1
|
Rozova ON, But SY, Melnikov OI, Shavkunov KS, Ekimova GA, Khmelenina VN, Mustakhimov II. Methanotroph Methylotuvimicrobium alcaliphilum 20Z-3E as a fumarate producer: transcriptomic analysis and the role of malic enzyme. Int Microbiol 2025:10.1007/s10123-025-00647-6. [PMID: 40035991 DOI: 10.1007/s10123-025-00647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/06/2025]
Abstract
The halotolerant obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z is a promising biotechnological strain that has been repeatedly tested as a producer of high-added-value polycarbon compounds. The mutant M. alcaliphilum 20Z-3E lacking two fumarases and a malic enzyme is a potential fumarate producer. The analysis of strand-specific 3'-end sequencing of mRNA did not reveal any effects of the mutations on the central metabolism of the methanotroph; however, it showed a dramatic change in the expression of putative iron transport genes, as well as some genes associated with stress response. When the strain 20Z-3E grows at low salinity under methane, some part of fumarate is formed from aspartate, since the increase in salinity results in the biosynthesis of ectoine and the decrease in fumarate concentration. However, when the strain grows on methanol, the fumarate pool is lower and does not depend on the salinity of the medium. Our results have shown that deletion of the mae gene encoding malic enzyme makes a significant contribution to the fumarate accumulation. The strain 20Z-2F with the deletion of only two genes, fumI and fumII, demonstrated delayed growth under methane in comparison with 20Z and 20Z-3E strains. The branching of the tricarboxylic acid cycle due to the adenylosuccinate shunt, as well as the presence of malic enzyme, provides metabolic flexibility to M. alcaliphilum, which allows the methanotroph to adapt to a variety of external conditions and, on the other hand, us to modify its genome to obtain valuable products.
Collapse
Affiliation(s)
- O N Rozova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | - S Y But
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - O I Melnikov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - K S Shavkunov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences,", Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - G A Ekimova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - V N Khmelenina
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - I I Mustakhimov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Wang K, Song X, Cui B, Wang Y, Luo W. Metabolic Engineering of Escherichia coli for Efficient Production of Ectoine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:646-654. [PMID: 39723826 DOI: 10.1021/acs.jafc.4c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, Escherichia coli offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in E. coli. In this study, we aimed to enhance ectoine production in E. coli BL21(DE3) through systematic metabolic engineering strategies. We investigated the effects of the ectABC gene cluster sequence, plasmid copy number, and key gene copy number on ectoine synthesis. Using the original ectABC sequence with the high-copy-number plasmid pRSFDuet-1 resulted in the highest level of ectoine production. Knocking out genes encoding homoserine dehydrogenase and diaminopimelate decarboxylase reduced competing pathways, further increasing ectoine yield. Overexpression of aspartate semialdehyde dehydrogenase, aspartate kinase I (thrA*), aspartate aminotransferase, and aspartate ammonia-lyase (aspA) was performed, and optimal gene copy numbers were determined. When the copy numbers of thrA* and aspA were both three, ectoine synthesis improved, reaching 1.91 g/L. Enhancing the oxaloacetate pool by overexpressing phosphoenolpyruvate carboxylase (ppc) or introducing pyruvate carboxylase (pyc) from Corynebacterium glutamicum further increased ectoine production to 4.99 g/L. Balancing NADPH and ATP levels through cofactor engineering contributed to additional production improvements. Combining these strain engineering strategies, we ultimately constructed strain C24, which produced 35.33 g/L ectoine in a 5 L fermenter with a glucose conversion rate of 0.21 g/g. These results demonstrate that targeted metabolic engineering can significantly enhance ectoine production in E. coli, providing a foundation for industrial-scale production.
Collapse
Affiliation(s)
- Ke Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xitong Song
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian 351100, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Boya Cui
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Wei Luo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Lim SE, Cho S, Choi Y, Na JG, Lee J. High production of ectoine from methane in genetically engineered Methylomicrobium alcaliphilum 20Z by preventing ectoine degradation. Microb Cell Fact 2024; 23:127. [PMID: 38698430 PMCID: PMC11067125 DOI: 10.1186/s12934-024-02404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Methane is a greenhouse gas with a significant potential to contribute to global warming. The biological conversion of methane to ectoine using methanotrophs represents an environmentally and economically beneficial technology, combining the reduction of methane that would otherwise be combusted and released into the atmosphere with the production of value-added products. RESULTS In this study, high ectoine production was achieved using genetically engineered Methylomicrobium alcaliphilum 20Z, a methanotrophic ectoine-producing bacterium, by knocking out doeA, which encodes a putative ectoine hydrolase, resulting in complete inhibition of ectoine degradation. Ectoine was confirmed to be degraded by doeA to N-α-acetyl-L-2,4-diaminobutyrate under nitrogen depletion conditions. Optimal copper and nitrogen concentrations enhanced biomass and ectoine production, respectively. Under optimal fed-batch fermentation conditions, ectoine production proportionate with biomass production was achieved, resulting in 1.0 g/L of ectoine with 16 g/L of biomass. Upon applying a hyperosmotic shock after high-cell-density culture, 1.5 g/L of ectoine was obtained without further cell growth from methane. CONCLUSIONS This study suggests the optimization of a method for the high production of ectoine from methane by preventing ectoine degradation. To our knowledge, the final titer of ectoine obtained by M. alcaliphilum 20ZDP3 was the highest in the ectoine production from methane to date. This is the first study to propose ectoine production from methane applying high cell density culture by preventing ectoine degradation.
Collapse
Affiliation(s)
- Sang Eun Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Sukhyeong Cho
- C1 Gas Refinery R&D Center, Sogang University, Seoul, Republic of Korea
| | - Yejin Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
- C1 Gas Refinery R&D Center, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Chen J, Qiao D, Yuan T, Feng Y, Zhang P, Wang X, Zhang L. Biotechnological production of ectoine: current status and prospects. Folia Microbiol (Praha) 2024; 69:247-258. [PMID: 37962826 DOI: 10.1007/s12223-023-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Ectoine is an important natural secondary metabolite in halophilic microorganisms. It protects cells against environmental stressors, such as salinity, freezing, drying, and high temperatures. Ectoine is widely used in medical, cosmetic, and other industries. Due to the commercial market demand of ectoine, halophilic microorganisms are the primary method for producing ectoine, which is produced using the industrial fermentation process "bacterial milking." The method has some limitations, such as the high salt concentration fermentation, which is highly corrosive to the equipment, and this also increases the difficulty of downstream purification and causes high production costs. The ectoine synthesis gene cluster has been successfully heterologously expressed in industrial microorganisms, and the yield of ectoine was significantly increased and the cost was reduced. This review aims to summarize and update microbial production of ectoine using different microorganisms, environments, and metabolic engineering and fermentation strategies and provides important reference for the development and application of ectoine.
Collapse
Affiliation(s)
- Jun Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, 23702, China
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources, State Oceanic Administration & Second Institute of Oceanography, Hangzhou, 310012, China
| | - Deliang Qiao
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China
| | - Tao Yuan
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yeyuan Feng
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Pengjun Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Xuejun Wang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Li Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China.
| |
Collapse
|
5
|
Cha S, Cho YJ, Lee JK, Hahn JS. Regulation of acetate tolerance by small ORF-encoded polypeptides modulating efflux pump specificity in Methylomonas sp. DH-1. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:114. [PMID: 37464261 DOI: 10.1186/s13068-023-02364-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Methanotrophs have emerged as promising hosts for the biological conversion of methane into value-added chemicals, including various organic acids. Understanding the mechanisms of acid tolerance is essential for improving organic acid production. WatR, a LysR-type transcriptional regulator, was initially identified as involved in lactate tolerance in a methanotrophic bacterium Methylomonas sp. DH-1. In this study, we investigated the role of WatR as a regulator of cellular defense against weak organic acids and identified novel target genes of WatR. RESULTS By conducting an investigation into the genome-wide binding targets of WatR and its role in transcriptional regulation, we identified genes encoding an RND-type efflux pump (WatABO pump) and previously unannotated small open reading frames (smORFs), watS1 to watS5, as WatR target genes activated in response to acetate. The watS1 to watS5 genes encode polypeptides of approximately 50 amino acids, and WatS1 to WatS4 are highly homologous with one predicted transmembrane domain. Deletion of the WatABO pump genes resulted in decreased tolerance against formate, acetate, lactate, and propionate, suggesting its role as an efflux pump for a wide range of weak organic acids. WatR repressed the basal expression of watS genes but activated watS and WatABO pump genes in response to acetate stress. Overexpression of watS1 increased tolerance to acetate but not to other acids, only in the presence of the WatABO pump. Therefore, WatS1 may increase WatABO pump specificity toward acetate, switching the general weak acid efflux pump to an acetate-specific efflux pump for efficient cellular defense against acetate stress. CONCLUSIONS Our study has elucidated the role of WatR as a key transcription factor in the cellular defense against weak organic acids, particularly acetate, in Methylomonas sp. DH-1. We identified the genes encoding WatABO efflux pump and small polypeptides (WatS1 to WatS5), as the target genes regulated by WatR for this specific function. These findings offer valuable insights into the mechanisms underlying weak acid tolerance in methanotrophic bacteria, thereby contributing to the development of bioprocesses aimed at converting methane into value-added chemicals.
