivo by each of these proteins. Affinity purification and sequencing of RNA molecules associated with Rsm proteins were used to discover direct binding targets, corresponding to 437 unique RNA molecules, 75 of them being common to the three proteins. Relevant targets include genes encoding proteins involved in signal transduction and regulation, metabolism, transport and secretion, stress responses, and the turnover of the intracellular second messenger c-di-GMP. To our knowledge, this is the first combined global analysis in a bacterium harboring three Rsm homologs. It offers a broad overview of the network of processes subjected to this type of regulation and opens the way to define what are the sequence and structure determinants that define common or differential recognition of specific RNA molecules by these proteins.
Collapse
Affiliation(s)
- Óscar Huertas-Rosales
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Kar-Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Laura Barrientos-Moreno
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain.,National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - María L Travieso
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
19
|
Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021; 11:624830. [PMID: 33552035 PMCID: PMC7858274 DOI: 10.3389/fmicb.2020.624830] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Irie Y, La Mensa A, Murina V, Hauryliuk V, Tenson T, Shingler V. Hfq-Assisted RsmA Regulation Is Central to Pseudomonas aeruginosa Biofilm Polysaccharide PEL Expression. Front Microbiol 2020; 11:482585. [PMID: 33281751 PMCID: PMC7705225 DOI: 10.3389/fmicb.2020.482585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/08/2020] [Indexed: 12/05/2022] Open
Abstract
To appropriately switch between sessile and motile lifestyles, bacteria control expression of biofilm-associated genes through multiple regulatory elements. In Pseudomonas aeruginosa, the post-transcriptional regulator RsmA has been implicated in the control of various genes including those related to biofilms, but much of the evidence for these links is limited to transcriptomic and phenotypic studies. RsmA binds to target mRNAs to modulate translation by affecting ribosomal access and/or mRNA stability. Here, we trace a global regulatory role of RsmA to inhibition of the expression of Vfr—a transcription factor that inhibits transcriptional regulator FleQ. FleQ directly controls biofilm-associated genes that encode the PEL polysaccharide biosynthesis machinery. Furthermore, we show that RsmA alone cannot bind vfr mRNA but requires the assistance of RNA chaperone protein Hfq. This is the first example where a RsmA protein family member requires another protein for binding to its target RNA.
Collapse
Affiliation(s)
- Yasuhiko Irie
- Institute of Technology, University of Tartu, Tartu, Estonia.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Agnese La Mensa
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Vasili Hauryliuk
- Institute of Technology, University of Tartu, Tartu, Estonia.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
21
|
Pourciau C, Lai YJ, Gorelik M, Babitzke P, Romeo T. Diverse Mechanisms and Circuitry for Global Regulation by the RNA-Binding Protein CsrA. Front Microbiol 2020; 11:601352. [PMID: 33193284 PMCID: PMC7652899 DOI: 10.3389/fmicb.2020.601352] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
The carbon storage regulator (Csr) or repressor of stationary phase metabolites (Rsm) system of Gammaproteobacteria is among the most complex and best-studied posttranscriptional regulatory systems. Based on a small RNA-binding protein, CsrA and homologs, it controls metabolism, physiology, and bacterial lifestyle decisions by regulating gene expression on a vast scale. Binding of CsrA to sequences containing conserved GGA motifs in mRNAs can regulate translation, RNA stability, riboswitch function, and transcript elongation. CsrA governs the expression of dozens of transcription factors and other regulators, further expanding its influence on cellular physiology, and these factors can participate in feedback to the Csr system. Expression of csrA itself is subject to autoregulation via translational inhibition and indirect transcriptional activation. CsrA activity is controlled by small noncoding RNAs (sRNAs), CsrB and CsrC in Escherichia coli, which contain multiple high affinity CsrA binding sites that compete with those of mRNA targets. Transcription of CsrB/C is induced by certain nutrient limitations, cellular stresses, and metabolites, while these RNAs are targeted for degradation by the presence of a preferred carbon source. Consistent with these findings, CsrA tends to activate pathways and processes that are associated with robust growth and repress stationary phase metabolism and stress responses. Regulatory loops between Csr components affect the signaling dynamics of the Csr system. Recently, systems-based approaches have greatly expanded our understanding of the roles played by CsrA, while reinforcing the notion that much remains to be learned about the Csr system.
Collapse
Affiliation(s)
- Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Mark Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
23
|
Widespread targeting of nascent transcripts by RsmA in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2020; 117:10520-10529. [PMID: 32332166 DOI: 10.1073/pnas.1917587117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, RsmA is an RNA-binding protein that plays critical roles in the control of virulence, interbacterial interactions, and biofilm formation. Although RsmA is thought to exert its regulatory effects by binding full-length transcripts, the extent to which RsmA binds nascent transcripts has not been addressed. Moreover, which transcripts are direct targets of this key posttranscriptional regulator is largely unknown. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing, with cells grown in the presence and absence of the RNA polymerase inhibitor rifampicin, we identify hundreds of nascent transcripts that RsmA associates with in P. aeruginosa We also find that the RNA chaperone Hfq targets a subset of those nascent transcripts that RsmA associates with and that the two RNA-binding proteins can exert regulatory effects on common targets. Our findings establish that RsmA associates with many transcripts as they are being synthesized in P. aeruginosa, identify the transcripts targeted by RsmA, and suggest that RsmA and Hfq may act in a combinatorial fashion on certain transcripts. The binding of posttranscriptional regulators to nascent transcripts may be commonplace in bacteria where distinct regulators can function alone or in concert to achieve control over the translation of transcripts as soon as they emerge from RNA polymerase.
