1
|
Tsujii M, Kobayashi A, Kano A, Kera K, Takagi T, Nagata N, Kojima S, Hikosaka K, Oguchi R, Sonoike K, Azai C, Inagaki T, Ishimaru Y, Uozumi N. Na + -driven pH regulation by Na+/H+ antiporters promotes photosynthetic efficiency in cyanobacteria. PLANT PHYSIOLOGY 2024; 197:kiae562. [PMID: 39446395 DOI: 10.1093/plphys/kiae562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 12/25/2024]
Abstract
Photosynthetic organisms have developed mechanisms to regulate light reactions in response to varying light conditions. Photosynthetic electron transport leads to the formation of a ΔpH across the thylakoid membrane (TM), which is crucial for regulating electron transport. However, other pH modulators remain to be identified, particularly in cyanobacteria. In this study, we evaluated the potential involvement of six Na+/H+ antiporters (NhaS1 to NhaS6) in control of pH in the cyanobacterium Synechocystis sp. PCC 6803. Synechocystis showed a strong requirement for Na+ at high light intensities, with ΔnhaS1 and ΔnhaS2 strains unable to grow under high-light conditions. We analyzed Na+ efflux-driven H + -uptake activities of NhaS1 to NhaS6 in inverted membranes of Escherichia coli. Biological fractionation and immunoelectron microscopy revealed that NhaS1 localizes to both the plasma and TMs, while NhaS2 localizes to the plasma membrane (PM). Measurement of photosynthesis activity indicated that NhaS2 promotes ATP production and electron transport from PQ to P700. Measurements of pH outside of the cells and in the cytoplasm suggested that both NhaS1 and NhaS2 are involved in PM-mediated light-dependent H+ uptake and cytoplasmic acidification. NhaS1 and NhaS2 were also found to prevent photoinhibition under high-light treatment. These results indicate that H+ transport mediated by NhaS1 and NhaS2 plays a role in regulating intracellular pH and maintaining photosynthetic electron transport.
Collapse
Affiliation(s)
- Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Ayumu Kobayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Ayaka Kano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Kota Kera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Tomoko Takagi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Seiji Kojima
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan
- Technology Division, Panasonic Holdings Corporation, Moriguchi 570-8501, Japan
| | - Kouki Hikosaka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-6-07, Sendai 980-8578, Japan
| | - Riichi Oguchi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 2000, Kisaichi, Katano, Osaka, 576-0004, Japan
| | - Kintake Sonoike
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Chihiro Azai
- Faculty of Science and Engineering, Chuo University, 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomomi Inagaki
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Boodaghian N, Park H, Cohen SE. Investigating the Roles for Essential Genes in the Regulation of the Circadian Clock in Synechococcus elongatus Using CRISPR Interference. J Biol Rhythms 2024; 39:308-317. [PMID: 38357890 DOI: 10.1177/07487304241228333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Circadian rhythms are found widely throughout nature where cyanobacteria are the simplest organisms, in which the molecular details of the clock have been elucidated. Circadian rhythmicity in cyanobacteria is carried out via the KaiA, KaiB, and KaiC core oscillator proteins that keep ~24 h time. A series of input and output proteins-CikA, SasA, and RpaA-regulate the clock by sensing environmental changes and timing rhythmic activities, including global rhythms of gene expression. Our previous work identified a novel set of KaiC-interacting proteins, some of which are encoded by genes that are essential for viability. To understand the relationship of these essential genes to the clock, we applied CRISPR interference (CRISPRi) which utilizes a deactivated Cas9 protein and single-guide RNA (sgRNA) to reduce the expression of target genes but not fully abolish their expression to allow for survival. Eight candidate genes were targeted, and strains were analyzed by quantitative real-time PCR (qRT-PCR) for reduction of gene expression, and rhythms of gene expression were monitored to analyze circadian phenotypes. Strains with reduced expression of SynPCC7942_0001, dnaN, which encodes for the β-clamp of the replicative DNA polymerase, or SynPCC7942_1081, which likely encodes for a KtrA homolog involved in K+ transport, displayed longer circadian rhythms of gene expression than the wild type. As neither of these proteins have been previously implicated in the circadian clock, these data suggest that diverse cellular processes, DNA replication and K+ transport, can influence the circadian clock and represent new avenues to understand clock function.