Collapse
Affiliation(s)
- Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Gangwondaehakgil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jong Kwan Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Boas Lichty KE, Gregory GJ, Boyd EF. NhaR, LeuO, and H-NS Are Part of an Expanded Regulatory Network for Ectoine Biosynthesis Expression. Appl Environ Microbiol 2023; 89:e0047923. [PMID: 37278653 PMCID: PMC10304999 DOI: 10.1128/aem.00479-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
Bacteria accumulate compatible solutes to maintain cellular turgor pressure when exposed to high salinity. In the marine halophile Vibrio parahaemolyticus, the compatible solute ectoine is biosynthesized de novo, which is energetically more costly than uptake; therefore, tight regulation is required. To uncover novel regulators of the ectoine biosynthesis ectABC-asp_ect operon, a DNA affinity pulldown of proteins interacting with the ectABC-asp_ect regulatory region was performed. Mass spectrometry analysis identified, among others, 3 regulators: LeuO, NhaR, and the nucleoid associated protein H-NS. In-frame non-polar deletions were made for each gene and PectA-gfp promoter reporter assays were performed in exponential and stationary phase cells. PectA-gfp expression was significantly repressed in the ΔleuO mutant and significantly induced in the ΔnhaR mutant compared to wild type, suggesting positive and negative regulation, respectively. In the Δhns mutant, PectA-gfp showed increased expression in exponential phase cells, but no change compared to wild type in stationary phase cells. To examine whether H-NS interacts with LeuO or NhaR at the ectoine regulatory region, double deletion mutants were created. In a ΔleuO/Δhns mutant, PectA-gfp showed reduced expression, but significantly more than ΔleuO, suggesting H-NS and LeuO interact to regulate ectoine expression. However, ΔnhaR/Δhns had no additional effect compared to ΔnhaR, suggesting NhaR regulation is independent of H-NS. To examine leuO regulation further, a PleuO-gfp reporter analysis was examined that showed significantly increased expression in the ΔleuO, Δhns, and ΔleuO/Δhns mutants compared to wild type, indicating both are repressors. Growth pattern analysis of the mutants in M9G 6%NaCl showed growth defects compared to wild type, indicating that these regulators play an important physiological role in salinity stress tolerance outside of regulating ectoine biosynthesis gene expression. IMPORTANCE Ectoine is a commercially used compatible solute that acts as a biomolecule stabilizer because of its additional role as a chemical chaperone. A better understanding of how the ectoine biosynthetic pathway is regulated in natural bacterial producers can be used to increase efficient industrial production. The de novo biosynthesis of ectoine is essential for bacteria to survive osmotic stress when exogenous compatible solutes are absent. This study identified LeuO as a positive regulator and NhaR as a negative regulator of ectoine biosynthesis and showed that, similar to enteric species, LeuO is an anti-silencer of H-NS. In addition, defects in growth in high salinity among all the mutants suggest that these regulators play a broader role in the osmotic stress response beyond ectoine biosynthesis regulation.
Collapse
Affiliation(s)
| | - Gwendolyn J. Gregory
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
7
|
Mrudulakumari Vasudevan U, Mai DHA, Krishna S, Lee EY. Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnol Adv 2023; 63:108097. [PMID: 36634856 DOI: 10.1016/j.biotechadv.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Methanotrophs are potent natural producers of several bioactive secondary metabolites (SMs) including isoprenoids, polymers, peptides, and vitamins. Cryptic biosynthetic gene clusters identified from these microbes via genome mining hinted at the vast and hidden SM biosynthetic potential of these microbes. Central carbon metabolism in methanotrophs offers rare pathway intermediate pools that could be further diversified using advanced synthetic biology tools to produce valuable SMs; for example, plant polyketides, rare carotenoids, and fatty acid-derived SMs. Recent advances in pathway reconstruction and production of isoprenoids, squalene, ectoine, polyhydroxyalkanoate copolymer, cadaverine, indigo, and shinorine serve as proof-of-concept. This review provides theoretical guidance for developing methanotrophs as microbial chassis for high-value SMs. We summarize the distinct secondary metabolic potentials of type I and type II methanotrophs, with specific attention to products relevant to biomedical applications. This review also includes native and non-native SMs from methanotrophs, their therapeutic potential, strategies to induce silent biosynthetic gene clusters, and challenges.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dung Hoang Anh Mai
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
8
|
Huang X, Song Q, Guo S, Fei Q. Transcription regulation strategies in methylotrophs: progress and challenges. BIORESOUR BIOPROCESS 2022; 9:126. [PMID: 38647763 PMCID: PMC10992012 DOI: 10.1186/s40643-022-00614-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
As a promising industrial microorganism, methylotroph is capable of using methane or methanol as the sole carbon source natively, which has been utilized in the biosynthesis of various bioproducts. However, the relatively low efficiency of carbon conversion has become a limiting factor throughout the development of methanotrophic cell factories due to the unclear genetic background. To better highlight their advantages in methane or methanol-based biomanufacturing, some metabolic engineering strategies, including upstream transcription regulation projects, are being popularized in methylotrophs. In this review, several strategies of transcription regulations applied in methylotrophs are summarized and their applications are discussed and prospected.
Collapse
Affiliation(s)
- Xiaohan Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiaoqiao Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
9
|
Khmelenina VN, But SY, Rozova ON, Oshkin IY, Pimenov NV, Dedysh SN. Genome Editing in Methanotrophic Bacteria: Potential Targets and Available Tools. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Cho S, Lee YS, Chai H, Lim SE, Na JG, Lee J. Enhanced production of ectoine from methane using metabolically engineered Methylomicrobium alcaliphilum 20Z. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:5. [PMID: 35418141 PMCID: PMC8759281 DOI: 10.1186/s13068-022-02104-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Background Ectoine (1,3,4,5-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is an attractive compatible solute because of its wide industrial applications. Previous studies on the microbial production of ectoine have focused on sugar fermentation. Alternatively, methane can be used as an inexpensive and abundant resource for ectoine production by using the halophilic methanotroph, Methylomicrobium alcaliphilum 20Z. However, there are some limitations, including the low production of ectoine from methane and the limited tools for the genetic manipulation of methanotrophs to facilitate their use as industrial strains. Results We constructed M. alcaliphilum 20ZDP with a high conjugation efficiency and stability of the episomal plasmid by the removal of its native plasmid. To improve the ectoine production in M. alcaliphilum 20Z from methane, the ectD (encoding ectoine hydroxylase) and ectR (transcription repressor of the ectABC-ask operon) were deleted to reduce the formation of by-products (such as hydroxyectoine) and induce ectoine production. When the double mutant was batch cultured with methane, ectoine production was enhanced 1.6-fold compared to that obtained with M. alcaliphilum 20ZDP (45.58 mg/L vs. 27.26 mg/L) without growth inhibition. Notably, a maximum titer of 142.32 mg/L was reached by the use of an optimized medium for ectoine production containing 6% NaCl and 0.05 μM of tungsten without hydroxyectoine production. This result demonstrates the highest ectoine production from methane to date. Conclusions Ectoine production was significantly enhanced by the disruption of the ectD and ectR genes in M. alcaliphilum 20Z under optimized conditions favoring ectoine accumulation. We demonstrated effective genetic engineering in a methanotrophic bacterium, with enhanced production of ectoine from methane as the sole carbon source. This study suggests a potentially transformational path to commercial sugar-based ectoine production. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02104-2.
Collapse
|
11
|
Whole-Genome Sequencing of the Tropical Marine Bacterium Nocardiopsis dassonvillei NCIM 5124, Containing the Ectoine Biosynthesis Gene Cluster
ectABC. Microbiol Resour Announc 2022; 11:e0043522. [PMID: 36154194 PMCID: PMC9584341 DOI: 10.1128/mra.00435-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence (7,057,619 bp; GC content, 72.07%) of a tropical marine isolate, Nocardiopsis dassonvillei NCIM 5124, containing the biomedically and biotechnologically important gene cluster ectABC is reported here.
