1
|
Zimmerman EH, Ramsey EL, Hunter KE, Villadelgado SM, Phillips CM, Shipman RT, Forsyth MH. The Helicobacter pylori methylome is acid-responsive due to regulation by the two-component system ArsRS and the type I DNA methyltransferase HsdM1 (HP0463). J Bacteriol 2024; 206:e0030923. [PMID: 38179929 PMCID: PMC10810217 DOI: 10.1128/jb.00309-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
In addition to its role in genome protection, DNA methylation can regulate gene expression. In this study, we characterized the impact of acidity, phase variation, and the ArsRS TCS on the expression of the Type I m6A DNA methyltransferase HsdM1 (HP0463) of Helicobacter pylori 26695 and their subsequent effects on the methylome. Transcription of hsdM1 increases at least fourfold in the absence of the sensory histidine kinase ArsS, the major acid-sensing protein of H. pylori. hsdM1 exists in the phase-variable operon hsdR1-hsdM1. Phase-locking hsdR1 (HP0464), the restriction endonuclease gene, has significant impacts on the transcription of hsdM1. To determine the impacts of methyltransferase transcription patterns on the methylome, we conducted methylome sequencing on samples cultured at pH 7 or pH 5. We found differentially methylated motifs between these growth conditions and that deletions of arsS and/or hsdM1 interfere with the epigenetic acid response. Deletion of arsS leads to altered activity of HsdM1 and multiple other methyltransferases under both pH conditions indicating that the ArsRS TCS, in addition to direct effects on regulon transcription during acid acclimation, may also indirectly impact gene expression via regulation of the methylome. We determined the target motif of HsdM1 (HP0463) to be the complementary bipartite sequence pair 5'-TCAm6AVN6TGY-3' and 3'-AGTN6GAm6ACA-5'. This complex regulation of DNA methyltransferases, and thus differential methylation patterns, may have implications for the decades-long persistent infection by H. pylori. IMPORTANCE This study expands the possibilities for complex, epigenomic regulation in Helicobacter pylori. We demonstrate that the H. pylori methylome is plastic and acid sensitive via the two-component system ArsRS and the DNA methyltransferase HsdM1. The control of a methyltransferase by ArsRS may allow for a layered response to changing acidity. Likely, an early response whereby ArsR~P affects regulon expression, including the methyltransferase hsdM1. Then, a somewhat later effect as the altered methylome, due to altered HsdM1 expression, subsequently alters the expression of other genes involved in acclimation. The intermediate methylation of certain motifs supports the hypothesis that methyltransferases play a regulatory role. Untangling this additional web of regulation could play a key role in understanding H. pylori colonization and persistence.
Collapse
Affiliation(s)
| | - Erin L. Ramsey
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | | | | | - Ryan T. Shipman
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Mark H. Forsyth
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
2
|
Dinh T, Dao O, Killivalavan A, Ngo D, Lee KH. Crystal structure of the apurinic/apyrimidinic endonuclease XthA (HP1526 protein) from Helicobacter pylori. Biochem Biophys Res Commun 2023; 663:8-15. [PMID: 37116395 DOI: 10.1016/j.bbrc.2023.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Helicobacter pylori is a bacterium that causes gastritis, peptic ulcer disease and adenocarcinoma while infecting human stomach. In the stomach H. pylori is under stresses caused by reactive oxygen and nitrogen species from host immune response, which causes oxidative DNA damage. The DNA damage in single base is repaired by base excision repair (BER) and/or nucleotide incision repair (NIR) pathways. H. pylori retains a minimal set of enzymes involved in the BER and NIR pathways. The HP1526 protein is a single apurinic/apyrimidinic (AP) endonuclease homologous to E. coli Xth protein but little is known for its structure up to now. In this study, the structure of the recombinant HP1526 protein from H. pylori (HpXthA) has been determined at a high resolution of 1.84 Å. From the structural analysis the HpXthA was found to belong to the Xth-like AP endonuclease family carrying the common fold of a central bilayer β-sheet flanked by α-helices with a divalent metal ion bound. A Mn2+ ion and a 1,3-butanediol were unusually found and modeled around the active site. Structural and sequence comparisons among the AP endonucleases show well-conserved residues for metal and DNA binding and for catalysis. Interestingly, the presence of a small polar residue Ser201 of the HpXthA commonly found in NIR-proficient AP endonucleases instead of an aspartate residue in NIR-deficient enzymes suggests that the HpXthA retain a nucleotide incision repair activity.