Collapse
Affiliation(s)
- Nouneh Boodaghian
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
| | - Hyunsook Park
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
| | - Susan E Cohen
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
- Center for Circadian Biology, University of California, San Diego, San Diego, California
| |
Collapse
|
3
|
Chiang WT, Chang YK, Hui WH, Chang SW, Liao CY, Chang YC, Chen CJ, Wang WC, Lai CC, Wang CH, Luo SY, Huang YP, Chou SH, Horng TL, Hou MH, Muench SP, Chen RS, Tsai MD, Hu NJ. Structural basis and synergism of ATP and Na + activation in bacterial K + uptake system KtrAB. Nat Commun 2024; 15:3850. [PMID: 38719864 PMCID: PMC11078986 DOI: 10.1038/s41467-024-48057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.
Collapse
Affiliation(s)
- Wesley Tien Chiang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Wei-Han Hui
- Department of Civil Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei, 106319, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10663, Taiwan
| | - Chen-Yi Liao
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Yi-Chuan Chang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30092, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402202, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, 406040, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Siou-Ying Luo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Ya-Ping Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Shan-Ho Chou
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Tzyy-Leng Horng
- Department of Applied Mathematics, Feng Chia University, Taichung, 407102, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Ren-Shiang Chen
- Department of Life Science, Tunghai University, Taichung, 407224, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan.
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan.
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402202, Taiwan.
| |
Collapse
|
4
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. A step into the rare biosphere: genomic features of the new genus Terrihalobacillus and the new species Aquibacillus salsiterrae from hypersaline soils. Front Microbiol 2023; 14:1192059. [PMID: 37228371 PMCID: PMC10203224 DOI: 10.3389/fmicb.2023.1192059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Hypersaline soils are a source of prokaryotic diversity that has been overlooked until very recently. The phylum Bacillota, which includes the genus Aquibacillus, is one of the 26 phyla that inhabit the heavy metal contaminated soils of the Odiel Saltmarshers Natural Area (Southwest Spain), according to previous research. In this study, we isolated a total of 32 strains closely related to the genus Aquibacillus by the traditional dilution-plating technique. Phylogenetic studies clustered them into two groups, and comparative genomic analyses revealed that one of them represents a new species within the genus Aquibacillus, whereas the other cluster constitutes a novel genus of the family Bacillaceae. We propose the designations Aquibacillus salsiterrae sp. nov. and Terrihalobacillus insolitus gen. nov., sp. nov., respectively, for these two new taxa. Genome mining analysis revealed dissimilitude in the metabolic traits of the isolates and their closest related genera, remarkably the distinctive presence of the well-conserved pathway for the biosynthesis of molybdenum cofactor in the species of the genera Aquibacillus and Terrihalobacillus, along with genes that encode molybdoenzymes and molybdate transporters, scarcely found in metagenomic dataset from this area. In-silico studies of the osmoregulatory strategy revealed a salt-out mechanism in the new species, which harbor the genes for biosynthesis and transport of the compatible solutes ectoine and glycine betaine. Comparative genomics showed genes related to heavy metal resistance, which seem required due to the contamination in the sampling area. The low values in the genome recruitment analysis indicate that the new species of the two genera, Terrihalobacillus and Aquibacillus, belong to the rare biosphere of representative hypersaline environments.
Collapse
|
5
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. Biotin pathway in novel Fodinibius salsisoli sp. nov., isolated from hypersaline soils and reclassification of the genus Aliifodinibius as Fodinibius. Front Microbiol 2023; 13:1101464. [PMID: 36777031 PMCID: PMC9909488 DOI: 10.3389/fmicb.2022.1101464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hypersaline soils are extreme environments that have received little attention until the last few years. Their halophilic prokaryotic population seems to be more diverse than those of well-known aquatic systems. Among those inhabitants, representatives of the family Balneolaceae (phylum Balneolota) have been described to be abundant, but very few members have been isolated and characterized to date. This family comprises the genera Aliifodinibius and Fodinibius along with four others. A novel strain, designated 1BSP15-2V2T, has been isolated from hypersaline soils located in the Odiel Saltmarshes Natural Area (Southwest Spain), which appears to represent a new species related to the genus Aliifodinibius. However, comparative genomic analyses of members of the family Balneolaceae have revealed that the genera Aliifodinibius and Fodinibius belong to a single genus, hence we propose the reclassification of the species of the genus Aliifodinibius into the genus Fodinibius, which was first described. The novel strain is thus described as Fodinibius salsisoli sp. nov., with 1BSP15-2V2T (=CCM 9117T = CECT 30246T) as the designated type strain. This species and other closely related ones show abundant genomic recruitment within 80-90% identity range when searched against several hypersaline soil metagenomic databases investigated. This might suggest that there are still uncultured, yet abundant closely related representatives to this family present in these environments. In-depth in-silico analysis of the metabolism of Fodinibius showed that the biotin biosynthesis pathway was present in the genomes of strain 1BSP15-2V2T and other species of the family Balneolaceae, which could entail major implications in their community role providing this vitamin to other organisms that depend on an exogenous source of this nutrient.