Collapse
|
12
|
Czech L, Gertzen C, Smits SHJ, Bremer E. Guilty by association: importers, exporters and
MscS
‐type mechanosensitive channels encoded in biosynthetic gene clusters for the stress‐protectant ectoine. Environ Microbiol 2022; 24:5306-5331. [DOI: 10.1111/1462-2920.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Czech
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
- Department of Chemistry and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Christoph Gertzen
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Pharmaceutical and Medicinal Chemistry Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Sander H. J. Smits
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Biochemistry Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| |
Collapse
|
13
|
Awasthi D, Tang YH, Amer B, Baidoo EEK, Gin J, Chen Y, Petzold CJ, Kalyuzhnaya M, Singer SW. OUP accepted manuscript. J Ind Microbiol Biotechnol 2022; 49:6521446. [PMID: 35134957 PMCID: PMC9118986 DOI: 10.1093/jimb/kuac002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
Abstract
Rhamnolipids (RLs) are well-studied biosurfactants naturally produced by pathogenic strains of Pseudomonas aeruginosa. Current methods to produce RLs in native and heterologous hosts have focused on carbohydrates as production substrate; however, methane (CH4) provides an intriguing alternative as a substrate for RL production because it is low cost and may mitigate greenhouse gas emissions. Here, we demonstrate RL production from CH4 by Methylotuvimicrobium alcaliphilum DSM19304. RLs are inhibitory to M. alcaliphilum growth (<0.05 g/l). Adaptive laboratory evolution was performed by growing M. alcaliphilum in increasing concentrations of RLs, producing a strain that grew in the presence of 5 g/l of RLs. Metabolomics and proteomics of the adapted strain grown on CH4 in the absence of RLs revealed metabolic changes, increase in fatty acid production and secretion, alterations in gluconeogenesis, and increased secretion of lactate and osmolyte products compared with the parent strain. Expression of plasmid-borne RL production genes in the parent M. alcaliphilum strain resulted in cessation of growth and cell death. In contrast, the adapted strain transformed with the RL production genes showed no growth inhibition and produced up to 1 μM of RLs, a 600-fold increase compared with the parent strain, solely from CH4. This work has promise for developing technologies to produce fatty acid-derived bioproducts, including biosurfactants, from CH4.
Collapse
Affiliation(s)
- Deepika Awasthi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yung-Hsu Tang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bashar Amer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer Gin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marina Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Steven W Singer
- Correspondence should be addressed to: Steven W. Singer. Tel: 510-486-5556; Fax: 510-486-4252; E-mail:
| |
Collapse
|
14
|
Argandoña M, Piubeli F, Reina‐Bueno M, Nieto JJ, Vargas C. New insights into hydroxyectoine synthesis and its transcriptional regulation in the broad-salt growing halophilic bacterium Chromohalobacter salexigens. Microb Biotechnol 2021; 14:1472-1493. [PMID: 33955667 PMCID: PMC8313267 DOI: 10.1111/1751-7915.13799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022] Open
Abstract
Elucidating the mechanisms controlling the synthesis of hydroxyectoine is important to design novel genetic engineering strategies for optimizing the production of this biotechnologically relevant compatible solute. The genome of the halophilic bacterium Chromohalobacter salexigens carries two ectoine hydroxylase genes, namely ectD and ectE, whose encoded proteins share the characteristic consensus motif of ectoine hydroxylases but showed only a 51.9% identity between them. In this work, we have shown that ectE encodes a secondary functional ectoine hydroxylase and that the hydroxyectoine synthesis mediated by this enzyme contributes to C.␣salexigens thermoprotection. The evolutionary pattern of EctD and EctE and related proteins suggests that they may have arisen from duplication of an ancestral gene preceding the directional divergence that gave origin to the orders Oceanospirillales and Alteromonadales. Osmoregulated expression of ectD at exponential phase, as well as the thermoregulated expression of ectD at the stationary phase, seemed to be dependent on the general stress factor RpoS. In contrast, expression of ectE was always RpoS-dependent regardless of the growth phase and osmotic or heat stress conditions tested. The data presented here suggest that the AraC-GlxA-like EctZ transcriptional regulator, whose encoding gene lies upstream of ectD, plays a dual function under exponential growth as both a transcriptional activator of osmoregulated ectD expression and a repressor of ectE transcription, privileging the synthesis of the main ectoine hydroxylase EctD. Inactivation of ectZ resulted in a higher amount of the total ectoines pool at the expenses of a higher accumulation of ectoine, with maintenance of the hydroxyectoine levels. In addition to the transcriptional control, our results suggest a strong post-transcriptional regulation of hydroxyectoine synthesis. Data on the accumulation of ectoine and hydroxyectoine in rpoS and ectZ strains pave the way for using these genetic backgrounds for metabolic engineering for hydroxyectoine production.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Francine Piubeli
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Mercedes Reina‐Bueno
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Joaquín J. Nieto
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Carmen Vargas
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| |
Collapse
|
15
|
Hermann L, Mais CN, Czech L, Smits SHJ, Bange G, Bremer E. The ups and downs of ectoine: structural enzymology of a major microbial stress protectant and versatile nutrient. Biol Chem 2021; 401:1443-1468. [PMID: 32755967 DOI: 10.1515/hsz-2020-0223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ectoine and its derivative 5-hydroxyectoine are compatible solutes and chemical chaperones widely synthesized by Bacteria and some Archaea as cytoprotectants during osmotic stress and high- or low-growth temperature extremes. The function-preserving attributes of ectoines led to numerous biotechnological and biomedical applications and fostered the development of an industrial scale production process. Synthesis of ectoines requires the expenditure of considerable energetic and biosynthetic resources. Hence, microorganisms have developed ways to exploit ectoines as nutrients when they are no longer needed as stress protectants. Here, we summarize our current knowledge on the phylogenomic distribution of ectoine producing and consuming microorganisms. We emphasize the structural enzymology of the pathways underlying ectoine biosynthesis and consumption, an understanding that has been achieved only recently. The synthesis and degradation pathways critically differ in the isomeric form of the key metabolite N-acetyldiaminobutyric acid (ADABA). γ-ADABA serves as preferred substrate for the ectoine synthase, while the α-ADABA isomer is produced by the ectoine hydrolase as an intermediate in catabolism. It can serve as internal inducer for the genetic control of ectoine catabolic genes via the GabR/MocR-type regulator EnuR. Our review highlights the importance of structural enzymology to inspire the mechanistic understanding of metabolic networks at the biological scale.
Collapse
Affiliation(s)
- Lucas Hermann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Karl-von Frisch Str. 10, D-35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Laura Czech
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| |
Collapse
|
16
|
Gregory GJ, Boyd EF. Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J 2021; 19:1014-1027. [PMID: 33613867 PMCID: PMC7876524 DOI: 10.1016/j.csbj.2021.01.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria have evolved mechanisms that allow them to adapt to changes in osmolarity and some species have adapted to live optimally in high salinity environments such as in the marine ecosystem. Most bacteria that live in high salinity do so by the biosynthesis and/or uptake of compatible solutes, small organic molecules that maintain the turgor pressure of the cell. Osmotic stress response mechanisms and their regulation among marine heterotrophic bacteria are poorly understood. In this review, we discuss what is known about compatible solute metabolism and transport and new insights gained from studying marine bacteria belonging to the family Vibrionaceae.
Collapse
Affiliation(s)
| | - E. Fidelma Boyd
- Corresponding author at: Department of Biological Sciences, 341 Wolf Hall, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
17
|
Sinha RK, Krishnan KP, Kurian PJ. Complete genome sequence and comparative genome analysis of Alcanivorax sp. IO_7, a marine alkane-degrading bacterium isolated from hydrothermally-influenced deep seawater of southwest Indian ridge. Genomics 2020; 113:884-891. [PMID: 33096255 DOI: 10.1016/j.ygeno.2020.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Genome of Alcanivorax sp. IO_7, an alkane degrading deep-sea bacteria isolated from hydrothermally-influenced Southwest Indian Ridge was sequenced and analysed. Genomic data mining revealed gene clusters for degrading n-alkane and cycloalkanes, including biosurfactant production. The strain was shown to grow on hexadecane as its sole carbon source, supporting the findings of genomic analysis. Presence of cyclohexanone monooxygenase among genomic islands suggest that this strain may have used gene transfer to enhance its hydrocarbon degradation ability. Genes encoding for heavy metal resistance, multidrug resistance and multiple natural product biosynthesis crucial for survival in the hydrothermally influenced deep sea environment were detected. In our comparative genome analysis, it was evident that marine Alcanivorax strains contain a suite of enzymes for n-alkane and haloalkanoate degradation. Comparative genome and genomic synteny analysis provided insights into the physiological features and adaptation strategies of Alcanivorax sp. IO_7 in the deep-sea hydrothermal environment.