Collapse
Affiliation(s)
- Thom Dinh
- Department of Convergence Medical Science (BK21Plus), Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Oanh Dao
- Department of Convergence Medical Science (BK21Plus), Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Asaithambi Killivalavan
- Department of Convergence Medical Science (BK21Plus), Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Duong Ngo
- Department of Convergence Medical Science (BK21Plus), Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kon Ho Lee
- Department of Convergence Medical Science (BK21Plus), Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea; Institue of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
3
|
Franck C, Stéphane G, Julien C, Virginie G, Martine G, Norbert G, Fabrice C, Didier F, Josef SM, Bertrand C. Structural and functional determinants of the archaeal 8-oxoguanine-DNA glycosylase AGOG for DNA damage recognition and processing. Nucleic Acids Res 2022; 50:11072-11092. [PMID: 36300625 PMCID: PMC9638937 DOI: 10.1093/nar/gkac932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
8-Oxoguanine (GO) is a major purine oxidation product in DNA. Because of its highly mutagenic properties, GO absolutely must be eliminated from DNA. To do this, aerobic and anaerobic organisms from the three kingdoms of life have evolved repair mechanisms to prevent its deleterious effect on genetic integrity. The major way to remove GO is the base excision repair pathway, usually initiated by a GO-DNA glycosylase. First identified in bacteria (Fpg) and eukaryotes (OGG1), GO-DNA glycosylases were more recently identified in archaea (OGG2 and AGOG). AGOG is the less documented enzyme and its mode of damage recognition and removing remains to be clarified at the molecular and atomic levels. This study presents a complete structural characterisation of apo AGOGs from Pyrococcus abyssi (Pab) and Thermococcus gammatolerans (Tga) and the first structure of Pab-AGOG bound to lesion-containing single- or double-stranded DNA. By combining X-ray structure analysis, site directed mutagenesis and biochemistry experiments, we identified key amino acid residues of AGOGs responsible for the specific recognition of the lesion and the base opposite the lesion and for catalysis. Moreover, a unique binding mode of GO, involving double base flipping, never observed for any other DNA glycosylases, is revealed. In addition to unravelling the properties of AGOGs, our study, through comparative biochemical and structural analysis, offers new insights into the evolutionary plasticity of DNA glycosylases across all three kingdoms of life.
Collapse
Affiliation(s)
- Coste Franck
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Goffinont Stéphane
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Cros Julien
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Gaudon Virginie
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Guérin Martine
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Garnier Norbert
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Confalonieri Fabrice
- Institut de Biologie Intégrative de la cellule (I2BC), UMR 9198 Université Paris-Saclay-CNRS-CEA , Bâtiment 21, Avenue de la Terrasse , F-91190 Gif-sur-Yvette , France
| | - Flament Didier
- Université de Brest, Ifremer, CNRS, Unité Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP) , F-29280 Plouzané , France
| | - Suskiewicz Marcin Josef
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Castaing Bertrand
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| |
Collapse
|
4
|
Kinoshita-Daitoku R, Kiga K, Sanada T, Ogura Y, Bo Z, Iida T, Yokomori R, Kuroda E, Tanaka M, Sood A, Suzuki T, Nakai K, Hayashi T, Mimuro H. Mutational diversity in mutY deficient Helicobacter pylori and its effect on adaptation to the gastric environment. Biochem Biophys Res Commun 2020; 525:806-811. [PMID: 32164943 DOI: 10.1016/j.bbrc.2020.02.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/13/2020] [Indexed: 12/29/2022]
Abstract
Helicobacter pylori, a pathogenic bacterium that colonizes in the human stomach, harbors DNA repair genes to counter the gastric environment during chronic infection. In addition, H. pylori adapts to the host environment by undergoing antigenic phase variation caused by genomic mutations. The emergence of mutations in nucleotide sequences is one of the major factors underlying drug resistance and genetic diversity in bacteria. However, it is not clear how DNA repair genes contribute to driving the genetic change of H. pylori during chronic infection. To elucidate the physiological roles of DNA repair genes, we generated DNA repair-deficient strains of H. pylori (ΔuvrA, ΔuvrB, ΔruvA, Δnth, ΔmutY, ΔmutS, and Δung). We performed susceptibility testing to rifampicin in vitro and found that ΔmutY exhibited the highest mutation frequency among the mutants. The number of bacteria colonizing the stomach was significantly lower with ΔmutY strain compared with wild-type strains in a Mongolian gerbil model of H. pylori infection. Furthermore, we performed a genomic sequence analysis of the strains isolated from the Mongolian gerbil stomachs eight weeks after infection. We found that the isolated ΔmutY strains exhibited a high frequency of spontaneous G:C to T:A mutations. However, the frequency of phase variations in the ΔmutY strain was almost similar to the wild-type strain. These results suggest that MutY may play a role in modes of gastric environmental adaptation distinct from phase variation.