Collapse
|
24
|
Goetz A, Mader A, von Bronk B, Weiss AS, Opitz M. Gene expression noise in a complex artificial toxin expression system. PLoS One 2020; 15:e0227249. [PMID: 31961890 PMCID: PMC6974158 DOI: 10.1371/journal.pone.0227249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/16/2019] [Indexed: 01/29/2023] Open
Abstract
Gene expression is an intrinsically stochastic process. Fluctuations in transcription and translation lead to cell-to-cell variations in mRNA and protein levels affecting cellular function and cell fate. Here, using fluorescence time-lapse microscopy, we quantify noise dynamics in an artificial operon in Escherichia coli, which is based on the native operon of ColicinE2, a toxin. In the natural system, toxin expression is controlled by a complex regulatory network; upon induction of the bacterial SOS response, ColicinE2 is produced (cea gene) and released (cel gene) by cell lysis. Using this ColicinE2-based operon, we demonstrate that upon induction of the SOS response noise of cells expressing the operon is significantly lower for the (mainly) transcriptionally regulated gene cea compared to the additionally post-transcriptionally regulated gene cel. Likewise, we find that mutations affecting the transcriptional regulation by the repressor LexA do not significantly alter the population noise, whereas specific mutations to post-transcriptionally regulating units, strongly influence noise levels of both genes. Furthermore, our data indicate that global factors, such as the plasmid copy number of the operon encoding plasmid, affect gene expression noise of the entire operon. Taken together, our results provide insights on how noise in a native toxin-producing operon is controlled and underline the importance of post-transcriptional regulation for noise control in this system.
Collapse
Affiliation(s)
- Alexandra Goetz
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Andreas Mader
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Benedikt von Bronk
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Anna S. Weiss
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Madeleine Opitz
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany
| |
Collapse
|
25
|
Abstract
The global regulatory protein CsrA coordinates gene expression in response to physiological cues reflecting cellular stress and nutrition. CsrA binding to the 5' segments of mRNA targets affects their translation, RNA stability, and/or transcript elongation. Recent studies identified probable mRNA targets of CsrA that are involved in iron uptake and storage in Escherichia coli, suggesting an unexplored role for CsrA in regulating iron homeostasis. Here, we assessed the impact of CsrA on iron-related gene expression, cellular iron, and growth under various iron levels. We investigated five new targets of CsrA regulation, including the genes for 4 ferritin or ferritin-like iron storage proteins (ISPs) and the stress-inducible Fe-S repair protein, SufA. CsrA bound with high affinity and specificity to ftnB, bfr, and dps mRNAs and inhibited their translation, while it modestly activated ftnA expression. Furthermore, CsrA was found to regulate cellular iron levels and support growth by repressing the expression of genes for ISPs, most importantly, ferritin B (FtnB) and bacterioferritin (Bfr). Iron starvation did not substantially affect cellular levels of CsrA or its small RNA (sRNA) antagonists, CsrB and CsrC. csrA disruption led to increased resistance to the lethal effects of H2O2 during exponential growth, consistent with a regulatory role in oxidative stress resistance. We propose that during exponential growth and under minimal stress, CsrA represses the deleterious expression of the ISPs that function under oxidative stress and stationary-phase conditions (FtnB, Bfr, and Dps), thus ensuring that cellular iron is available to processes that are required for growth.IMPORTANCE Iron is an essential micronutrient for nearly all living organisms but is toxic in excess. Consequently, the maintenance of iron homeostasis is a critical biological process, and the genes involved in this function are tightly regulated. Here, we explored a new role for the bacterial RNA binding protein CsrA in the regulation of iron homeostasis. CsrA was shown to be a key regulator of iron storage genes in Escherichia coli, with consequential effects on cellular iron levels and growth. Our findings establish a model in which robust CsrA activity during the exponential phase of growth leads to repression of genes whose products sequester iron or divert it to unnecessary stress response processes. In so doing, CsrA supports E. coli growth under iron-limiting laboratory conditions and may promote fitness in the competitive iron-limited environment of the host large intestine.
Collapse
|
26
|
Vibrio cholerae CsrA Directly Regulates varA To Increase Expression of the Three Nonredundant Csr Small RNAs. mBio 2019; 10:mBio.01042-19. [PMID: 31164471 PMCID: PMC6550530 DOI: 10.1128/mbio.01042-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
CsrA, an RNA-binding global regulator, is an essential protein in Vibrio choleraeV. cholerae CsrA is regulated by three small RNAs (sRNAs), namely, CsrB, CsrC, and CsrD, which act to sequester and antagonize the activity of CsrA. Although the sRNAs were considered to be largely redundant, we found that they differ in expression, half-life, and the ability to regulate CsrA. Further, we identified a feedback loop in the Csr system in which CsrA increases the synthesis of these antagonistic sRNAs. Because the Csr sRNAs are positively regulated by VarA, we determined the effects of CsrA on VarA levels. The level of VarA was reduced in a csrA mutant, and we found that CsrA directly bound to varA mRNA in an electrophoretic mobility shift assay in vitro and in an CsrA-RNA immunoprecipitation assay in vivo Thus, varA mRNA is an in vivo-verified direct target of CsrA in V. cholerae, and this is the first demonstration of CsrA directly binding to a varA/uvrY/gacA homolog. Additionally, we demonstrated that a varA translational fusion was less active in a csrA mutant than in wild-type V. cholerae, suggesting that CsrA enhances varA translation. We propose that this autoregulatory feedback loop, in which CsrA increases the production of the nonredundant Csr sRNAs by regulating the amount of VarA, provides a mechanism for fine-tuning the availability of CsrA and, thus, of its downstream targets.IMPORTANCEVibrio cholerae is a major human pathogen, causing epidemics and pandemics of cholera. V. cholerae persists in the aquatic environment, providing a constant source for human infection. Success in transitioning from the environment to the human host and back requires the bacterium to rapidly respond and to adjust its gene expression and metabolism to these two very different habitats. Our findings show that CsrA, an RNA-binding regulatory protein, plays a central role in regulating these transitions. CsrA activity is controlled by the antagonistic sRNAs CsrB, CsrC, and CsrD, and these sRNAs respond to changes in the availability of nutrients. CsrA autoregulates its own activity by controlling these sRNAs via their primary regulator VarA. Thus, the change in CsrA availability in response to nutrient availability allows V. cholerae to alter gene expression in response to environmental cues.
