1
|
Stuckenschneider L, Graumann PL. Localization and Single Molecule Dynamics of Bacillus subtilis Penicillin-Binding Proteins Depend on Substrate Availability and Are Affected by Stress Conditions. Cells 2025; 14:429. [PMID: 40136678 PMCID: PMC11940910 DOI: 10.3390/cells14060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
We have used single molecule tracking to investigate dynamics of four penicillin-binding proteins (PBPs) in Bacillus subtilis to shed light on their possible modes of action. We show that Pbp2a, Pbp3, Pbp4, and Pbp4a, when expressed at very low levels, show at least two distinct states of mobility: a state of slow motion, likely representing molecules involved in cell wall synthesis, and a mode of fast motion, likely representing freely diffusing molecules. Except for Pbp4, all other PBPs showed about 50% molecules in the slow mobility state, suggesting that roughly half of all molecules are engaged in a substrate-bound mode. We observed similar coefficients for the slow mobility state for Pbp4 and Pbp4a on the one hand, and for Pbp2a and Pbp3 on the other hand, indicating possible joint activities, respectively. Upon induction of osmotic stress, Pbp2a and Pbp4a changed from a pattern of localization mostly at the lateral cell membrane to also include localization at the septum, revealing that sites of preferred positioning for these two PBPs can be modified during stress conditions. While Pbp3 became more dynamic after induction of osmotic stress, Pbp4 became more static, showing that PBPs reacted markedly differently to envelope stress conditions. The data suggest that PBPs could take over functions in cell wall synthesis during different stress conditions, increasing the resilience of cell wall homeostasis in different environmental conditions. All PBPs lost their respective localization pattern after the addition of vancomycin or penicillin G, indicating that patterns largely depend on substrate availability. Our findings show that PBPs rapidly alter between non-targeted motion through the cell membrane and capture at sites of active cell wall synthesis, most likely guided by complex formation with other cell wall synthesis enzymes.
Collapse
Affiliation(s)
- Lisa Stuckenschneider
- SYNMIKRO, Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Peter L. Graumann
- SYNMIKRO, Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
2
|
Arejan NH, Czapski DR, Buonomo JA, Boutte CC. MmpL3, Wag31, and PlrA are involved in coordinating polar growth with peptidoglycan metabolism and nutrient availability. J Bacteriol 2024; 206:e0020424. [PMID: 39320104 PMCID: PMC11500546 DOI: 10.1128/jb.00204-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of Mycobacterium smegmatis, we identify a connection between wag31 and trehalose monomycolate (TMM) transporter mmpl3 in a suppressor screen and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization. In addition, the localization of PlrA and MmpL3 is responsive to nutrient and energy deprivation and inhibition of peptidoglycan metabolism. We show that inhibition of MmpL3 causes delocalized cell wall metabolism but does not delocalize MmpL3 itself. We found that cells with an MmpL3 C-terminal truncation, which is defective for localization, have only minor defects in polar growth but are impaired in their ability to downregulate cell wall metabolism under stress. Our work suggests that, in addition to its established function in TMM transport, MmpL3 has a second function in regulating global cell wall metabolism in response to stress. Our data are consistent with a model in which the presence of TMMs in the periplasm stimulates polar elongation and in which the connection between Wag31, PlrA, and the C-terminus of MmpL3 is involved in detecting and responding to stress in order to coordinate the synthesis of the different layers of the mycobacterial cell wall in changing conditions. IMPORTANCE This study is performed in Mycobacterium smegmatis, which is used as a model to understand the basic physiology of pathogenic mycobacteria such as Mycobacterium tuberculosis. In this work, we examine the function and regulation of three proteins involved in regulating cell wall elongation in mycobacterial cells, which occurs at the cell tips or poles. We find that Wag31, a regulator of polar elongation, works partly through the regulation of MmpL3, a transporter of cell wall constituents and an important drug target. Our work suggests that, beyond its transport function, MmpL3 has another function in controlling cell wall synthesis broadly in response to stress.