Collapse
Affiliation(s)
- Rupesh Kumar Sinha
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama 403804, Goa, India.
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama 403804, Goa, India.
| | - P John Kurian
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama 403804, Goa, India.
| |
Collapse
|
18
|
But SY, Dedysh SN, Popov VO, Pimenov NV, Khmelenina VN. Construction of a Type-I Metanotroph with Reduced Capacity for Glycogen and Sucrose Accumulation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820050063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
CosR Is a Global Regulator of the Osmotic Stress Response with Widespread Distribution among Bacteria. Appl Environ Microbiol 2020; 86:AEM.00120-20. [PMID: 32169942 DOI: 10.1128/aem.00120-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Bacteria accumulate small, organic compounds called compatible solutes via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (encoded by ectABC-asp_ect) and glycine betaine (encoded by betIBA-proXWV), four betaine-carnitine-choline transporters (encoded by bccT1 to bccT4), and a second ProU transporter (encoded by proVWX). All of these systems are osmotically inducible with the exception of bccT2 Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABC-asp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBA-proXWV, bccT1, bccT3, bccT4, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed that expression of these systems is derepressed in the mutant at low salinity compared with the wild type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli green fluorescent protein (GFP) reporter assays, we demonstrated that CosR directly represses transcription of betIBA-proXWV, bccT3, and proVWX Similar to Vibrio harveyi, we showed betIBA-proXWV was directly activated by the quorum-sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family, and bioinformatics analysis showed widespread distribution among Gammaproteobacteria in general. Incidentally, in Aliivibrio fischeri, Aliivibrio finisterrensis, Aliivibrio sifiae, and Aliivibrio wodanis, an unrelated MarR-type regulator gene named ectR was clustered with ectABC-asp, which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria.IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gammaproteobacteria Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated.
Collapse
|
20
|
Reshetnikov AS, Rozova ON, Trotsenko YA, But SY, Khmelenina VN, Mustakhimov II. Ectoine degradation pathway in halotolerant methylotrophs. PLoS One 2020; 15:e0232244. [PMID: 32353000 PMCID: PMC7192451 DOI: 10.1371/journal.pone.0232244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/10/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Microorganisms living in saline environments are forced to regulate turgor via the synthesis of organic osmoprotective compounds. Microbial adaptation to fluctuations in external salinity includes degradation of compatible solutes. Here we have examined the biochemical pathway of degradation of the cyclic imino acid ectoine, the major osmoprotector in halotolerant methane-utilizing bacteria. METHODS The BLAST search of the genes involved in ectoine degradation in the halotolerant methanotroph Methylotuvimicrobium alcaliphilum 20Z was performed with the reference sequences of Halomonas elongata. The genes for the key enzymes of the pathway were disrupted by insertion mutagenesis and the cellular metabolites in the methanol extracts of mutant cells were analyzed by HPLC. The doeA gene from Mm. alcaliphilum 20Z was heterologously expressed in Escherichia coli to identify the product of ectoine hydrolysis catalyzed by ectoine hydrolase DoeA. RESULTS We have shown that the halotolerant methanotroph Mm. alcaliphilum 20Z possesses the doeBDAC gene cluster coding for putative ectoine hydrolase (DoeA), Nα-acetyl-L-2,4-diaminobutyrate deacetylase (DoeB), diaminobutyrate transaminase (DoeD) and aspartate-semialdehyde dehydrogenase (DoeC). The deletion of the doeA gene resulted in accumulation of the higher level of ectoine compared to the wild type strain. Nγ-acetyl-L-2,4-diaminobutyrate (Nγ-acetyl-DAB), a substrate for ectoine synthase, was found in the cytoplasm of the wild type strain. Nα-acetyl-L-2,4-diaminobutyrate (Nα-acetyl-DAB), a substrate for the DoeB enzyme, appeared in the cells as a result of exposure of the doeB mutant to low osmotic pressure. The genes for the enzymes involved in ectoine degradation were found in all aerobic methylotrophs capable of ectoine biosynthesis. These results provide the first evidence for the in vivo operation of the ectoine degradation pathway in methanotrophs and thus expand our understanding of the regulation mechanisms of bacterial osmoadaptation. CONCLUSIONS During adaptation to the changes in external osmolarity, halophilic and halotolerant methylotrophs cleave ectoine, thereby entering the carbon and nitrogen of the compatible solute to the central metabolic pathways. The biochemical route of ectoine degradation in the halotolerant methanotroph Mm. alcaliphilum 20Z is similar to that in heterotrophic halophiles. We have shown that ectoine hydrolase DoeA in this methanotroph hydrolyzes ectoine with the formation of the only isomer: Nα-acetyl-DAB. All aerobic methylotrophs capable of ectoine biosynthesis harbor the genetic determinants for ectoine degradation.
Collapse
Affiliation(s)
- Aleksander S. Reshetnikov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Olga N. Rozova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Yuri A. Trotsenko
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Sergey Yu. But
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Valentina N. Khmelenina
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Ildar I. Mustakhimov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
21
|
Richter AA, Mais CN, Czech L, Geyer K, Hoeppner A, Smits SHJ, Erb TJ, Bange G, Bremer E. Biosynthesis of the Stress-Protectant and Chemical Chaperon Ectoine: Biochemistry of the Transaminase EctB. Front Microbiol 2019; 10:2811. [PMID: 31921013 PMCID: PMC6915088 DOI: 10.3389/fmicb.2019.02811] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria frequently adapt to high osmolarity surroundings through the accumulation of compatible solutes. Ectoine is a prominent member of these types of stress protectants and is produced via an evolutionarily conserved biosynthetic pathway beginning with the L-2,4-diaminobutyrate (DAB) transaminase (TA) EctB. Here, we studied EctB from the thermo-tolerant Gram-positive bacterium Paenibacillus lautus (Pl) and show that this tetrameric enzyme is highly tolerant to salt, pH, and temperature. During ectoine biosynthesis, EctB converts L-glutamate and L-aspartate-beta-semialdehyde into 2-oxoglutarate and DAB, but it also catalyzes the reverse reaction. Our analysis unravels that EctB enzymes are mechanistically identical to the PLP-dependent gamma-aminobutyrate TAs (GABA-TAs) and only differ with respect to substrate binding. Inspection of the genomic context of the ectB gene in P. lautus identifies an unusual arrangement of juxtapositioned genes for ectoine biosynthesis and import via an Ehu-type binding-protein-dependent ABC transporter. This operon-like structure suggests the operation of a highly coordinated system for ectoine synthesis and import to maintain physiologically adequate cellular ectoine pools under osmotic stress conditions in a resource-efficient manner. Taken together, our study provides an in-depth mechanistic and physiological description of EctB, the first enzyme of the ectoine biosynthetic pathway.
Collapse
Affiliation(s)
- Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Christopher-Nils Mais
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Kyra Geyer
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias J Erb
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
22
|
Mustakhimov II, Reshetnikov AS, But SY, Rozova ON, Khmelenina VN, Trotsenko YA. Engineering of Hydroxyectoine Production based on the Methylomicrobium alcaliphilum. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819130015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Quorum Sensing Regulators AphA and OpaR Control Expression of the Operon Responsible for Biosynthesis of the Compatible Solute Ectoine. Appl Environ Microbiol 2019; 85:AEM.01543-19. [PMID: 31519665 DOI: 10.1128/aem.01543-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
To maintain the turgor pressure of the cell under high osmolarity, bacteria accumulate small organic compounds called compatible solutes, either through uptake or biosynthesis. Vibrio parahaemolyticus, a marine halophile and an important human and shellfish pathogen, has to adapt to abiotic stresses such as changing salinity. Vibrio parahaemolyticus contains multiple compatible solute biosynthesis and transporter systems, including the ectABC-asp_ect operon required for de novo ectoine biosynthesis. Ectoine biosynthesis genes are present in many halotolerant bacteria; however, little is known about the mechanism of regulation. We investigated the role of the quorum sensing master regulators OpaR and AphA in ect gene regulation. In an opaR deletion mutant, transcriptional reporter assays demonstrated that ect expression was induced. In an electrophoretic mobility shift assay, we showed that purified OpaR bound to the ect regulatory region indicating direct regulation by OpaR. In an aphA deletion mutant, expression of the ect genes was repressed, and purified AphA bound upstream of the ect genes. These data indicate that AphA is a direct positive regulator. CosR, a Mar-type regulator known to repress ect expression in V. cholerae, was found to repress ect expression in V. parahaemolyticus In addition, we identified a feed-forward loop in which OpaR is a direct activator of cosR, while AphA is an indirect activator of cosR Regulation of the ectoine biosynthesis pathway via this feed-forward loop allows for precise control of ectoine biosynthesis genes throughout the growth cycle to maximize fitness.IMPORTANCE Accumulation of compatible solutes within the cell allows bacteria to maintain intracellular turgor pressure and prevent water efflux. De novo ectoine production is widespread among bacteria, and the ect operon encoding the biosynthetic enzymes is induced by increased salinity. Here, we demonstrate that the quorum sensing regulators AphA and OpaR integrate with the osmotic stress response pathway to control transcription of ectoine biosynthesis genes in V. parahaemolyticus We uncovered a feed-forward loop wherein quorum sensing regulators also control transcription of cosR, which encodes a negative regulator of the ect operon. Moreover, our data suggest that this mechanism may be widespread in Vibrio species.