Collapse
|
27
|
Potts AH, Guo Y, Ahmer BMM, Romeo T. Role of CsrA in stress responses and metabolism important for Salmonella virulence revealed by integrated transcriptomics. PLoS One 2019; 14:e0211430. [PMID: 30682134 PMCID: PMC6347204 DOI: 10.1371/journal.pone.0211430] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
To cause infection, Salmonella must survive and replicate in host niches that present dramatically different environmental conditions. This requires a flexible metabolism and physiology, responsive to conditions of the local milieu. The sequence specific RNA binding protein CsrA serves as a global regulator that governs gene expression required for pathogenicity, metabolism, biofilm formation, and motility in response to nutritional conditions. Its activity is determined by two noncoding small RNAs (sRNA), CsrB and CsrC, which sequester and antagonize this protein. Here, we used ribosome profiling and RNA-seq analysis to comprehensively examine the effects of CsrA on mRNA occupancy with ribosomes, a measure of translation, transcript stability, and the steady state levels of transcripts under in vitro SPI-1 inducing conditions, to simulate growth in the intestinal lumen, and under in vitro SPI-2-inducing conditions, to simulate growth in the Salmonella containing vacuole (SCV) of the macrophage. Our findings uncovered new roles for CsrA in controlling the expression of structural and regulatory genes involved in stress responses, metabolism, and virulence systems required for infection. We observed substantial variation in the CsrA regulon under the two growth conditions. In addition, CsrB/C sRNA levels were greatly reduced under the simulated intracellular conditions and were responsive to nutritional factors that distinguish the intracellular and luminal environments. Altogether, our results reveal CsrA to be a flexible regulator, which is inferred to be intimately involved in maintaining the distinct gene expression patterns associated with growth in the intestine and the macrophage.
Collapse
Affiliation(s)
- Anastasia H Potts
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Yinping Guo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
28
|
Abstract
The sequence-specific RNA binding protein CsrA is employed by diverse bacteria in the posttranscriptional regulation of gene expression. Its binding interactions with RNA have been documented at atomic resolution and shown to alter RNA secondary structure, RNA stability, translation, and/or Rho-mediated transcription termination through a growing number of molecular mechanisms. In Gammaproteobacteria, small regulatory RNAs (sRNAs) that contain multiple CsrA binding sites compete with mRNA for binding to CsrA, thereby sequestering and antagonizing this protein. Both the synthesis and turnover of these sRNAs are regulated, allowing CsrA activity to be rapidly and efficiently adjusted in response to nutritional conditions and stresses. Feedback loops between the Csr regulatory components improve the dynamics of signal response by the Csr system. The Csr system of Escherichia coli is intimately interconnected with other global regulatory systems, permitting it to contribute to regulation by those systems. In some species, a protein antagonist of CsrA functions as part of a checkpoint for flagellum biosynthesis. In other species, a protein antagonist participates in a mechanism in which a type III secretion system is used for sensing interactions with host cells. Recent transcriptomics studies reveal vast effects of CsrA on gene expression through direct binding to hundreds of mRNAs, and indirectly through its effects on the expression of dozens of transcription factors. CsrA binding to base-pairing sRNAs and novel mRNA segments, such as the 3' untranslated region and deep within coding regions, predict its participation in yet-to-be-discovered regulatory mechanisms.
Collapse
|
29
|
csrB Gene Duplication Drives the Evolution of Redundant Regulatory Pathways Controlling Expression of the Major Toxic Secreted Metalloproteases in Vibrio tasmaniensis LGP32. mSphere 2018; 3:3/6/e00582-18. [PMID: 30487156 PMCID: PMC6262261 DOI: 10.1128/msphere.00582-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The conserved CsrB sRNAs are an example of sibling sRNAs, i.e., sRNAs which are present in multiple copies in genomes. This report illustrates how new copies arise through gene duplication events and highlights two evolutionary advantages of having such multiple copies: differential regulation of the multiple copies allows integration of different input signals into the regulatory network of which they are parts, and the high redundancy that they provide confers a strong robustness to the system. CsrBs are bacterial highly conserved and multiple-copy noncoding small RNAs (sRNAs) that play major roles in cell physiology and virulence. In the Vibrio genus, they are known to be regulated by the two-component system VarS/VarA. They modulate the well-characterized quorum sensing pathway controlling virulence and luminescence in Vibrio cholerae and Vibrio harveyi, respectively. Remarkably, Vibrio tasmaniensis LGP32, an oyster pathogen that belongs to the Splendidus clade, was found to have four copies of csrB, named csrB1-4, compared to two to three copies in other Vibrio species. Here, we show that the extra csrB4 copy results from a csrB3 gene duplication, a characteristic of the Splendidus clade. Interestingly, csrB genes are regulated in different ways in V. tasmaniensis, with csrB1 expression being independent of the VarS/VarA system. We found that a complex regulatory network involving CsrBs, quorum sensing, and the stationary-phase sigma factor σS redundantly but differentially controls the production of two secreted metalloproteases, Vsm and PrtV, the former being a major determinant of the V. tasmaniensis extracellular product toxicity. In particular, we identified a novel VarS/VarA-dependent but CsrB-independent pathway that controls positively both Vsm production and PrtV production as well as rpoS expression. Altogether, our data show that a csrB gene duplication event in V. tasmaniensis supported the evolution of the regulatory network controlling the expression of major toxic secreted metalloproteases, thereby increasing redundancy and enabling the integration of additional input signals. IMPORTANCE The conserved CsrB sRNAs are an example of sibling sRNAs, i.e., sRNAs which are present in multiple copies in genomes. This report illustrates how new copies arise through gene duplication events and highlights two evolutionary advantages of having such multiple copies: differential regulation of the multiple copies allows integration of different input signals into the regulatory network of which they are parts, and the high redundancy that they provide confers a strong robustness to the system.