Collapse
|
6
|
Tanudjaja E, Hoshi N, Yamamoto K, Ihara K, Furuta T, Tsujii M, Ishimaru Y, Uozumi N. Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions in Escherichia coli K-12. J Biol Chem 2022; 299:102846. [PMID: 36586436 PMCID: PMC9898762 DOI: 10.1016/j.jbc.2022.102846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli K-12 possesses two versions of Trk/Ktr/HKT-type potassium ion (K+) transporters, TrkG and TrkH. The current paradigm is that TrkG and TrkH have largely identical characteristics, and little information is available regarding their functional differences. Here, we show using cation uptake experiments with K+ transporter knockout mutants that TrkG and TrkH have distinct ion transport activities and physiological roles. K+-transport by TrkG required Na+, whereas TrkH-mediated K+ uptake was not affected by Na+. An aspartic acid located five residues away from a critical glycine in the third pore-forming region might be involved in regulation of Na+-dependent activation of TrkG. In addition, we found that TrkG but not TrkH had Na+ uptake activity. Our analysis of K+ transport mutants revealed that TrkH supported cell growth more than TrkG; however, TrkG was able to complement loss of TrkH-mediated K+ uptake in E. coli. Furthermore, we determined that transcription of trkG in E. coli was downregulated but not completely silenced by the xenogeneic silencing factor H-NS (histone-like nucleoid structuring protein or heat-stable nucleoid-structuring protein). Taken together, the transport function of TrkG is clearly distinct from that of TrkH, and TrkG seems to have been accepted by E. coli during evolution as a K+ uptake system that coexists with TrkH.
Collapse
Affiliation(s)
- Ellen Tanudjaja
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Naomi Hoshi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Schrecker M, Wunnicke D, Hänelt I. How RCK domains regulate gating of K+ channels. Biol Chem 2020; 400:1303-1322. [PMID: 31361596 DOI: 10.1515/hsz-2019-0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/02/2019] [Indexed: 11/15/2022]
Abstract
Potassium channels play a crucial role in the physiology of all living organisms. They maintain the membrane potential and are involved in electrical signaling, pH homeostasis, cell-cell communication and survival under osmotic stress. Many prokaryotic potassium channels and members of the eukaryotic Slo channels are regulated by tethered cytoplasmic domains or associated soluble proteins, which belong to the family of regulator of potassium conductance (RCK). RCK domains and subunits form octameric rings, which control ion gating. For years, a common regulatory mechanism was suggested: ligand-induced conformational changes in the octameric ring would pull open a gate in the pore via flexible linkers. Consistently, ligand-dependent conformational changes were described for various RCK gating rings. Yet, recent structural and functional data of complete ion channels uncovered that the following signal transduction to the pore domains is divers. The different RCK-regulated ion channels show remarkably heterogeneous mechanisms with neither the connection from the RCK domain to the pore nor the gate being conserved. Some channels even lack the flexible linkers, while in others the gate cannot easily be assigned. In this review we compare available structures of RCK-gated potassium channels, highlight the similarities and differences of channel gating, and delineate existing inconsistencies.