Collapse
|
24
|
Bioproduction of Isoprenoids and Other Secondary Metabolites Using Methanotrophic Bacteria as an Alternative Microbial Cell Factory Option: Current Stage and Future Aspects. Catalysts 2019. [DOI: 10.3390/catal9110883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methane is a promising carbon feedstock for industrial biomanufacturing because of its low price and high abundance. Recent advances in metabolic engineering and systems biology in methanotrophs have made it possible to produce a variety of value-added compounds from methane, including secondary metabolites. Isoprenoids are one of the largest family of secondary metabolites and have many useful industrial applications. In this review, we highlight the current efforts invested to methanotrophs for the production of isoprenoids and other secondary metabolites, including riboflavin and ectoine. The future outlook for improving secondary metabolites production (especially of isoprenoids) using metabolic engineering of methanotrophs is also discussed.
Collapse
|
25
|
Khaleque HN, González C, Shafique R, Kaksonen AH, Holmes DS, Watkin ELJ. Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis. Front Microbiol 2019; 10:155. [PMID: 30853944 PMCID: PMC6396713 DOI: 10.3389/fmicb.2019.00155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
There are few naturally occurring environments where both acid and salinity stress exist together, consequently, there has been little evolutionary pressure for microorganisms to develop systems that enable them to deal with both stresses simultaneously. Members of the genus Acidihalobacter are iron- and sulfur-oxidizing, halotolerant acidophiles that have developed the ability to tolerate acid and saline stress and, therefore, have the potential to bioleach ores with brackish or saline process waters under acidic conditions. The genus consists of four members, A. prosperus DSM 5130T, A. prosperus DSM 14174, A. prosperus F5 and "A. ferrooxidans" DSM 14175. An in depth genome comparison was undertaken in order to provide a more comprehensive description of the mechanisms of halotolerance used by the different members of this genus. Pangenome analysis identified 29, 3 and 9 protein families related to halotolerance in the core, dispensable and unique genomes, respectively. The genes for halotolerance showed Ka/Ks ratios between 0 and 0.2, confirming that they are conserved and stabilized. All the Acidihalobacter genomes contained similar genes for the synthesis and transport of ectoine, which was recently found to be the dominant osmoprotectant in A. prosperus DSM 14174 and A. prosperus DSM 5130T. Similarities also existed in genes encoding low affinity potassium pumps, however, A. prosperus DSM 14174 was also found to contain genes encoding high affinity potassium pumps. Furthermore, only A. prosperus DSM 5130T and "A. ferrooxidans" DSM 14175 contained genes allowing the uptake of taurine as an osmoprotectant. Variations were also seen in genes encoding proteins involved in the synthesis and/or transport of periplasmic glucans, sucrose, proline, and glycine betaine. This suggests that versatility exists in the Acidihalobacter genus in terms of the mechanisms they can use for halotolerance. This information is useful for developing hypotheses for the search for life on exoplanets and moons.
Collapse
Affiliation(s)
- Himel N. Khaleque
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- CSIRO Land and Water, Floreat, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
| | | | | | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Elizabeth L. J. Watkin
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
26
|
Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement. World J Microbiol Biotechnol 2019; 35:16. [PMID: 30617555 DOI: 10.1007/s11274-018-2587-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/31/2018] [Indexed: 01/04/2023]
Abstract
Despite the environmental relevance of CH4 and forthcoming stricter regulations, the development of cost-efficient and environmentally friendly technologies for CH4 abatement is still limited. To date, one of the most promising solutions for the mitigation of this important GHG consists of the bioconversion of CH4 into bioproducts with a high profit margin. In this context, methanotrophs have been already proven as cell-factories of some of the most expensive products synthesized by microorganisms. In the case of ectoine (1000 $ kg-1), already described methanotrophic genera such as Methylomicrobium can accumulate up to 20% (ectoine wt-1) using methane as the only carbon source. Moreover, α-methanotrophs, such as Methylosynus and Methylocystis, are able to store bioplastic concentrations up to 50-60% of their total cell content. More than that, methanotrophs are one of the greatest potential producers of methanol and exopolysaccharides. Although this methanotrophic factory could be enhanced throughout metabolic engineering, the valorization of CH4 into valuable metabolites has been already consistently demonstrated under continuous and discontinuous mode, producing more than one compound in the same bioprocess, and using both, single strains and specific consortia. This review states the state-of-the-art of this innovative biotechnological platform by assessing its potential and current limitations.
Collapse
|
27
|
Serine-glyoxylate aminotranferases from methanotrophs using different C1-assimilation pathways. Antonie van Leeuwenhoek 2018; 112:741-751. [DOI: 10.1007/s10482-018-1208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
28
|
Ro SY, Rosenzweig AC. Recent Advances in the Genetic Manipulation of Methylosinus trichosporium OB3b. Methods Enzymol 2018; 605:335-349. [PMID: 29909832 DOI: 10.1016/bs.mie.2018.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methanotrophic bacteria utilize methane as their sole carbon and energy source. Studies of the model Type II methanotroph Methylosinus trichosporium OB3b have provided insight into multiple aspects of methanotrophy, including methane assimilation, copper accumulation, and metal-dependent gene expression. Development of genetic tools for chromosomal editing was crucial for advancing these studies. Recent interest in methanotroph metabolic engineering has led to new protocols for genetic manipulation of methanotrophs that are effective and simple to use. We have incorporated these newer molecular tools into existing protocols for Ms. trichosporium OB3b. The modifications include additional shuttle and replicative plasmids as well as improved gene delivery and genotyping. The methods described here render gene editing in Ms. trichosporium OB3b efficient and accessible.
Collapse
Affiliation(s)
- Soo Y Ro
- Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
29
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
30
|
Tinkering with Osmotically Controlled Transcription Allows Enhanced Production and Excretion of Ectoine and Hydroxyectoine from a Microbial Cell Factory. Appl Environ Microbiol 2018; 84:AEM.01772-17. [PMID: 29101191 DOI: 10.1128/aem.01772-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
Ectoine and hydroxyectoine are widely synthesized by members of the Bacteria and a few members of the Archaea as potent osmostress protectants. We have studied the salient features of the osmostress-responsive promoter directing the transcription of the ectoine/hydroxyectoine biosynthetic gene cluster from the plant-root-associated bacterium Pseudomonas stutzeri by transferring it into Escherichia coli, an enterobacterium that does not produce ectoines naturally. Using ect-lacZ reporter fusions, we found that the heterologous ect promoter reacted with exquisite sensitivity in its transcriptional profile to graded increases in sustained high salinity, responded to a true osmotic signal, and required the buildup of an osmotically effective gradient across the cytoplasmic membrane for its induction. The involvement of the -10, -35, and spacer regions of the sigma-70-type ect promoter in setting promoter strength and response to osmotic stress was assessed through site-directed mutagenesis. Moderate changes in the ect promoter sequence that increase its resemblance to housekeeping sigma-70-type promoters of E. coli afforded substantially enhanced expression, both in the absence and in the presence of osmotic stress. Building on this set of ect promoter mutants, we engineered an E. coli chassis strain for the heterologous production of ectoines. This synthetic cell factory lacks the genes for the osmostress-responsive synthesis of trehalose and the compatible solute importers ProP and ProU, and it continuously excretes ectoines into the growth medium. By combining appropriate host strains and different plasmid variants, excretion of ectoine, hydroxyectoine, or a mixture of both compounds was achieved under mild osmotic stress conditions.IMPORTANCE Ectoines are compatible solutes, organic osmolytes that are used by microorganisms to fend off the negative consequences of high environmental osmolarity on cellular physiology. An understanding of the salient features of osmostress-responsive promoters directing the expression of the ectoine/hydroxyectoine biosynthetic gene clusters is lacking. We exploited the ect promoter from an ectoine/hydroxyectoine-producing soil bacterium for such a study by transferring it into a surrogate bacterial host. Despite the fact that E. coli does not synthesize ectoines naturally, the ect promoter retained its exquisitely sensitive osmotic control, indicating that osmoregulation of ect transcription is an inherent feature of the promoter and its flanking sequences. These sequences were narrowed to a 116-bp DNA fragment. Ectoines have interesting commercial applications. Building on data from a site-directed mutagenesis study of the ect promoter, we designed a synthetic cell factory that secretes ectoine, hydroxyectoine, or a mixture of both compounds into the growth medium.
