1
|
Holtappels D, Abelson SA, Nouth SC, Rickus GEJ, Amare SZ, Giller JP, Jian DZ, Koskella B. Genomic characterization of Pseudomonas syringae pv. syringae from Callery pear and the efficiency of associated phages in disease protection. Microbiol Spectr 2024; 12:e0283323. [PMID: 38323825 PMCID: PMC10913373 DOI: 10.1128/spectrum.02833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024] Open
Abstract
The Pseudomonas syringae species complex is a heterogeneous group of plant pathogenic bacteria associated with a wide distribution of plant species. Advances in genomics are revealing the complex evolutionary history of this species complex and the wide array of genetic adaptations underpinning their diverse lifestyles. Here, we genomically characterize two P. syringae isolates collected from diseased Callery pears (Pyrus calleryana) in Berkeley, California in 2019 and 2022. We also isolated a lytic bacteriophage, which we characterized and evaluated for biocontrol efficiency. Using a multilocus sequence analysis and core genome alignment, we classified the P. syringae isolates as members of phylogroup 2, related to other strains previously isolated from Pyrus and Prunus. An analysis of effector proteins demonstrated an evolutionary conservation of effectoromes across isolates classified in PG2 and yet uncovered unique effector profiles for each, including the two newly identified isolates. Whole-genome sequencing of the associated phage uncovered a novel phage genus related to Pseudomonas syringae pv. actinidiae phage PHB09 and the Flaumdravirus genus. Finally, using in planta infection assays, we demonstrate that the phage was equally useful in symptom mitigation of immature pear fruit regardless of the Pss strain tested. Overall, this study demonstrates the diversity of P. syringae and their viruses associated with ornamental pear trees, posing spill-over risks to commercial pear trees and the possibility of using phages as biocontrol agents to reduce the impact of disease.IMPORTANCEGlobal change exacerbates the spread and impact of pathogens, especially in agricultural settings. There is a clear need to better monitor the spread and diversity of plant pathogens, including in potential spillover hosts, and for the development of novel and sustainable control strategies. In this study, we characterize the first described strains of Pseudomonas syringae pv. syringae isolated from Callery pear in Berkeley, California from diseased tissues in an urban environment. We show that these strains have divergent virulence profiles from previously described strains and that they can cause disease in commercial pears. Additionally, we describe a novel bacteriophage that is associated with these strains and explore its potential to act as a biocontrol agent. Together, the data presented here demonstrate that ornamental pear trees harbor novel P. syringae pv. syringae isolates that potentially pose a risk to local fruit production, or vice versa-but also provide us with novel associated phages, effective in disease mitigation.
Collapse
Affiliation(s)
- D. Holtappels
- Integrative Biology University of California, Berkeley, California, USA
| | - S. A. Abelson
- Integrative Biology University of California, Berkeley, California, USA
| | - S. C. Nouth
- Integrative Biology University of California, Berkeley, California, USA
| | - G. E. J. Rickus
- Integrative Biology University of California, Berkeley, California, USA
| | - S. Z. Amare
- Integrative Biology University of California, Berkeley, California, USA
| | - J. P. Giller
- Integrative Biology University of California, Berkeley, California, USA
| | - D. Z. Jian
- Integrative Biology University of California, Berkeley, California, USA
| | - B. Koskella
- Integrative Biology University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
2
|
Harrison J, Dornbusch MR, Samac D, Studholme DJ. Draft Genome Sequence of Pseudomonas syringae pv. syringae ALF3 Isolated from Alfalfa. GENOME ANNOUNCEMENTS 2016; 4:e01722-15. [PMID: 26868403 PMCID: PMC4751327 DOI: 10.1128/genomea.01722-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/04/2022]
Abstract
We report here the annotated draft genome sequence of Pseudomonas syringae pv. syringae strain ALF3, isolated in Wyoming. A comparison of this genome sequence with those of closely related strains of P. syringae adapted to other hosts will facilitate research into interactions between this pathogen and alfalfa.