Collapse
Affiliation(s)
- Marina Schrecker
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| |
Collapse
|
8
|
Checchetto V, Segalla A, Sato Y, Bergantino E, Szabo I, Uozumi N. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress. PLANT & CELL PHYSIOLOGY 2016; 57:862-877. [PMID: 26880819 DOI: 10.1093/pcp/pcw032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The unicellular photosynthetic cyanobacterium, able to survive in varying environments, is the only prokaryote that directly converts solar energy and CO2 into organic material and is thus relevant for primary production in many ecosystems. To maintain the intracellular and intrathylakoid ion homeostasis upon different environmental challenges, the concentration of potassium as a major intracellular cation has to be optimized by various K(+)uptake-mediated transport systems. We reveal here the specific and concerted physiological function of three K(+)transporters of the plasma and thylakoid membranes, namely of SynK (K(+)channel), KtrB (Ktr/Trk/HKT) and KdpA (Kdp) in Synechocystis sp. strain PCC 6803, under specific stress conditions. The behavior of the wild type, single, double and triple mutants was compared, revealing that only Synk contributes to heavy metal-induced stress, while only Ktr/Kdp is involved in osmotic and salt stress adaptation. With regards to pH shifts in the external medium, the Kdp/Ktr uptake systems play an important role in the adaptation to acidic pH. Ktr, by affecting the CO2 concentration mechanism via its action on the bicarbonate transporter SbtA, might also be responsible for the observed effects concerning high-light stress and calcification. In the case of illumination with high-intensity light, a synergistic action of Kdr/Ktp and SynK is required in order to avoid oxidative stress and ensure cell viability. In summary, this study dissects, using growth tests, measurement of photosynthetic activity and analysis of ultrastructure, the physiological role of three K(+)transporters in adaptation of the cyanobacteria to various environmental changes.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Padova 35121, Italy Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Anna Segalla
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Yuki Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| |
Collapse
|
9
|
Selão TT, Zhang L, Knoppová J, Komenda J, Norling B. Photosystem II Assembly Steps Take Place in the Thylakoid Membrane of the Cyanobacterium Synechocystis sp. PCC6803. PLANT & CELL PHYSIOLOGY 2016; 57:95-104. [PMID: 26578692 DOI: 10.1093/pcp/pcv178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/09/2015] [Indexed: 05/09/2023]
Abstract
Thylakoid biogenesis is an intricate process requiring accurate and timely assembly of proteins, pigments and other cofactors into functional, photosynthetically competent membranes. PSII assembly is studied in particular as its core protein, D1, is very susceptible to photodamage and has a high turnover rate, particularly in high light. PSII assembly is a modular process, with assembly steps proceeding in a specific order. Using aqueous two-phase partitioning to separate plasma membranes (PM) and thylakoid membranes (TM), we studied the subcellular localization of the early assembly steps for PSII biogenesis in a Synechocystis sp. PCC6803 cyanobacterium strain lacking the CP47 antenna. This strain accumulates the early D1-D2 assembly complex which was localized in TM along with associated PSII assembly factors. We also followed insertion and processing of the D1 precursor (pD1) by radioactive pulse-chase labeling. D1 is inserted into the membrane with a C-terminal extension which requires cleavage by a specific protease, the C-terminal processing protease (CtpA), to allow subsequent assembly of the oxygen-evolving complex. pD1 insertion as well as its conversion to mature D1 under various light conditions was seen only in the TM. Epitope-tagged CtpA was also localized in the same membrane, providing further support for the thylakoid location of pD1 processing. However, Vipp1 and PratA, two proteins suggested to be part of the so-called 'thylakoid centers', were found to associate with the PM. Together, these results suggest that early PSII assembly steps occur in TM or specific areas derived from them, with interaction with PM needed for efficient PSII and thylakoid biogenesis.
Collapse
Affiliation(s)
- Tiago T Selão
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lifang Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Jana Knoppová
- Institute of Microbiology, Center Algatech, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Birgitta Norling
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
10
|
Comparative analysis of kdp and ktr mutants reveals distinct roles of the potassium transporters in the model cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2014; 197:676-87. [PMID: 25313394 DOI: 10.1128/jb.02276-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photoautotrophic bacteria have developed mechanisms to maintain K(+) homeostasis under conditions of changing ionic concentrations in the environment. Synechocystis sp. strain PCC 6803 contains genes encoding a well-characterized Ktr-type K(+) uptake transporter (Ktr) and a putative ATP-dependent transporter specific for K(+) (Kdp). The contributions of each of these K(+) transport systems to cellular K(+) homeostasis have not yet been defined conclusively. To verify the functionality of Kdp, kdp genes were expressed in Escherichia coli, where Kdp conferred K(+) uptake, albeit with lower rates than were conferred by Ktr. An on-chip microfluidic device enabled monitoring of the biphasic initial volume recovery of single Synechocystis cells after hyperosmotic shock. Here, Ktr functioned as the primary K(+) uptake system during the first recovery phase, whereas Kdp did not contribute significantly. The expression of the kdp operon in Synechocystis was induced by extracellular K(+) depletion. Correspondingly, Kdp-mediated K(+) uptake supported Synechocystis cell growth with trace amounts of external potassium. This induction of kdp expression depended on two adjacent genes, hik20 and rre19, encoding a putative two-component system. The circadian expression of kdp and ktr peaked at subjective dawn, which may support the acquisition of K(+) required for the regular diurnal photosynthetic metabolism. These results indicate that Kdp contributes to the maintenance of a basal intracellular K(+) concentration under conditions of limited K(+) in natural environments, whereas Ktr mediates fast potassium movements in the presence of greater K(+) availability. Through their distinct activities, both Ktr and Kdp coordinate the responses of Synechocystis to changes in K(+) levels under fluctuating environmental conditions.