Collapse
|
31
|
Mustakhimov II, Rozova ON, Solntseva NP, Khmelenina VN, Reshetnikov AS, Trotsenko YA. The properties and potential metabolic role of glucokinase in halotolerant obligate methanotroph Methylomicrobium alcaliphilum 20Z. Antonie van Leeuwenhoek 2016; 110:375-386. [PMID: 27915410 DOI: 10.1007/s10482-016-0809-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
Aerobic bacteria utilizing methane as the carbon and energy source do not use sugars as growth substrates but possess the gene coding for glucokinase (Glk), an enzyme converting glucose into glucose 6-phosphate. Here we demonstrate the functionality and properties of Glk from an obligate methanotroph Methylomicrobium alcaliphilum 20Z. The recombinant Glk obtained by heterologous expression in Escherichia coli was found to be close in biochemical properties to other prokaryotic Glks. The homodimeric enzyme (2 × 35 kDa) catalyzed ATP-dependent phosphorylation of glucose and glucosamine with nearly equal activity, being inhibited by ADP (K i = 2.34 mM) but not affected by glucose 6-phosphate. Chromosomal deletion of the glk gene resulted in a loss of Glk activity and retardation of growth as well as in a decrease of intracellular glycogen content. Inactivation of the genes encoding sucrose phosphate synthase or amylosucrase, the enzymes involved in glycogen biosynthesis via sucrose as intermediate, did not prevent glycogen accumulation. In silico analysis revealed glk orthologs predominantly in methanotrophs harboring glycogen synthase genes. The data obtained suggested that Glk is implicated in the regulation of glycogen biosynthesis/degradation in an obligate methanotroph.
Collapse
Affiliation(s)
- Ildar I Mustakhimov
- Laboratory of Methylotrophy, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Russia, 142290.,Pushchino State Institute of Natural Sciences, Prospect Nauki 3, Pushchino, Russia, 142290
| | - Olga N Rozova
- Laboratory of Methylotrophy, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Russia, 142290
| | - Natalia P Solntseva
- Pushchino State Institute of Natural Sciences, Prospect Nauki 3, Pushchino, Russia, 142290
| | - Valentina N Khmelenina
- Laboratory of Methylotrophy, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Russia, 142290.
| | - Alexander S Reshetnikov
- Laboratory of Methylotrophy, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Russia, 142290
| | - Yuri A Trotsenko
- Laboratory of Methylotrophy, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Russia, 142290.,Pushchino State Institute of Natural Sciences, Prospect Nauki 3, Pushchino, Russia, 142290
| |
Collapse
|
32
|
Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. BIORESOURCE TECHNOLOGY 2016; 215:314-323. [PMID: 27146469 DOI: 10.1016/j.biortech.2016.04.099] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 05/12/2023]
Abstract
Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation.
Collapse
Affiliation(s)
- P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia.
| | - M Kalyuzhnaya
- Biology Department, San Diego State University, San Diego, CA 92182-4614, United States
| | - J Silverman
- Calysta, 1140 O'Brien Drive, Menlo Park, CA 94025, United States
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
33
|
Mustakhimov II, But SY, Reshetnikov AS, Khmelenina VN, Trotsenko YA. Homo- and heterologous reporter proteins for evaluation of promoter activity in Methylomicrobium alcaliphilum 20Z. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816030157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Shao Z, Deng W, Li S, He J, Ren S, Huang W, Lu Y, Zhao G, Cai Z, Wang J. GlnR-Mediated Regulation of ectABCD Transcription Expands the Role of the GlnR Regulon to Osmotic Stress Management. J Bacteriol 2015; 197:3041-3047. [PMID: 26170409 PMCID: PMC4560291 DOI: 10.1128/jb.00185-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Ectoine and hydroxyectoine are excellent compatible solutes for bacteria to deal with environmental osmotic stress and temperature damages. The biosynthesis cluster of ectoine and hydroxyectoine is widespread among microorganisms, and its expression is activated by high salinity and temperature changes. So far, little is known about the mechanism of the regulation of the transcription of ect genes and only two MarR family regulators (EctR1 in methylobacteria and the EctR1-related regulator CosR in Vibrio cholerae) have been found to negatively regulate the expression of ect genes. Here, we characterize GlnR, the global regulator for nitrogen metabolism in actinomycetes, as a negative regulator for the transcription of ectoine/hydroxyectoine biosynthetic genes (ect operon) in Streptomyces coelicolor. The physiological role of this transcriptional repression by GlnR is proposed to protect the intracellular glutamate pool, which acts as a key nitrogen donor for both the nitrogen metabolism and the ectoine/hydroxyectoine biosynthesis. IMPORTANCE High salinity is deleterious, and cells must evolve sophisticated mechanisms to cope with this osmotic stress. Although production of ectoine and hydroxyectoine is one of the most frequently adopted strategies, the in-depth mechanism of regulation of their biosynthesis is less understood. So far, only two MarR family negative regulators, EctR1 and CosR, have been identified in methylobacteria and Vibrio, respectively. Here, our work demonstrates that GlnR, the global regulator for nitrogen metabolism, is a negative transcriptional regulator for ect genes in Streptomyces coelicolor. Moreover, a close relationship is found between nitrogen metabolism and osmotic resistance, and GlnR-mediated regulation of ect transcription is proposed to protect the intracellular glutamate pool. Meanwhile, the work reveals the multiple roles of GlnR in bacterial physiology.
Collapse
Affiliation(s)
- ZhiHui Shao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - WanXin Deng
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - ShiYuan Li
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - JuanMei He
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - ShuangXi Ren
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - WeiRen Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - YinHua Lu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - GuoPing Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China State Key Lab of Genetic Engineering & Center for Synthetic Biology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China Department of Microbiology and Li KaShing Institute of Health Sciences, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - ZhiMing Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
35
|
Khmelenina VN, Rozova ON, But SY, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA. Biosynthesis of secondary metabolites in methanotrophs: Biochemical and genetic aspects (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Höppner A, Widderich N, Lenders M, Bremer E, Smits SHJ. Crystal structure of the ectoine hydroxylase, a snapshot of the active site. J Biol Chem 2014; 289:29570-83. [PMID: 25172507 DOI: 10.1074/jbc.m114.576769] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ectoine and its derivative 5-hydroxyectoine are compatible solutes that are widely synthesized by bacteria to cope physiologically with osmotic stress. They also serve as chemical chaperones and maintain the functionality of macromolecules. 5-Hydroxyectoine is produced from ectoine through a stereo-specific hydroxylation, an enzymatic reaction catalyzed by the ectoine hydroxylase (EctD). The EctD protein is a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenase superfamily and is evolutionarily well conserved. We studied the ectoine hydroxylase from the cold-adapted marine ultra-microbacterium Sphingopyxis alaskensis (Sa) and found that the purified SaEctD protein is a homodimer in solution. We determined the SaEctD crystal structure in its apo-form, complexed with the iron catalyst, and in a form that contained iron, the co-substrate 2-oxoglutarate, and the reaction product of EctD, 5-hydroxyectoine. The iron and 2-oxoglutarate ligands are bound within the EctD active site in a fashion similar to that found in other members of the dioxygenase superfamily. 5-Hydroxyectoine, however, is coordinated by EctD in manner different from that found in high affinity solute receptor proteins operating in conjunction with microbial import systems for ectoines. Our crystallographic analysis provides a detailed view into the active site of the ectoine hydroxylase and exposes an intricate network of interactions between the enzyme and its ligands that collectively ensure the hydroxylation of the ectoine substrate in a position- and stereo-specific manner.