Collapse
Affiliation(s)
- James Harrison
- Biosciences, University of Exeter, Devon, United Kingdom
| | | | - Deborah Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, Minnesota, USA Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
3
|
Marcelletti S, Scortichini M. Comparative Genomic Analyses of Multiple Pseudomonas Strains Infecting Corylus avellana Trees Reveal the Occurrence of Two Genetic Clusters with Both Common and Distinctive Virulence and Fitness Traits. PLoS One 2015; 10:e0131112. [PMID: 26147218 PMCID: PMC4492584 DOI: 10.1371/journal.pone.0131112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/28/2015] [Indexed: 01/26/2023] Open
Abstract
The European hazelnut (Corylus avellana) is threatened in Europe by several pseudomonads which cause symptoms ranging from twig dieback to tree death. A comparison of the draft genomes of nine Pseudomonas strains isolated from symptomatic C. avellana trees was performed to identify common and distinctive genomic traits. The thorough assessment of genetic relationships among the strains revealed two clearly distinct clusters: P. avellanae and P. syringae. The latter including the pathovars avellanae, coryli and syringae. Between these two clusters, no recombination event was found. A genomic island of approximately 20 kb, containing the hrp/hrc type III secretion system gene cluster, was found to be present without any genomic difference in all nine pseudomonads. The type III secretion system effector repertoires were remarkably different in the two groups, with P. avellanae showing a higher number of effectors. Homologue genes of the antimetabolite mangotoxin and ice nucleation activity clusters were found solely in all P. syringae pathovar strains, whereas the siderophore yersiniabactin was only present in P. avellanae. All nine strains have genes coding for pectic enzymes and sucrose metabolism. By contrast, they do not have genes coding for indolacetic acid and anti-insect toxin. Collectively, this study reveals that genomically different Pseudomonas can converge on the same host plant by suppressing the host defence mechanisms with the use of different virulence weapons. The integration into their genomes of a horizontally acquired genomic island could play a fundamental role in their evolution, perhaps giving them the ability to exploit new ecological niches.
Collapse
Affiliation(s)
- Simone Marcelletti
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Centro di Ricerca per la Frutticoltura, Via di Fioranello 52, I-00134, Roma, Italy
| | - Marco Scortichini
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Centro di Ricerca per la Frutticoltura, Via di Fioranello 52, I-00134, Roma, Italy
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Unità di Ricerca per la Frutticoltura, Via Torrino 3, I-81100, Caserta, Italy
| |
Collapse
|
4
|
Baltrus DA, Dougherty K, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Foster JT. Incongruence between multi-locus sequence analysis (MLSA) and whole-genome-based phylogenies: Pseudomonas syringae pathovar pisi as a cautionary tale. MOLECULAR PLANT PATHOLOGY 2014; 15:461-5. [PMID: 24224664 PMCID: PMC6638795 DOI: 10.1111/mpp.12103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Previous phylogenies, built using a subset of genomic loci, split Pseudomonas syringae pv. pisi into two well-supported clades and implied convergence in host range for these lineages. The analysis of phenotypic and genotypic data within the context of this phylogenetic relationship implied further convergence at the level of virulence gene loss and acquisition. We generate draft genome assemblies for two additional P. syringae strains, isolated from diseased pea plants, and demonstrate incongruence between phylogenies created from a subset of the data compared with the whole genomes. Our whole-genome analysis demonstrates that strains classified as pv. pisi actually form a coherent monophyletic clade, so that apparent convergence is actually the product of shared ancestry. We use this example to urge caution when making evolutionary inferences across closely related strains of P. syringae.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721-0036, USA
| | | | | | | | | |
Collapse
|
5
|
Khandekar S, Srivastava A, Pletzer D, Stahl A, Ullrich MS. The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae. BMC Microbiol 2014; 14:79. [PMID: 24670199 PMCID: PMC3973379 DOI: 10.1186/1471-2180-14-79] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/19/2014] [Indexed: 01/07/2023] Open
Abstract
Background Pseudomonas syringae pv. glycinea PG4180 is an opportunistic plant pathogen which causes bacterial blight of soybean plants. It produces the exopolysaccharide levan by the enzyme levansucrase. Levansucrase has three gene copies in PG4180, two of which, lscB and lscC, are expressed while the third, lscA, is cryptic. Previously, nucleotide sequence alignments of lscB/C variants in various P. syringae showed that a ~450-bp phage-associated promoter element (PAPE) including the first 48 nucleotides of the ORF is absent in lscA. Results Herein, we tested whether this upstream region is responsible for the expression of lscB/C and lscA. Initially, the transcriptional start site for lscB/C was determined. A fusion of the PAPE with the ORF of lscA (lscBUpNA) was generated and introduced to a levan-negative mutant of PG4180. Additionally, fusions comprising of the non-coding part of the upstream region of lscB with lscA (lscBUpA) or the upstream region of lscA with lscB (lscAUpB) were generated. Transformants harboring the lscBUpNA or the lscBUpA fusion, respectively, showed levan formation while the transformant carrying lscAUpB did not. qRT-PCR and Western blot analyses showed that lscBUpNA had an expression similar to lscB while lscBUpA had a lower expression. Accuracy of protein fusions was confirmed by MALDI-TOF peptide fingerprinting. Conclusions Our data suggested that the upstream sequence of lscB is essential for expression of levansucrase while the N-terminus of LscB mediates an enhanced expression. In contrast, the upstream region of lscA does not lead to expression of lscB. We propose that lscA might be an ancestral levansucrase variant upstream of which the PAPE got inserted by potentially phage-mediated transposition events leading to expression of levansucrase in P. syringae.