Collapse
|
30
|
Leistra AN, Gelderman G, Sowa SW, Moon-Walker A, Salis HM, Contreras LM. A Canonical Biophysical Model of the CsrA Global Regulator Suggests Flexible Regulator-Target Interactions. Sci Rep 2018; 8:9892. [PMID: 29967470 PMCID: PMC6028588 DOI: 10.1038/s41598-018-27474-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/04/2018] [Indexed: 02/04/2023] Open
Abstract
Bacterial global post-transcriptional regulators execute hundreds of interactions with targets that display varying molecular features while retaining specificity. Herein, we develop, validate, and apply a biophysical, statistical thermodynamic model of canonical target mRNA interactions with the CsrA global post-transcriptional regulator to understand the molecular features that contribute to target regulation. Altogether, we model interactions of CsrA with a pool of 236 mRNA: 107 are experimentally regulated by CsrA and 129 are suspected interaction partners. Guided by current understanding of CsrA-mRNA interactions, we incorporate (i) mRNA nucleotide sequence, (ii) cooperativity of CsrA-mRNA binding, and (iii) minimization of mRNA structural changes to identify an ensemble of likely binding sites and their free energies. The regulatory impact of bound CsrA on mRNA translation is determined with the RBS calculator. Predicted regulation of 66 experimentally regulated mRNAs adheres to the principles of canonical CsrA-mRNA interactions; the remainder implies that other, diverse mechanisms may underlie CsrA-mRNA interaction and regulation. Importantly, results suggest that this global regulator may bind targets in multiple conformations, via flexible stretches of overlapping predicted binding sites. This novel observation expands the notion that CsrA always binds to its targets at specific consensus sequences.
Collapse
Affiliation(s)
- A N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - G Gelderman
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - S W Sowa
- Microbiology Graduate Program, University of Texas at Austin, 100 E. 24th St. Stop A6500, Austin, TX, 78712, USA
| | - A Moon-Walker
- Biological Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, TX, 78712, USA
| | - H M Salis
- Department of Chemical Engineering, Pennsylvania State University, 210 Agricultural Engineering Building, University Park, PA, 16802, USA
| | - L M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|
31
|
Santiago-Frangos A, Woodson SA. Hfq chaperone brings speed dating to bacterial sRNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1475. [PMID: 29633565 PMCID: PMC6002925 DOI: 10.1002/wrna.1475] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/11/2022]
Abstract
Hfq is a ubiquitous, Sm-like RNA binding protein found in most bacteria and some archaea. Hfq binds small regulatory RNAs (sRNAs), facilitates base pairing between sRNAs and their mRNA targets, and directly binds and regulates translation of certain mRNAs. Because sRNAs regulate many stress response pathways in bacteria, Hfq is essential for adaptation to different environments and growth conditions. The chaperone activities of Hfq arise from multipronged RNA binding by three different surfaces of the Hfq hexamer. The manner in which the structured Sm core of Hfq binds RNA has been well studied, but recent work shows that the intrinsically disordered C-terminal domain of Hfq modulates sRNA binding, creating a kinetic hierarchy of RNA competition for Hfq and ensuring the release of double-stranded sRNA-mRNA complexes. A combination of structural, biophysical, and genetic experiments reveals how Hfq recognizes its RNA substrates and plays matchmaker for sRNAs and mRNAs in the cell. The interplay between structured and disordered domains of Hfq optimizes sRNA-mediated post-transcriptional regulation, and is a common theme in RNA chaperones. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Program in Cellular, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
32
|
CsrA and its regulators control the time-point of ColicinE2 release in Escherichia coli. Sci Rep 2018; 8:6537. [PMID: 29695793 PMCID: PMC5916893 DOI: 10.1038/s41598-018-24699-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
The bacterial SOS response is a cellular reaction to DNA damage, that, among other actions, triggers the expression of colicin - toxic bacteriocins in Escherichia coli that are released to kill close relatives competing for resources. However, it is largely unknown, how the complex network regulating toxin expression controls the time-point of toxin release to prevent premature release of inefficient protein concentrations. Here, we study how different regulatory mechanisms affect production and release of the bacteriocin ColicinE2 in Escherichia coli. Combining experimental and theoretical approaches, we demonstrate that the global carbon storage regulator CsrA controls the duration of the delay between toxin production and release and emphasize the importance of CsrA sequestering elements for the timing of ColicinE2 release. In particular, we show that ssDNA originating from rolling-circle replication of the toxin-producing plasmid represents a yet unknown additional CsrA sequestering element, which is essential in the ColicinE2-producing strain to enable toxin release by reducing the amount of free CsrA molecules in the bacterial cell. Taken together, our findings show that CsrA times ColicinE2 release and reveal a dual function for CsrA as an ssDNA and mRNA-binding protein, introducing ssDNA as an important post-transcriptional gene regulatory element.
Collapse
|
33
|
Grenga L, Little RH, Malone JG. Quick change: post-transcriptional regulation in Pseudomonas. FEMS Microbiol Lett 2018; 364:3866594. [PMID: 28605536 PMCID: PMC5812540 DOI: 10.1093/femsle/fnx125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas.