Collapse
Affiliation(s)
- Astrid Höppner
- From the X-ray Facility and Crystal Farm, Heinrich-Heine-University at Düsseldorf, D-40225 Düsseldorf
| | - Nils Widderich
- the Department of Biology, Laboratory for Microbiology, Philipps-University at Marburg, D-35043 Marburg, the Max Planck Institute for Terrestrial Microbiology, Emeritus Group R. K. Thauer, D-35043 Marburg
| | - Michael Lenders
- the Institute of Biochemistry, Heinrich-Heine-University at Düsseldorf, D-40225 Düsseldorf, and
| | - Erhard Bremer
- the Department of Biology, Laboratory for Microbiology, Philipps-University at Marburg, D-35043 Marburg, the LOEWE-Center for Synthetic Microbiology, Philipps-University at Marburg, D-35043 Marburg, Germany
| | - Sander H J Smits
- the Institute of Biochemistry, Heinrich-Heine-University at Düsseldorf, D-40225 Düsseldorf, and
| |
Collapse
|
37
|
Moritz KD, Amendt B, Witt EMHJ, Galinski EA. The hydroxyectoine gene cluster of the non-halophilic acidophile Acidiphilium cryptum. Extremophiles 2014; 19:87-99. [PMID: 25142158 DOI: 10.1007/s00792-014-0687-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/31/2014] [Indexed: 11/30/2022]
Abstract
Acidiphilium cryptum is an acidophilic, heterotrophic α-Proteobacterium which thrives in acidic, metal-rich environments (e.g. acid mine drainage). Recently, an ectABCDask gene cluster for biosynthesis of the compatible solutes ectoine and hydroxyectoine was detected in the genome sequence of A. cryptum JF-5. We were able to demonstrate that the type strain A. cryptum DSM 2389(T) is capable of synthesizing the compatible solute hydroxyectoine in response to moderate osmotic stress caused by sodium chloride and aluminium sulphate, respectively. Furthermore, we used the A. cryptum JF-5 sequence to amplify the ectABCDask gene cluster from strain DSM 2389(T) and achieved heterologous expression of the gene cluster in Escherichia coli. Hence, we could for the first time prove metabolic functionality of the genes responsible for hydroxyectoine biosynthesis in the acidophile A. cryptum. In addition, we present information on specific enzyme activity of A. cryptum DSM 2389(T) ectoine synthase (EctC) in vitro. In contrast to EctCs from halophilic microorganisms, the A. cryptum enzyme exhibits a higher isoelectric point, thus a lower acidity, and has maximum specific activity in the absence of sodium chloride.
Collapse
Affiliation(s)
- Katharina D Moritz
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany,
| | | | | | | |
Collapse
|
38
|
Widderich N, Höppner A, Pittelkow M, Heider J, Smits SHJ, Bremer E. Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. PLoS One 2014; 9:e93809. [PMID: 24714029 PMCID: PMC3979721 DOI: 10.1371/journal.pone.0093809] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/06/2014] [Indexed: 11/19/2022] Open
Abstract
Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and stereospecific hydroxylation reaction. This compatible solute possesses stress-protective and function-preserving properties different from those of ectoine. Hydroxylation of ectoine is carried out by the EctD protein, a member of the non-heme-containing iron (II) and 2-oxoglutarate-dependent dioxygenase superfamily. We used the signature enzymes for ectoine (EctC) and hydroxyectoine (EctD) synthesis in database searches to assess the taxonomic distribution of potential ectoine and hydroxyectoine producers. Among 6428 microbial genomes inspected, 440 species are predicted to produce ectoine and of these, 272 are predicted to synthesize hydroxyectoine as well. Ectoine and hydroxyectoine genes are found almost exclusively in Bacteria. The genome context of the ect genes was explored to identify proteins that are functionally associated with the synthesis of ectoines; the specialized aspartokinase Ask_Ect and the regulatory protein EctR. This comprehensive in silico analysis was coupled with the biochemical characterization of ectoine hydroxylases from microorganisms that can colonize habitats with extremes in salinity (Halomonas elongata), pH (Alkalilimnicola ehrlichii, Acidiphilium cryptum), or temperature (Sphingopyxis alaskensis, Paenibacillus lautus) or that produce hydroxyectoine very efficiently over ectoine (Pseudomonas stutzeri). These six ectoine hydroxylases all possess similar kinetic parameters for their substrates but exhibit different temperature stabilities and differ in their tolerance to salts. We also report the crystal structure of the Virgibacillus salexigens EctD protein in its apo-form, thereby revealing that the iron-free structure exists already in a pre-set configuration to incorporate the iron catalyst. Collectively, our work defines the taxonomic distribution and salient biochemical properties of the ectoine hydroxylase protein family and contributes to the understanding of its structure.
Collapse
Affiliation(s)
- Nils Widderich
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Emeritus Group R.K. Thauer, Marburg, Germany
| | - Astrid Höppner
- X-Ray Facility and Crystal Farm, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marco Pittelkow
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail: (SHGS); (EB)
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- * E-mail: (SHGS); (EB)
| |
Collapse
|
39
|
Diversity of the ectoines biosynthesis genes in the salt tolerant Streptomyces and evidence for inductive effect of ectoines on their accumulation. Microbiol Res 2014; 169:699-708. [PMID: 24629523 DOI: 10.1016/j.micres.2014.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/05/2014] [Accepted: 02/13/2014] [Indexed: 11/21/2022]
Abstract
Streptomyces commonly produce ectoines as compatible solutes to prevent osmotic stresses. Fine structure of the genes producing ectoine (ectC) and hydroxyectoine (ectD) enzymes in Streptomyces rimosus C-2012 as a slightly halophilic bacterium is reported in this study. Deduced amino acid sequences of ectC and ectD genes from strain C-2012 and some other related species were compared and 72-90% and 13-81% identities were detected for ectC and ectD, respectively. High similarity of ectC between closely or distantly related Streptomyces to the strain C-2012 may indicate horizontal transfer of this gene. However, phylogenetic relationships of ectD were correlated with phylogenetic affiliation of the strains. It suggests that the ability of Streptomyces to produce hydroxyectoine has been the result of a vertical transfer event. HPLC analysis showed that strain C-2012 was able to produce ectoine and hydroxyectoine both in the presence and absence of external salinity (up to 0.45 M NaCl). Accordingly, reverse transcription quantitative PCR (RT-qPCR) showed that ectABCD operon in this strain is positively affected by salt. Also, inductive effect of the salt was increased when it was applied with 1 mM of ectoines. Transcription level of ectC was increased 2.7- and 2.9-fold in the medium supplied with salt and ectoine and salt and hydroxyectoine, respectively. The effect of salinity with or without ectoines was more on ectD transcription level than that of ectC. In S. rimosus under salt stress, ectoine and hydroxyectoine biosynthesis primarily depends on the stimulation of ectABCD operon transcription. However, drastic accumulation of ectoine and hydroxyectoine without increase in ectC and ectD transcripts was observed in the medium supplied with salt and ectoines and that suggest there might be additional posttranscriptional level of control. Increases in ratio of some intracellular free amino acids in salt stressed to unstressed conditions were observed in cells grown with ectoines. Our results suggest the possibility of a supplementary role of ectoines to improve structure and function of the cells in stressful environments as well as their important role as osmoprotectants.
Collapse
|
40
|
Zhu D, Liu J, Han R, Shen G, Long Q, Wei X, Liu D. Identification and characterization of ectoine biosynthesis genes and heterologous expression of the ectABC gene cluster from Halomonas sp. QHL1, a moderately halophilic bacterium isolated from Qinghai Lake. J Microbiol 2014; 52:139-47. [DOI: 10.1007/s12275-014-3389-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 11/24/2022]
|
41
|
Mustakhimov II, Reshetnikov AS, Fedorov DN, Khmelenina VN, Trotsenko YA. Role of EctR as transcriptional regulator of ectoine biosynthesis genes in Methylophaga thalassica. BIOCHEMISTRY (MOSCOW) 2013; 77:857-63. [PMID: 22860907 DOI: 10.1134/s0006297912080068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the halophilic aerobic methylotrophic bacterium Methylophaga thalassica, the genes encoding the enzymes for biosynthesis of the osmoprotectant ectoine were shown to be located in operon ectABC-ask. Transcription of the ect-operon was started from the two promoters homologous to the σ(70)-dependent promoter of Escherichia coli and regulated by protein EctR, whose encoding gene, ectR, is transcribed from three promoters. Genes homologous to ectR of methylotrophs were found in clusters of ectoine biosynthesis genes in some non-methylotrophic halophilic bacteria. EctR proteins of methylotrophic and heterotrophic halophiles belong to the MarR-family of transcriptional regulators but form a separate branch on the phylogenetic tree of the MarR proteins.
Collapse
Affiliation(s)
- I I Mustakhimov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
42
|
But SY, Khmelenina VN, Mustakhimov II, Trotsenko YA. Construction and characterization of Methylomicrobium alcaliphilum 20Z knockout mutants defective in sucrose and ectoine biosynthesis genes. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713020021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Shikuma NJ, Davis KR, Fong JNC, Yildiz FH. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae. Environ Microbiol 2012; 15:1387-99. [PMID: 22690884 DOI: 10.1111/j.1462-2920.2012.02805.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility.