Collapse
|
11
|
Hamamoto S, Uozumi N. Organelle-localized potassium transport systems in plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:743-7. [PMID: 24810770 DOI: 10.1016/j.jplph.2013.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 05/03/2023]
Abstract
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins.
Collapse
Affiliation(s)
- Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| |
Collapse
|
12
|
Subcellular localization of monoglucosyldiacylglycerol synthase in Synechocystis sp. PCC6803 and its unique regulation by lipid environment. PLoS One 2014; 9:e88153. [PMID: 24516600 PMCID: PMC3916417 DOI: 10.1371/journal.pone.0088153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/04/2014] [Indexed: 11/21/2022] Open
Abstract
Synthesis of monogalactosyldiacylglycerol (GalDAG) and digalactosyldiacylglycerol (GalGalDAG), the major membrane lipids in cyanobacteria, begins with production of the intermediate precursor monoglucosyldiacylglycerol (GlcDAG), by monoglucosyldiacylglycerol synthase (MGS). In Synechocystis sp. PCC6803 (Synechocystis) this activity is catalyzed by an integral membrane protein, Sll1377 or MgdA. In silico sequence analysis revealed that cyanobacterial homologues of MgdA are highly conserved and comprise a distinct group of lipid glycosyltransferases. Global regulation of lipid synthesis in Synechocystis and, more specifically, the influence of the lipid environment on MgdA activity have not yet been fully elucidated. Therefore, we purified membrane subfractions from this organism and assayed MGS activity in vitro, with and without different lipids and other potential effectors. Sulfoquinovosyldiacylglycerol (SQDAG) potently stimulates MgdA activity, in contrast to other enzymes of a similar nature, which are activated by phosphatidylglycerol instead. Moreover, the final products of galactolipid synthesis, GalDAG and GalGalDAG, inhibited this activity. Western blotting revealed the presence of MgdA both in plasma and thylakoid membranes, with a high specific level of the MgdA protein in the plasma membrane but highest MGS activity in the thylakoid membrane. This discrepancy in the subcellular localization of enzyme activity and protein may indicate the presence of either an unknown regulator and/or an as yet unidentified MGS-type enzyme. Furthermore, the stimulation of MgdA activity by SQDAG observed here provides a new insight into regulation of the biogenesis of both sulfolipids and galactolipids in cyanobacteria.
Collapse
|
13
|
Gries CM, Bose JL, Nuxoll AS, Fey PD, Bayles KW. The Ktr potassium transport system in Staphylococcus aureus and its role in cell physiology, antimicrobial resistance and pathogenesis. Mol Microbiol 2013; 89:760-73. [PMID: 23815639 DOI: 10.1111/mmi.12312] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 02/05/2023]
Abstract
Potassium (K(+) ) plays a vital role in bacterial physiology, including regulation of cytoplasmic pH, turgor pressure and transmembrane electrical potential. Here, we examine the Staphylococcus aureus Ktr system uniquely comprised of two ion-conducting proteins (KtrB and KtrD) and only one regulator (KtrA). Growth of Ktr system mutants was severely inhibited under K(+) limitation, yet detectable after an extended lag phase, indicating the presence of a secondary K(+) transporter. Disruption of both ktrA and the Kdp-ATPase system, important for K(+) uptake in other organisms, eliminated regrowth in 0.1 mM K(+) , demonstrating a compensatory role for Kdp to the Ktr system. Consistent with K(+) transport mutations, S. aureus devoid of the Ktr system became sensitive to hyperosmotic conditions, exhibited a hyperpolarized plasma membrane, and increased susceptibility to aminoglycoside antibiotics and cationic antimicrobials. In contrast to other organisms, the S. aureus Ktr system was shown to be important for low-K(+) growth under alkaline conditions, but played only a minor role in neutral and acidic conditions. In a mouse competitive index model of bacteraemia, the ktrA mutant was significantly outcompeted by the parental strain. Combined, these results demonstrate a primary mechanism of K(+) uptake in S. aureus and a role for this system in pathogenesis.