Collapse
Affiliation(s)
- Lucia Grenga
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Richard H Little
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
34
|
Bandyra KJ, Luisi BF. RNase E and the High-Fidelity Orchestration of RNA Metabolism. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0008-2017. [PMID: 29676248 PMCID: PMC11633573 DOI: 10.1128/microbiolspec.rwr-0008-2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
The bacterial endoribonuclease RNase E occupies a pivotal position in the control of gene expression, as its actions either commit transcripts to an irreversible fate of rapid destruction or unveil their hidden functions through specific processing. Moreover, the enzyme contributes to quality control of rRNAs. The activity of RNase E can be directed and modulated by signals provided through regulatory RNAs that guide the enzyme to specific transcripts that are to be silenced. Early in its evolutionary history, RNase E acquired a natively unfolded appendage that recruits accessory proteins and RNA. These accessory factors facilitate the activity of RNase E and include helicases that remodel RNA and RNA-protein complexes, and polynucleotide phosphorylase, a relative of the archaeal and eukaryotic exosomes. RNase E also associates with enzymes from central metabolism, such as enolase and aconitase. RNase E-based complexes are diverse in composition, but generally bear mechanistic parallels with eukaryotic machinery involved in RNA-induced gene regulation and transcript quality control. That these similar processes arose independently underscores the universality of RNA-based regulation in life. Here we provide a synopsis and perspective of the contributions made by RNase E to sustain robust gene regulation with speed and accuracy.
Collapse
Affiliation(s)
- Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
35
|
Examination of Csr regulatory circuitry using epistasis analysis with RNA-seq (Epi-seq) confirms that CsrD affects gene expression via CsrA, CsrB and CsrC. Sci Rep 2018; 8:5373. [PMID: 29599472 PMCID: PMC5876332 DOI: 10.1038/s41598-018-23713-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/19/2018] [Indexed: 01/14/2023] Open
Abstract
The Csr global regulatory system coordinates gene expression in response to metabolic status. This system utilizes the RNA binding protein CsrA to regulate gene expression by binding to transcripts of structural and regulatory genes, thus affecting their structure, stability, translation, and/or transcription elongation. CsrA activity is controlled by sRNAs, CsrB and CsrC, which sequester CsrA away from other transcripts. CsrB/C levels are partly determined by their rates of turnover, which requires CsrD to render them susceptible to RNase E cleavage. Previous epistasis analysis suggested that CsrD affects gene expression through the other Csr components, CsrB/C and CsrA. However, those conclusions were based on a limited analysis of reporters. Here, we reassessed the global behavior of the Csr circuitry using epistasis analysis with RNA seq (Epi-seq). Because CsrD effects on mRNA levels were entirely lost in the csrA mutant and largely eliminated in a csrB/C mutant under our experimental conditions, while the majority of CsrA effects persisted in the absence of csrD, the original model accounts for the global behavior of the Csr system. Our present results also reflect a more nuanced role of CsrA as terminal regulator of the Csr system than has been recognized.
Collapse
|
36
|
Leistra AN, Amador P, Buvanendiran A, Moon-Walker A, Contreras LM. Rational Modular RNA Engineering Based on In Vivo Profiling of Structural Accessibility. ACS Synth Biol 2017; 6:2228-2240. [PMID: 28796489 DOI: 10.1021/acssynbio.7b00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial small RNAs (sRNAs) have been established as powerful parts for controlling gene expression. However, development and application of engineered sRNAs has primarily focused on regulating novel synthetic targets. In this work, we demonstrate a rational modular RNA engineering approach that uses in vivo structural accessibility measurements to tune the regulatory activity of a multisubstrate sRNA for differential control of its native target network. Employing the CsrB global sRNA regulator as a model system, we use published in vivo structural accessibility data to infer the contribution of its local structures (substructures) to function and select a subset for engineering. We then modularly recombine the selected substructures, differentially representing those of presumed high or low functional contribution, to build a library of 21 CsrB variants. Using fluorescent translational reporter assays, we demonstrate that the CsrB variants achieve a 5-fold gradient of control of well-characterized Csr network targets. Interestingly, results suggest that less conserved local structures within long, multisubstrate sRNAs may represent better targets for rational engineering than their well-conserved counterparts. Lastly, mapping the impact of sRNA variants on a signature Csr network phenotype indicates the potential of this approach for tuning the activity of global sRNA regulators in the context of metabolic engineering applications.
Collapse
Affiliation(s)
- Abigail N. Leistra
- McKetta
Department of Chemical Engineering, University of Texas at Austin, 200
E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Paul Amador
- Microbiology
Graduate Program, University of Texas at Austin, 100 E. 24th Street
Stop A6500, Austin, Texas 78712, United States
| | - Aishwarya Buvanendiran
- Biological
Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
| | - Alex Moon-Walker
- Biological
Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
| | - Lydia M. Contreras
- McKetta
Department of Chemical Engineering, University of Texas at Austin, 200
E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
37
|
Potts AH, Vakulskas CA, Pannuri A, Yakhnin H, Babitzke P, Romeo T. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat Commun 2017; 8:1596. [PMID: 29150605 PMCID: PMC5694010 DOI: 10.1038/s41467-017-01613-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
CsrA is a post-transcriptional regulatory protein that is widely distributed among bacteria. This protein influences bacterial lifestyle decisions by binding to the 5′ untranslated and/or early coding regions of mRNA targets, causing changes in translation initiation, RNA stability, and/or transcription elongation. Here, we assess the contribution of CsrA to gene expression in Escherichia coli on a global scale. UV crosslinking immunoprecipitation and sequencing (CLIP-seq) identify RNAs that interact directly with CsrA in vivo, while ribosome profiling and RNA-seq uncover the impact of CsrA on translation, RNA abundance, and RNA stability. This combination of approaches reveals unprecedented detail about the regulatory role of CsrA, including novel binding targets and physiological roles, such as in envelope function and iron homeostasis. Our findings highlight the integration of CsrA throughout the E. coli regulatory network, where it orchestrates vast effects on gene expression. The RNA-binding protein CsrA regulates the expression of hundreds of bacterial genes. Here, Potts et al. use several approaches to assess the contribution of CsrA to global gene expression in E. coli, revealing new binding targets and physiological roles such as in envelope function and iron homeostasis.