Collapse
Affiliation(s)
- Shaunak Khandekar
- Molecular Life Sciences Research Center, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany.
| | | | | | | | | |
Collapse
|
6
|
Sarris PF, Trantas EA, Baltrus DA, Bull CT, Wechter WP, Yan S, Ververidis F, Almeida NF, Jones CD, Dangl JL, Panopoulos NJ, Vinatzer BA, Goumas DE. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots. PLoS One 2013; 8:e59366. [PMID: 23555661 PMCID: PMC3610874 DOI: 10.1371/journal.pone.0059366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/13/2013] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.
Collapse
Affiliation(s)
- Panagiotis F Sarris
- Department of Plant Sciences, School of Agricultural Technology, Technological Educational Institute of Crete, Heraklion, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Carrión VJ, Gutiérrez-Barranquero JA, Arrebola E, Bardaji L, Codina JC, de Vicente A, Cazorla FM, Murillo J. The mangotoxin biosynthetic operon (mbo) is specifically distributed within Pseudomonas syringae genomospecies 1 and was acquired only once during evolution. Appl Environ Microbiol 2013; 79:756-67. [PMID: 23144138 PMCID: PMC3568555 DOI: 10.1128/aem.03007-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
Mangotoxin production was first described in Pseudomonas syringae pv. syringae strains. A phenotypic characterization of 94 P. syringae strains was carried out to determine the genetic evolution of the mangotoxin biosynthetic operon (mbo). We designed a PCR primer pair specific for the mbo operon to examine its distribution within the P. syringae complex. These primers amplified a 692-bp DNA fragment from 52 mangotoxin-producing strains and from 7 non-mangotoxin-producing strains that harbor the mbo operon, whereas 35 non-mangotoxin-producing strains did not yield any amplification. This, together with the analysis of draft genomes, allowed the identification of the mbo operon in five pathovars (pathovars aptata, avellanae, japonica, pisi, and syringae), all of which belong to genomospecies 1, suggesting a limited distribution of the mbo genes in the P. syringae complex. Phylogenetic analyses using partial sequences from housekeeping genes differentiated three groups within genomospecies 1. All of the strains containing the mbo operon clustered in groups I and II, whereas those lacking the operon clustered in group III; however, the relative branching order of these three groups is dependent on the genes used to construct the phylogeny. The mbo operon maintains synteny and is inserted in the same genomic location, with high sequence conservation around the insertion point, for all the strains in groups I and II. These data support the idea that the mbo operon was acquired horizontally and only once by the ancestor of groups I and II from genomospecies 1 within the P. syringae complex.
Collapse
Affiliation(s)
- Víctor J. Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Eva Arrebola
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSMUMA-CSIC), Estación Experimental La Mayora, Algarrobo-Costa, Málaga, Spain
| | - Leire Bardaji
- Laboratorio de Patología Vegetal, ETS Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| | - Juan C. Codina
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús Murillo
- Laboratorio de Patología Vegetal, ETS Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
8
|
Dudler R. Manipulation of host proteasomes as a virulence mechanism of plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:521-42. [PMID: 23725468 DOI: 10.1146/annurev-phyto-082712-102312] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ubiquitin-26S proteasome degradation system (UPS) in plants is involved in the signal transduction of many cellular processes, including host immune responses triggered by pathogen attack. Attacking pathogens produce effectors that are translocated into host cells, where they interfere with the host's defense signaling in very specific ways. Perhaps not surprising in view of the broad involvement of the host proteasome in plant immunity, certain bacterial effectors exploit or require the host UPS for their action, as currently best studied in Pseudomonas syringae. Intriguingly, some P. syringae strains also secrete the virulence factor syringolin A, which irreversibly inhibits the proteasome by a novel mechanism. Here, the role of the UPS in plant defense and its exploitation by effectors are summarized, and the biology, taxonomic distribution, and emerging implications for virulence strategies of syringolin A and similar compounds are discussed.
Collapse
Affiliation(s)
- Robert Dudler
- Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland.
| |
Collapse
|
9
|
Genome sequences published outside of Standards in Genomic Sciences, May-June 2012. Stand Genomic Sci 2012. [PMCID: PMC3558956 DOI: 10.4056/sigs.3126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.
Collapse
|