Collapse
Affiliation(s)
- Casey M Gries
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | | | | |
Collapse
|
14
|
Hänelt I, Tholema N, Kröning N, Vor der Brüggen M, Wunnicke D, Bakker EP. KtrB, a member of the superfamily of K+ transporters. Eur J Cell Biol 2011; 90:696-704. [DOI: 10.1016/j.ejcb.2011.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Akai M, Onai K, Kusano M, Sato M, Redestig H, Toyooka K, Morishita M, Miyake H, Hazama A, Checchetto V, Szabò I, Matsuoka K, Saito K, Yasui M, Ishiura M, Uozumi N. Plasma membrane aquaporin AqpZ protein is essential for glucose metabolism during photomixotrophic growth of Synechocystis sp. PCC 6803. J Biol Chem 2011; 286:25224-35. [PMID: 21558269 DOI: 10.1074/jbc.m111.236380] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of Synechocystis PCC 6803 contains a single gene encoding an aquaporin, aqpZ. The AqpZ protein functioned as a water-permeable channel in the plasma membrane. However, the physiological importance of AqpZ in Synechocystis remains unclear. We found that growth in glucose-containing medium inhibited proper division of ΔaqpZ cells and led to cell death. Deletion of a gene encoding a glucose transporter in the ΔaqpZ background alleviated the glucose-mediated growth inhibition of the ΔaqpZ cells. The ΔaqpZ cells swelled more than the wild type after the addition of glucose, suggesting an increase in cytosolic osmolarity. This was accompanied by a down-regulation of the pentose phosphate pathway and concurrent glycogen accumulation. Metabolite profiling by GC/TOF-MS of wild-type and ΔaqpZ cells revealed a relative decrease of intermediates of the tricarboxylic acid cycle and certain amino acids in the mutant. The changed levels of metabolites may have been the cause for the observed decrease in growth rate of the ΔaqpZ cells along with decreased PSII activity at pH values ranging from 7.5 to 8.5. A mutant in sll1961, encoding a putative transcription factor, and a Δhik31 mutant, lacking a putative glucose-sensing kinase, both exhibited higher glucose sensitivity than the ΔaqpZ cells. Examination of protein expression indicated that sll1961 functioned as a positive regulator of aqpZ gene expression but not as the only regulator. Overall, the ΔaqpZ cells showed defects in macronutrient metabolism, pH homeostasis, and cell division under photomixotrophic conditions, consistent with an essential role of AqpZ in glucose metabolism.
Collapse
Affiliation(s)
- Masaro Akai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University Aobayama 6-6-07, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, Sze H. Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. THE PLANT CELL 2011; 23:81-93. [PMID: 21239645 PMCID: PMC3051242 DOI: 10.1105/tpc.110.080499] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Flowering plant reproduction requires precise delivery of the sperm cells to the ovule by a pollen tube. Guidance signals from female cells are being identified; however, how pollen responds to those cues is largely unknown. Here, we show that two predicted cation/proton exchangers (CHX) in Arabidopsis thaliana, CHX21 and CHX23, are essential for pollen tube guidance. Male fertility was unchanged in single chx21 or chx23 mutants. However, fertility was impaired in chx21 chx23 double mutant pollen. Wild-type pistils pollinated with a limited number of single and double mutant pollen producing 62% fewer seeds than those pollinated with chx23 single mutant pollen, indicating that chx21 chx23 pollen is severely compromised. Double mutant pollen grains germinated and grew tubes down the transmitting tract, but the tubes failed to turn toward ovules. Furthermore, chx21 chx23 pollen tubes failed to enter the micropyle of excised ovules. Green fluorescent protein-tagged CHX23 driven by its native promoter was localized to the endoplasmic reticulum of pollen tubes. CHX23 mediated K(+) transport, as CHX23 expression in Escherichia coli increased K(+) uptake and growth in a pH-dependent manner. We propose that by modifying localized cation balance and pH, these transporters could affect steps in signal reception and/or transduction that are critical to shifting the axis of polarity and directing pollen growth toward the ovule.
Collapse
Affiliation(s)
- Yongxian Lu
- Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Salil Chanroj
- Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Lalu Zulkifli
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Mark A. Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Alice Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Heven Sze
- Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
- Address correspondence to
| |
Collapse
|