Collapse
Affiliation(s)
- Anastasia H Potts
- Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL, 32611-0700, USA
| | - Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL, 32611-0700, USA.,Integrated DNA Technologies, Molecular Genetics Department, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL, 32611-0700, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL, 32611-0700, USA.
| |
Collapse
|
38
|
Wu P, Liu X, Yang L, Sun Y, Gong Q, Wu J, Shi Y. The important conformational plasticity of DsrA sRNA for adapting multiple target regulation. Nucleic Acids Res 2017; 45:9625-9639. [PMID: 28934467 PMCID: PMC5766208 DOI: 10.1093/nar/gkx570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
In bacteria, small non-coding RNAs (sRNAs) could function in gene regulations under variable stress responses. DsrA is an ∼90-nucleotide Hfq-dependent sRNA found in Escherichia coli. It regulates the translation and degradation of multiple mRNAs, such as rpoS, hns, mreB and rbsD mRNAs. However, its functional structure and particularly how it regulates multiple mRNAs remain obscure. Using NMR, we investigated the solution structures of the full-length and isolated stem-loops of DsrA. We first solved the NMR structure of the first stem-loop (SL1), and further studied the melting process of the SL1 induced by the base-pairing with the rpoS mRNA and the A-form duplex formation of the DsrA/rpoS complex. The secondary structure of the second stem-loop (SL2) was also determined, which contains a lower stem and an upper stem with distinctive stability. Interestingly, two conformational states of SL2 in dynamic equilibrium were observed in our NMR spectra, suggesting that the conformational selection may occur during the base-pairing between DsrA and mRNAs. In summary, our study suggests that the conformational plasticity of DsrA may represent a special mechanism sRNA employed to deal with its multiple regulatory targets of mRNA.
Collapse
Affiliation(s)
- Pengzhi Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xiaodan Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Lingna Yang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yitong Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| |
Collapse
|
39
|
Hauryliuk V, Atkinson GC. Small Alarmone Synthetases as novel bacterial RNA-binding proteins. RNA Biol 2017; 14:1695-1699. [PMID: 28820325 DOI: 10.1080/15476286.2017.1367889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, antibiotic tolerance and pathogenicity. We have recently shown that the Small Alarmone Synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis has an RNA-binding activity (Beljantseva et al. 2017). RelQ's activities as an enzyme and as an RNA-binding protein are mutually incompatible: binding of single-stranded RNA potently inhibits (p)ppGpp synthesis in a sequence-specific manner, and RelQ's enzymatic activity destabilizes the RNA:RelQ complex. RelQ's allosteric regulator, pppGpp, destabilizes RNA binding and activates RelQ's enzymatic activity. Since SAS enzymes are widely distributed in bacteria, and, as has been discovered recently, are also mobilized by phages (Dedrick et al. 2017), RNA binding to SASs could be a widespread mechanism. The initial discovery raises numerous questions regarding RNA-binding function of the SAS enzymes: What is the molecular mechanism underlying the incompatibility of RNA:SAS complex formation with pppGpp binding and (p)ppGpp synthesis? What are the RNA targets in living cells? What is the regulatory output of the system - (p)ppGpp synthesis, modulation of RNA structure and function, or both?
Collapse
Affiliation(s)
- Vasili Hauryliuk
- a Department of Molecular Biology , Umeå University , 6L University Hospital Area, Umeå , Sweden.,b Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, University Hospital Area , Umeå , Sweden.,c University of Tartu, Institute of Technology , Tartu , Estonia
| | - Gemma C Atkinson
- a Department of Molecular Biology , Umeå University , 6L University Hospital Area, Umeå , Sweden
| |
Collapse
|
40
|
Sowa SW, Gelderman G, Leistra AN, Buvanendiran A, Lipp S, Pitaktong A, Vakulskas CA, Romeo T, Baldea M, Contreras LM. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Nucleic Acids Res 2017; 45:1673-1686. [PMID: 28126921 PMCID: PMC5389547 DOI: 10.1093/nar/gkx048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023] Open
Abstract
Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets.
Collapse
Affiliation(s)
- Steven W Sowa
- Microbiology Graduate Program, University of Texas at Austin, 100 E. 24th Street Stop A6500, Austin, TX 78712, USA
| | - Grant Gelderman
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Aishwarya Buvanendiran
- Biological Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, TX 78712, USA
| | - Sarah Lipp
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Areen Pitaktong
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Michael Baldea
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
41
|
Leskinen K, Pajunen MI, Varjosalo M, Fernández-Carrasco H, Bengoechea JA, Skurnik M. Several Hfq-dependent alterations in physiology of Yersinia enterocolitica O:3 are mediated by derepression of the transcriptional regulator RovM. Mol Microbiol 2017; 103:1065-1091. [PMID: 28010054 DOI: 10.1111/mmi.13610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2016] [Indexed: 12/27/2022]
Abstract
In bacteria, the RNA chaperone Hfq enables pairing of small regulatory RNAs with their target mRNAs and therefore is a key player of post-transcriptional regulation network. As a global regulator, Hfq is engaged in the adaptation to external environment, regulation of metabolism and bacterial virulence. In this study we used RNA-sequencing and quantitative proteomics (LC-MS/MS) to elucidate the role of this chaperone in the physiology and virulence of Yersinia enterocolitica serotype O:3. This global approach revealed the profound impact of Hfq on gene and protein expression. Furthermore, the role of Hfq in the cell morphology, metabolism, cell wall integrity, resistance to external stresses and pathogenicity was evaluated. Importantly, our results revealed that several alterations typical for the hfq-negative phenotype were due to derepression of the transcriptional factor RovM. The overexpression of RovM caused by the loss of Hfq chaperone resulted in extended growth defect, alterations in the lipid A structure, motility and biofilm formation defects, as well as changes in mannitol utilization. Furthermore, in Y. enterocolitica RovM only in the presence of Hfq affected the abundance of RpoS. Finally, the impact of hfq and rovM mutations on the virulence was assessed in the mouse infection model.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki.,Biocentrum Helsinki, Finland: Finnish Institute of Molecular Medicine, Finland
| | | | - José A Bengoechea
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
42
|
Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli. J Bacteriol 2016; 198:3000-3015. [PMID: 27551019 DOI: 10.1128/jb.00454-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/12/2016] [Indexed: 01/21/2023] Open
Abstract
Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. IMPORTANCE Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower-affinity mRNA targets, thus eliciting major shifts in the bacterial lifestyle. CsrB/C transcription and turnover are activated by carbon metabolism products (e.g., formate and acetate) and by a preferred carbon source (glucose), respectively. We show that cAMP-CRP, a mediator of classical catabolite repression, inhibits csrC transcription by binding to the upstream region of this gene and also inhibits csrB transcription, apparently indirectly. We propose that glucose availability activates pathways for both synthesis and turnover of CsrB/C, thus shaping the dynamics of global signaling in response to the nutritional environment by poising CsrB/C sRNA levels for rapid response.