Collapse
Affiliation(s)
| | - Desiree R. Czapski
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | - Joseph A. Buonomo
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | - Cara C. Boutte
- Department of Biology, University of Texas, Arlington, Texas, USA
| |
Collapse
|
3
|
Meyer FM, Bramkamp M. Cell wall synthesizing complexes in Mycobacteriales. Curr Opin Microbiol 2024; 79:102478. [PMID: 38653035 DOI: 10.1016/j.mib.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fabian M Meyer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
| |
Collapse
|
4
|
Kado T, Akbary Z, Motooka D, Sparks IL, Melzer ES, Nakamura S, Rojas ER, Morita YS, Siegrist MS. A cell wall synthase accelerates plasma membrane partitioning in mycobacteria. eLife 2023; 12:e81924. [PMID: 37665120 PMCID: PMC10547480 DOI: 10.7554/elife.81924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/02/2023] [Indexed: 09/05/2023] Open
Abstract
Lateral partitioning of proteins and lipids shapes membrane function. In model membranes, partitioning can be influenced both by bilayer-intrinsic factors like molecular composition and by bilayer-extrinsic factors such as interactions with other membranes and solid supports. While cellular membranes can departition in response to bilayer-intrinsic or -extrinsic disruptions, the mechanisms by which they partition de novo are largely unknown. The plasma membrane of Mycobacterium smegmatis spatially and biochemically departitions in response to the fluidizing agent benzyl alcohol, then repartitions upon fluidizer washout. By screening for mutants that are sensitive to benzyl alcohol, we show that the bifunctional cell wall synthase PonA2 promotes membrane partitioning and cell growth during recovery from benzyl alcohol exposure. PonA2's role in membrane repartitioning and regrowth depends solely on its conserved transglycosylase domain. Active cell wall polymerization promotes de novo membrane partitioning and the completed cell wall polymer helps to maintain membrane partitioning. Our work highlights the complexity of membrane-cell wall interactions and establishes a facile model system for departitioning and repartitioning cellular membranes.
Collapse
Affiliation(s)
- Takehiro Kado
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Zarina Akbary
- Department of Biology, New York UniversityNew YorkUnited States
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Emily S Melzer
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Enrique R Rojas
- Department of Biology, New York UniversityNew YorkUnited States
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Graduate Program, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
5
|
Abstract
Most bacteria have cell wall peptidoglycan surrounding their plasma membranes. The essential cell wall provides a scaffold for the envelope, protection against turgor pressure and is a proven drug target. Synthesis of the cell wall involves reactions that span cytoplasmic and periplasmic compartments. Bacteria carry out the last steps of cell wall synthesis along their plasma membrane. The plasma membrane in bacteria is heterogeneous and contains membrane compartments. Here, I outline findings that highlight the emerging notion that plasma membrane compartments and the cell wall peptidoglycan are functionally intertwined. I start by providing models of cell wall synthesis compartmentalization within the plasma membrane in mycobacteria, Escherichia coli, and Bacillus subtilis. Then, I revisit literature that supports a role for the plasma membrane and its lipids in modulating enzymatic reactions that synthesize cell wall precursors. I also elaborate on what is known about bacterial lateral organization of the plasma membrane and the mechanisms by which organization is established and maintained. Finally, I discuss the implications of cell wall partitioning in bacteria and highlight how targeting plasma membrane compartmentalization serves as a way to disrupt cell wall synthesis in diverse species.
Collapse
Affiliation(s)
- Alam García-Heredia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Zheng Q, Chang PV. Shedding Light on Bacterial Physiology with Click Chemistry. Isr J Chem 2023; 63:e202200064. [PMID: 37841997 PMCID: PMC10569449 DOI: 10.1002/ijch.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/11/2022]
Abstract
Bacteria constitute a major lifeform on this planet and play numerous roles in ecology, physiology, and human disease. However, conventional methods to probe their activities are limited in their ability to visualize and identify their functions in these diverse settings. In the last two decades, the application of click chemistry to label these microbes has deepened our understanding of bacterial physiology. With the development of a plethora of chemical tools that target many biological molecules, it is possible to track these microorganisms in real-time and at unprecedented resolution. Here, we review click chemistry, including bioorthogonal reactions, and their applications in imaging bacterial glycans, lipids, proteins, and nucleic acids using chemical reporters. We also highlight significant advances that have enabled biological discoveries that have heretofore remained elusive.
