1
|
Pushparajan AR, Edison LK, Ajay Kumar R. Mycobacterium tuberculosis transcriptional regulator Rv1019 is upregulated in hypoxia, and negatively regulates Rv3230c-Rv3229c operon encoding enzymes in the oleic acid biosynthetic pathway. FEBS J 2023; 290:1583-1595. [PMID: 36209365 DOI: 10.1111/febs.16647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
The main obstacle in eradicating tuberculosis is the ability of Mycobacterium tuberculosis to remain dormant in the host, and then to get reactivated even years later under immunocompromised conditions. Transcriptional regulation in intracellular pathogens plays an important role in their adapting to the challenging environment inside the host cells. Previously, we demonstrated that Rv1019, a putative transcriptional regulator of M. tuberculosis H37Rv, is an autorepressor. We showed that Rv1019 is cotranscribed with Rv1020 (mfd) and Rv1021 (mazG) which encode DNA repair proteins and negatively regulates the expression of these genes. In the present study, we show that Rv1019 regulates the expression of the genes Rv3230c and Rv3229c (desA3) also which form a two-gene operon in M. tuberculosis. Overexpression of Rv1019 in M. tuberculosis significantly downregulated the expression of these genes. Employing Wayne's hypoxia-induced dormancy model of M. tuberculosis, we show that Rv1019 is upregulated three-fold under hypoxia. Finally, by reporter assay, using Mycobacterium smegmatis as a model, we validate that Rv1019 is recruited to the promoter of Rv3230c-Rv3229c during hypoxia, and negatively regulates this operon which is involved in the biosynthesis of oleic acid.
Collapse
Affiliation(s)
- Akhil Raj Pushparajan
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Department of Biotechnology, Faculty of Applied Sciences and Technology, University of Kerala, Thiruvananthapuram, India
| | - Lekshmi K Edison
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
2
|
Janisch N, Levendosky K, Budell WC, Quadri LEN. Genetic Underpinnings of Carotenogenesis and Light-Induced Transcriptome Remodeling in the Opportunistic Pathogen Mycobacterium kansasii. Pathogens 2023; 12:86. [PMID: 36678434 PMCID: PMC9861118 DOI: 10.3390/pathogens12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium kansasii (Mk) causes opportunistic pulmonary infections with tuberculosis-like features. The bacterium is well known for its photochromogenicity, i.e., the production of carotenoid pigments in response to light. The genetics defining the photochromogenic phenotype of Mk has not been investigated and defined pigmentation mutants to facilitate studies on the role of carotenes in the bacterium's biology are not available thus far. In this study, we set out to identify genetic determinants involved in Mk photochromogenicity. We screened a library of ~150,000 transposon mutants for colonies with pigmentation abnormalities. The screen rendered a collection of ~200 mutants. Each of these mutants could be assigned to one of four distinct phenotypic groups. The insertion sites in the mutant collection clustered in three chromosomal regions. A combination of phenotypic analysis, sequence bioinformatics, and gene expression studies linked these regions to carotene biosynthesis, carotene degradation, and monounsaturated fatty acid biosynthesis. Furthermore, introduction of the identified carotenoid biosynthetic gene cluster into non-pigmented Mycobacterium smegmatis endowed the bacterium with photochromogenicity. The studies also led to identification of MarR-type and TetR/AcrR-type regulators controlling photochromogenicity and carotenoid breakdown, respectively. Lastly, the work presented also provides a first insight into the Mk transcriptome changes in response to light.