Collapse
|
43
|
Primary and Secondary Sequence Structure Requirements for Recognition and Discrimination of Target RNAs by Pseudomonas aeruginosa RsmA and RsmF. J Bacteriol 2016; 198:2458-69. [PMID: 27381913 DOI: 10.1128/jb.00343-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED CsrA family RNA-binding proteins are widely distributed in bacteria and regulate gene expression at the posttranscriptional level. Pseudomonas aeruginosa has a canonical member of the CsrA family (RsmA) and a novel, structurally distinct variant (RsmF). To better understand RsmF binding properties, we performed parallel systematic evolution of ligands by exponential enrichment (SELEX) experiments for RsmA and RsmF. The initial target library consisted of 62-nucleotide (nt) RNA transcripts with central cores randomized at 15 sequential positions. Most targets selected by RsmA and RsmF were the expected size and shared a common consensus sequence (CANGGAYG) that was positioned in a hexaloop region of the stem-loop structure. RsmA and RsmF also selected for longer targets (≥96 nt) that were likely generated by rare PCR errors. Most of the long targets contained two consensus-binding sites. Representative short (single consensus site) and long (two consensus sites) targets were tested for RsmA and RsmF binding. Whereas RsmA bound the short targets with high affinity, RsmF was unable to bind the same targets. RsmA and RsmF both bound the long targets. Mutation of either consensus GGA site in the long targets reduced or eliminated RsmF binding, suggesting a requirement for two tandem binding sites. Conversely, RsmA bound long targets containing only a single GGA site with unaltered affinity. The RsmF requirement for two binding sites was confirmed with tssA1, an in vivo regulatory target of RsmA and RsmF. Our findings suggest that RsmF binding requires two GGA-containing sites, while RsmA binding requirements are less stringent. IMPORTANCE The CsrA family of RNA-binding proteins is widely conserved in bacteria and plays important roles in the posttranscriptional regulation of protein synthesis. P. aeruginosa has two CsrA proteins, RsmA and RsmF. Although RsmA and RsmF share a few RNA targets, RsmF is unable to bind to other targets recognized by RsmA. The goal of the present study was to better understand the basis for differential binding by RsmF. Our data indicate that RsmF binding requires target RNAs with two consensus-binding sites, while RsmA recognizes targets with just a single binding site. This information should prove useful to future efforts to define the RsmF regulon and its contribution to P. aeruginosa physiology and virulence.
Collapse
|
44
|
Fields JA, Li J, Gulbronson CJ, Hendrixson DR, Thompson SA. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization. PLoS One 2016; 11:e0156932. [PMID: 27257952 PMCID: PMC4892619 DOI: 10.1371/journal.pone.0156932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.
Collapse
Affiliation(s)
- Joshua A. Fields
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
- Department of Natural Sciences, Georgia Military College - Augusta, Augusta, GA, 30907, United States of America
| | - Jiaqi Li
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
| | - Connor J. Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
- * E-mail:
| |
Collapse
|
45
|
Vakulskas CA, Leng Y, Abe H, Amaki T, Okayama A, Babitzke P, Suzuki K, Romeo T. Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins. Nucleic Acids Res 2016; 44:7896-910. [PMID: 27235416 PMCID: PMC5027483 DOI: 10.1093/nar/gkw484] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
The widely conserved protein CsrA (carbon storage regulator A) globally regulates bacterial gene expression at the post-transcriptional level. In many species, CsrA activity is governed by untranslated sRNAs, CsrB and CsrC in Escherichia coli, which bind to multiple CsrA dimers, sequestering them from lower affinity mRNA targets. Both the synthesis and turnover of CsrB/C are regulated. Their turnover requires the housekeeping endonuclease RNase E and is activated by the presence of a preferred carbon source via the binding of EIIAGlc of the glucose transport system to the GGDEF-EAL domain protein CsrD. We demonstrate that the CsrB 3′ segment contains the features necessary for CsrD-mediated decay. RNase E cleavage in an unstructured segment located immediately upstream from the intrinsic terminator is necessary for subsequent degradation to occur. CsrA stabilizes CsrB against RNase E cleavage by binding to two canonical sites adjacent to the necessary cleavage site, while CsrD acts by overcoming CsrA-mediated protection. Our genetic, biochemical and structural studies establish a molecular framework for sRNA turnover by the CsrD-RNase E pathway. We propose that CsrD evolution was driven by the selective advantage of decoupling Csr sRNA decay from CsrA binding, connecting it instead to the availability of a preferred carbon source.
Collapse
Affiliation(s)
- Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Yuanyuan Leng
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Hazuki Abe
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Takumi Amaki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihiro Okayama
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Paul Babitzke
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| |
Collapse
|
46
|
Esquerré T, Bouvier M, Turlan C, Carpousis AJ, Girbal L, Cocaign-Bousquet M. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli. Sci Rep 2016; 6:25057. [PMID: 27112822 PMCID: PMC4844966 DOI: 10.1038/srep25057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 11/08/2022] Open
Abstract
Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.