Collapse
Affiliation(s)
- Qiuyu Zheng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Ongwae GM, Lepori I, Chordia MD, Dalesandro BE, Apostolos AJ, Siegrist MS, Pires MM. Measurement of Small Molecule Accumulation into Diderm Bacteria. ACS Infect Dis 2023; 9:97-110. [PMID: 36530146 DOI: 10.1021/acsinfecdis.2c00435] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some of the most dangerous bacterial pathogens (Gram-negative and mycobacterial) deploy a formidable secondary membrane barrier to reduce the influx of exogenous molecules. For Gram-negative bacteria, this second exterior membrane is known as the outer membrane (OM), while for the Gram-indeterminate Mycobacteria, it is known as the "myco" membrane. Although different in composition, both the OM and mycomembrane are key structures that restrict the passive permeation of small molecules into bacterial cells. Although it is well-appreciated that such structures are principal determinants of small molecule permeation, it has proven to be challenging to assess this feature in a robust and quantitative way or in complex, infection-relevant settings. Herein, we describe the development of the bacterial chloro-alkane penetration assay (BaCAPA), which employs the use of a genetically encoded protein called HaloTag, to measure the uptake and accumulation of molecules into model Gram-negative and mycobacterial species, Escherichia coli and Mycobacterium smegmatis, respectively, and into the human pathogen Mycobacterium tuberculosis. The HaloTag protein can be directed to either the cytoplasm or the periplasm of bacteria. This offers the possibility of compartmental analysis of permeation across individual cell membranes. Significantly, we also showed that BaCAPA can be used to analyze the permeation of molecules into host cell-internalized E. coli and M. tuberculosis, a critical capability for analyzing intracellular pathogens. Together, our results show that BaCAPA affords facile measurement of permeability across four barriers: the host plasma and phagosomal membranes and the diderm bacterial cell envelope.
Collapse
Affiliation(s)
- George M Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Irene Lepori
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Mahendra D Chordia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Brianna E Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
8
|
Habibi Arejan N, Ensinck D, Diacovich L, Patel PB, Quintanilla SY, Emami Saleh A, Gramajo H, Boutte CC. Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum. Front Microbiol 2023; 13:1085918. [PMID: 36713172 PMCID: PMC9878328 DOI: 10.3389/fmicb.2022.1085918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Mycobacterial cell elongation occurs at the cell poles; however, it is not clear how cell wall insertion is restricted to the pole or how it is organized. Wag31 is a pole-localized cytoplasmic protein that is essential for polar growth, but its molecular function has not been described. In this study we used alanine scanning mutagenesis to identify Wag31 residues involved in cell morphogenesis. Our data show that Wag31 helps to control proper septation as well as new and old pole elongation. We have identified key amino acid residues involved in these essential functions. Enzyme assays revealed that Wag31 interacts with lipid metabolism by modulating acyl-CoA carboxylase (ACCase) activity. We show that Wag31 does not control polar growth by regulating the localization of cell wall precursor enzymes to the Intracellular Membrane Domain, and we also demonstrate that phosphorylation of Wag31 does not substantively regulate peptidoglycan metabolism. This work establishes new regulatory functions of Wag31 in the mycobacterial cell cycle and clarifies the need for new molecular models of Wag31 function.
Collapse
Affiliation(s)
- Neda Habibi Arejan
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Delfina Ensinck
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | - Arash Emami Saleh
- Department of Civil Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cara C. Boutte
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States,*Correspondence: Cara C. Boutte,
| |
Collapse
|
9
|
Localized Production of Cell Wall Precursors May Be Critical for Regulating the Mycobacterial Cell Wall. J Bacteriol 2022; 204:e0012522. [PMID: 35543536 DOI: 10.1128/jb.00125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paper "Cell wall damage reveals spatial flexibility in peptidoglycan synthesis and a nonredundant role for RodA in mycobacteria" by Melzer et al. (E. S. Melzer, T. Kado, A. Garcia-Heredia, K. R. Gupta, et al., J Bacteriol 204:e00540-21, 2022, https://doi.org/10.1128/JB.00540-21) presents several new observations about the localization and function of cell wall enzymes in Mycobacterium smegmatis and their responses to stress. This work illustrates some important aspects of cell wall physiology in mycobacteria and also points to a new model for how peptidoglycan synthesis may be organized in pole-growing bacteria.
Collapse
|