Collapse
Affiliation(s)
- Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - William C. Budell
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Biochemistry Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
3
|
Han J, Liu X, Zhang L, Quinn RJ, Feng Y. Anti-mycobacterial natural products and mechanisms of action. Nat Prod Rep 2021; 39:77-89. [PMID: 34226909 DOI: 10.1039/d1np00011j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to June, 2020Tuberculosis (TB) continues to be a major disease with high mortality and morbidity globally. Drug resistance and long duration of treatment make antituberculosis drug discovery more challenging. In this review, we summarize recent advances on anti-TB natural products (NPs) and their potential molecular targets in cell wall synthesis, protein production, energy generation, nucleic acid synthesis and other emerging areas. We highlight compounds with activity against drug-resistant TB, and reveal several novel targets including Mtb biotin synthase, ATP synthase, 1,4-dihydroxy-2-naphthoate prenyltransferase and biofilms. These anti-TB NPs and their targets could facilitate target-based screening and accelerate TB drug discovery.
Collapse
Affiliation(s)
- Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
4
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
5
|
Global study of IS6110 in a successful Mycobacterium tuberculosis strain: clues for deciphering its behavior and for its rapid detection. J Clin Microbiol 2013; 51:3631-7. [PMID: 23985924 DOI: 10.1128/jcm.00970-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Mycobacterium tuberculosis insertion sequence IS6110, besides being a very useful tool in molecular epidemiology, seems to have an impact on the biology of bacilli. In the present work, we mapped the 12 points of insertion of IS6110 in the genome of a successful strain named M. tuberculosis Zaragoza (which has been referred to as the MTZ strain). This strain, belonging to principal genetic group 3, caused a large unsuspected tuberculosis outbreak involving 85 patients in Zaragoza, Spain, in 2001 to 2004. The mapping of the points of insertion of IS6110 in the genome of the Zaragoza strain offers clues for a better understanding of the adaptability and virulence of M. tuberculosis. Surprisingly, the presence of one copy of IS6110 was found in Rv2286c, as was recently described for a successful Beijing sublineage. As a result of this analysis, a rapid method for detecting this particular M. tuberculosis strain has been designed.
Collapse
|
6
|
Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S, Miault C, Zwingelstein C, Krastel P, Noble C, Beer D, Rao SPS, Au M, Niyomrattanakit P, Lim V, Zheng J, Jeffery D, Pethe K, Camacho LR. The Natural Product Cyclomarin Kills Mycobacterium Tuberculosis by Targeting the ClpC1 Subunit of the Caseinolytic Protease. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101740] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S, Miault C, Zwingelstein C, Krastel P, Noble C, Beer D, Rao SPS, Au M, Niyomrattanakit P, Lim V, Zheng J, Jeffery D, Pethe K, Camacho LR. The Natural Product Cyclomarin Kills Mycobacterium Tuberculosis by Targeting the ClpC1 Subunit of the Caseinolytic Protease. Angew Chem Int Ed Engl 2011; 50:5889-91. [DOI: 10.1002/anie.201101740] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Indexed: 11/07/2022]
|
8
|
Goren MA, Fox BG. Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex. Protein Expr Purif 2008; 62:171-8. [PMID: 18765284 PMCID: PMC2586813 DOI: 10.1016/j.pep.2008.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 08/01/2008] [Accepted: 08/11/2008] [Indexed: 01/08/2023]
Abstract
A wheat germ cell-free extract was used to perform in vitro translation of human stearoyl-CoA desaturase in the presence of unilamelar liposomes, and near complete transfer of the expressed integral membrane protein into the liposome was observed. Moreover, co-translation of the desaturase along with human cytochrome b(5) led to transfer of both membrane proteins into the liposomes. A simple, single step purification via centrifugation in a density gradient yielded proteoliposomes with the desaturase in high purity as judged by capillary electrophoresis. After in vitro reconstitution of the non-heme iron and heme active sites, the function of the reconstituted enzyme complex was demonstrated by conversion of stearoyl-CoA to oleoyl-CoA. This simple translation approach obviates the use of detergents or other lipids to stabilize and isolate a catalytically active integral membrane enzyme. The applicability of cell-free translation to the assembly and purification of other integral membrane protein complexes is discussed.
Collapse
Affiliation(s)
- Michael A Goren
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|