Collapse
Affiliation(s)
- Thomas Esquerré
- Université de Toulouse, INSA, UPS, INP, LISBP, 135, avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France
- CNRS, UMR5504, 31400 Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Catherine Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Agamemnon J. Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Laurence Girbal
- Université de Toulouse, INSA, UPS, INP, LISBP, 135, avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France
- CNRS, UMR5504, 31400 Toulouse, France
| | - Muriel Cocaign-Bousquet
- Université de Toulouse, INSA, UPS, INP, LISBP, 135, avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France
- CNRS, UMR5504, 31400 Toulouse, France
| |
Collapse
|
47
|
Feliciano JR, Grilo AM, Guerreiro SI, Sousa SA, Leitão JH. Hfq: a multifaceted RNA chaperone involved in virulence. Future Microbiol 2015; 11:137-51. [PMID: 26685037 DOI: 10.2217/fmb.15.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hfq has emerged in recent years as a master regulator of gene expression in bacteria, mainly due to its ability to mediate the interaction of small noncoding RNAs with their mRNA targets, including those related to virulence in Gram-negative bacteria. In this work, we review current knowledge on the involvement of Hfq in the regulation of virulence traits related to secretion systems, alternative sigma factors, outer membrane proteins, polysaccharides and iron metabolism. Recent data from transcriptomics and proteomics studies performed for major pathogens are included. We also summarize and correlate current knowledge on how Hfq protein impacts pathogenicity of bacterial pathogens.
Collapse
Affiliation(s)
- Joana R Feliciano
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | - Soraia I Guerreiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H Leitão
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
48
|
CsrA Participates in a PNPase Autoregulatory Mechanism by Selectively Repressing Translation of pnp Transcripts That Have Been Previously Processed by RNase III and PNPase. J Bacteriol 2015; 197:3751-9. [PMID: 26438818 DOI: 10.1128/jb.00721-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Csr is a conserved global regulatory system that represses or activates gene expression posttranscriptionally. CsrA of Escherichia coli is a homodimeric RNA binding protein that regulates transcription elongation, translation initiation, and mRNA stability by binding to the 5' untranslated leader or initial coding sequence of target transcripts. pnp mRNA, encoding the 3' to 5' exoribonuclease polynucleotide phosphorylase (PNPase), was previously identified as a CsrA target by transcriptome sequencing (RNA-seq). Previous studies also showed that RNase III and PNPase participate in a pnp autoregulatory mechanism in which RNase III cleavage of the untranslated leader, followed by PNPase degradation of the resulting 5' fragment, leads to pnp repression by an undefined translational repression mechanism. Here we demonstrate that CsrA binds to two sites in pnp leader RNA but only after the transcript is fully processed by RNase III and PNPase. In the absence of processing, both of the binding sites are sequestered in an RNA secondary structure, which prevents CsrA binding. The CsrA dimer bridges the upstream high-affinity site to the downstream site that overlaps the pnp Shine-Dalgarno sequence such that bound CsrA causes strong repression of pnp translation. CsrA-mediated translational repression also leads to a small increase in the pnp mRNA decay rate. Although CsrA has been shown to regulate translation and mRNA stability of numerous genes in a variety of organisms, this is the first example in which prior mRNA processing is required for CsrA-mediated regulation. IMPORTANCE CsrA protein represses translation of numerous mRNA targets, typically by binding to multiple sites in the untranslated leader region preceding the coding sequence. We found that CsrA represses translation of pnp by binding to two sites in the pnp leader transcript but only after it is processed by RNase III and PNPase. Processing by these two ribonucleases alters the mRNA secondary structure such that it becomes accessible to the ribosome for translation as well as to CsrA. As one of the CsrA binding sites overlaps the pnp ribosome binding site, bound CsrA prevents ribosome binding. This is the first example in which regulation by CsrA requires prior mRNA processing and should link pnp expression to conditions affecting CsrA activity.
Collapse
|
49
|
Andresen L, Frolova J, Põllumaa L, Mäe A. Dual role of RsmA in the coordinated regulation of expression of virulence genes in Pectobacterium wasabiae strain SCC3193. MICROBIOLOGY-SGM 2015; 161:2079-86. [PMID: 26306750 DOI: 10.1099/mic.0.000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The CsrA/RsmA family of post-transcriptional regulators in bacteria is involved in regulating many cellular processes, including pathogenesis. Using a bioinformatics approach, we identified an RsmA binding motif, A(N)GGA, in the Shine-Dalgarno regions of 901 genes. Among these genes with the predicted RsmA binding motif, 358 were regulated by RsmA according to our previously published gene expression profiling analysis (WT vs rsmA negative mutant; Kõiv et al., 2013). A small subset of the predicted targets known to be important as virulence factors was selected for experimental validation. RNA footprint analyses demonstrated that RsmA binds specifically to the ANGGA motif in the 5'UTR sequences of celV1, pehA, pelB, pel2 and prtW. RsmA-dependent regulation of these five genes was examined in vivo using plasmid-borne translational and transcriptional fusions with a reporter gusA gene. They were all affected negatively by RsmA. However, we demonstrated that whereas the overall effect of RsmA on celV1 and prtW was determined on both the translational and transcriptional level, expression of pectinolytic enzyme genes (pehA, pel2 and pelB) was affected mainly on the level of transcription in tested conditions. In summary, these data indicate that RsmA controls virulence by integration of its regulatory activities at various levels.
Collapse
Affiliation(s)
- Liis Andresen
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Jekaterina Frolova
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Lee Põllumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Andres Mäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| |
Collapse
|
50
|
CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA. PLoS One 2015; 10:e0135481. [PMID: 26305456 PMCID: PMC4549057 DOI: 10.1371/journal.pone.0135481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/22/2015] [Indexed: 01/20/2023] Open
Abstract
The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production, suggesting CsrA enables potent Y. pestis biofilm production through cyclic diguanylate regulation.
Collapse
|