Collapse
Affiliation(s)
- Nicholas J Shikuma
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
44
|
Shchukin VN, Khmelenina VN, Eshinimayev BT, Suzina NE, Trotsenko YA. Primary characterization of dominant cell surface proteins of halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711050122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Reshetnikov AS, Khmelenina VN, Mustakhimov II, Kalyuzhnaya M, Lidstrom M, Trotsenko YA. Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria. Extremophiles 2011; 15:653-63. [PMID: 21971967 DOI: 10.1007/s00792-011-0396-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 08/26/2011] [Indexed: 11/30/2022]
Abstract
The genes of ectoine biosynthesis pathway were identified in six species of aerobic, slightly halophilic bacteria utilizing methane, methanol or methylamine. Two types of ectoine gene cluster organization were revealed in the methylotrophs. The gene cluster ectABC coding for diaminobutyric acid (DABA) acetyltransferase (EctA), DABA aminotransferase (EctB) and ectoine synthase (EctC) was found in methanotrophs Methylobacter marinus 7C and Methylomicrobium kenyense AMO1(T). In methanotroph Methylomicrobium alcaliphilum ML1, methanol-utilizers Methylophaga thalassica 33146(T) , Methylophaga alcalica M8 and methylamine-utilizer Methylarcula marina h1(T), the genes forming the ectABC-ask operon are preceded by ectR, encoding a putative transcriptional regulatory protein EctR. Phylogenetic relationships of the Ect proteins do not correlate with phylogenetic affiliation of the strains, thus implying that the ability of methylotrophs to produce ectoine is most likely the result of a horizontal transfer event.
Collapse
Affiliation(s)
- Alexander S Reshetnikov
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region
| | | | | | | | | | | |
Collapse
|
46
|
Ectoine and hydroxyectoine as protectants against osmotic and cold stress: uptake through the SigB-controlled betaine-choline- carnitine transporter-type carrier EctT from Virgibacillus pantothenticus. J Bacteriol 2011; 193:4699-708. [PMID: 21764932 DOI: 10.1128/jb.05270-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virgibacillus pantothenticus has been shown to synthesize the compatible solute ectoine in response to high salinity or low growth temperature. We found that exogenously provided ectoine and hydroxyectoine also serve as protectants against these challenges. Transport studies with [(14)C]ectoine revealed that both types of stress induced a high-affinity ectoine uptake activity in V. pantothenticus. By using an Escherichia coli mutant defective in osmoprotectant uptake systems, a functional complementation approach for osmostress resistance in the presence of ectoine was employed to retrieve a gene encoding an ectoine transporter from V. pantothenticus. The cloned gene (ectT) encodes a protein (EctT) that is a member of the BCCT (betaine-choline-carnitine-transporter) family of carriers. Osmoprotection assays demonstrated that the EctT carrier mediates the preferential import of ectoine and hydroxyectoine but also possesses minor uptake activities for the compatible solutes proline and glycine betaine. Northern blot analysis with RNA isolated from V. pantothenticus revealed that a rise in the external osmolality or a reduction in growth temperature strongly increased the transcription of the ectT gene. Primer extension analysis demonstrated that ectT was transcribed under these conditions from a SigB-type promoter. SigB is the master regulator of the general stress regulon of bacilli and provides protection to cells against various challenges, including high salinity and low temperature. Both the synthesis of ectoine and the EctT-mediated uptake of ectoine and hydroxyectoine are triggered by the same environmental cues, high salinity and cold stress, and thereby provide, in a concerted fashion, the protection of V. pantothenticus against these challenges.
Collapse
|
47
|
A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol 2011; 193:4456-68. [PMID: 21725014 DOI: 10.1128/jb.00345-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The compatible solutes ectoine and hydroxyectoine are widely produced by bacteria as protectants against osmotic and temperature stress. l-Aspartate-beta-semialdehyde is used as the precursor molecule for ectoine/hydroxyectoine biosynthesis that is catalyzed by the EctABCD enzymes. l-Aspartate-beta-semialdehyde is a central intermediate in different biosynthetic pathways and is produced from l-aspartate by aspartokinase (Ask) and aspartate-semialdehyde-dehydrogenase (Asd). Ask activity is typically stringently regulated by allosteric control to avoid gratuitous synthesis of aspartylphosphate. Many organisms have evolved multiple forms of aspartokinase, and feedback regulation of these specialized Ask enzymes is often adapted to the cognate biochemical pathways. The ectoine/hydroxyectoine biosynthetic genes (ectABCD) are followed in a considerable number of microorganisms by an askgene (ask_ect), suggesting that Ask_Ect is a specialized enzyme for this osmoadaptive biosynthetic pathway. However, none of these Ask_Ect enzymes have been functionally characterized. Pseudomonas stutzeri A1501 synthesizes both ectoine and hydroxyectoine in response to increased salinity, and it possesses two Ask enzymes: Ask_Lys and Ask_Ect. We purified both Ask enzymes and found significant differences with regard to their allosteric control: Ask_LysC was inhibited by threonine and in a concerted fashion by threonine and lysine, whereas Ask_Ect showed inhibition only by threonine. The ectABCD_askgenes from P. stutzeri A1501 were cloned and functionally expressed in Escherichia coli, and this led to osmostress protection. An E. colistrain carrying the plasmid-based ectABCD_askgene cluster produced significantly more ectoine/hydroxyectoine than a strain expressing the ectABCDgene cluster alone. This finding suggests a specialized role for Ask_Ect in ectoine/hydroxyectoine biosynthesis.
Collapse
|
48
|
Reshetnikov AS, Khmelenina VN, Mustakhimov II, Trotsenko YA. Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods Enzymol 2011; 495:15-30. [PMID: 21419912 DOI: 10.1016/b978-0-12-386905-0.00002-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) is a widely distributed compatible solute accumulated by halophilic and halotolerant microorganisms to prevent osmotic stress in highly saline environments. Ectoine as a highly water keeping compound stabilizing biomolecules and whole cells can be used in scientific work, cosmetics, and medicine. Detailed understanding of the organization/regulation of the ectoine biosynthetic pathway in various producers is an active area of research. Here we review current knowledge on some genetic and enzymatic aspects of ectoine biosynthesis in halophilic and halotolerant methanotrophs. By using PCR methodology, the genes coding for the specific enzymes of ectoine biosynthesis, diaminobutyric acid (DABA) aminotransferase (EctB), DABA acetyltransferase (EctA), and ectoine synthase (EctC), were identified in several methanotrophic species. Organization of these genes in either ectABC or ectABC-ask operons, the latter additionally encoding aspartate kinase isozyme (Ask), correlated well with methanotroph halotolerance and intracellular ectoine level. A new gene, ectR1 encoding the MarR-like transcriptional regulatory protein EctR1, negatively controlling transcription of ectoine biosynthetic genes was found upstream of ectABC-ask operon in Methylomicrobium alcaliphilum 20Z. The ectR-like genes were also found in halotolerant methanol utilizers Methylophaga alcalica and Methylophaga thalassica as well as in several genomes of nonmethylotrophic species. The His(6)-tagged DABA acetyltransferases from Mm. alcaliphilum, M. alcalica, and M. thalassica were purified and the enzyme properties were found to correlate with the ecophysiologies of these bacteria. All these discoveries should be very helpful for better understanding the biosynthetic mechanism of this important natural compound, and for the targeted metabolic engineering of its producers.
Collapse
Affiliation(s)
- Alexander S Reshetnikov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
49
|
Ojala DS, Beck DAC, Kalyuzhnaya MG. Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium. Methods Enzymol 2011; 495:99-118. [PMID: 21419917 DOI: 10.1016/b978-0-12-386905-0.00007-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biotechnologies for effective conversion of atmospheric greenhouse gases (CO(2) and CH(4)) into valuable compounds, such as chemical and petrochemical feedstocks or alternative fuels, offer promising new strategies for stabilization of global warming. A novel approach in this field involves the use of methanotrophic bacteria as catalysts for CH(4) conversion. In recent years, extremophilic methanotrophic species related to the genus Methylomicrobium have become favorable systems for bioprocess engineering, due to their high growth rates and tolerance of a wide range of environmental conditions and perturbations. While the cultures hold the potential of producing a broader range of chemicals from methane, the biotechnologies are still limited by the lack of reliable genetic approaches for system-level studies and strain engineering. In this chapter, we describe a set of molecular tools for genetic investigation and alteration of the Methylomicrobium spp.
Collapse
Affiliation(s)
- David S Ojala
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
50
|
Mustakhimov II, Reshetnikov AS, Khmelenina VN, Trotsenko YA. Regulatory aspects of ectoine biosynthesis in halophilic bacteria. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710050024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|