Collapse
Affiliation(s)
- Ryo Kinoshita-Daitoku
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takahito Sanada
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Zhu Bo
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tamako Iida
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rui Yokomori
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Kuroda
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mototsugu Tanaka
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Nephrology and Endocrinology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Arpana Sood
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitomi Mimuro
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Lisboa J, Celma L, Sanchez D, Marquis M, Andreani J, Guérois R, Ochsenbein F, Durand D, Marsin S, Cuniasse P, Radicella JP, Quevillon-Cheruel S. The C-terminal domain of HpDprA is a DNA-binding winged helix domain that does not bind double-stranded DNA. FEBS J 2019; 286:1941-1958. [PMID: 30771270 DOI: 10.1111/febs.14788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/21/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
DNA-processing protein A, a ubiquitous multidomain DNA-binding protein, plays a crucial role during natural transformation in bacteria. Here, we carried out the structural analysis of DprA from the human pathogen Helicobacter pylori by combining data issued from the 1.8-Å resolution X-ray structure of the Pfam02481 domain dimer (RF), the NMR structure of the carboxy terminal domain (CTD), and the low-resolution structure of the full-length DprA dimer obtained in solution by SAXS. In particular, we sought a molecular function for the CTD, a domain that we show here is essential for transformation in H. pylori. Albeit its structural homology to winged helix DNA-binding motifs, we confirmed that the isolated CTD does not interact with ssDNA nor with dsDNA. The key R52 and K137 residues of RF are crucial for these two interactions. Search for sequences harboring homology to either HpDprA or Rhodopseudomonas palustris DprA CTDs led to the identification of conserved patches in the two CTD. Our structural study revealed the similarity of the structures adopted by these residues in RpDprA CTD and HpDprA CTD. This argues for a conserved, but yet to be defined, CTD function, distinct from DNA binding.
Collapse
Affiliation(s)
- Johnny Lisboa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Louisa Celma
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dyana Sanchez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Mathilde Marquis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Raphael Guérois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Stéphanie Marsin
- Institute of Cellular and Molecular Radiobiology, Institut François Jacob, CEA, Universités Paris Diderot and Paris-Sud, Fontenay aux Roses, France
| | - Philippe Cuniasse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - J Pablo Radicella
- Institute of Cellular and Molecular Radiobiology, Institut François Jacob, CEA, Universités Paris Diderot and Paris-Sud, Fontenay aux Roses, France
| | - Sophie Quevillon-Cheruel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
6
|
DNA Repair Protein OGG1 in Pulmonary Infection and Other Inflammatory Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7121726 DOI: 10.1007/978-981-13-8413-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the last decades, extensive research has uncovered functional roles and underlying mechanisms of DNA repair enzyme 8-oxoguanine DNA glycosylase (OGG1) in the pathogenesis of inflammatory response in infection and other diseases in the lung. OGG1 excises 8-oxo-7,8-dihydroguanine (8-oxo-dG) lesion on DNA that is often induced by generation of reactive oxygen species (ROS) and has been linked to mutations, cancer development, and tissue damage. Most, if not all, environmental toxic agents and mammalian cellular metabolites elicit the generation of ROS, either directly, indirectly, or both, which is among the first cellular responses. ROS in combination with other oxidative molecules/moieties are recognized as a major factor for killing invading pathogens but meanwhile can cause tissue damage. ROS potentially modify proteins, lipids, and DNA due to the strong molecular reactivity. While oxidative stress causes increased levels of all types of oxidatively modified DNA bases, accumulation of 8-oxo-dG in the DNA has been singled out to be a main culprit linking to various inflammatory disease processes. Oxidatively damaged DNA bases such as 8-oxo-dG are primarily repaired by the base excision repair (BER) mechanism, in which OGG1, as the lesion recognition enzyme, plays a fundamental role in fixing this DNA damage. In this chapter, we summarize the roles and potential mechanistic analyses of OGG1 in lung infection and other inflammatory diseases.
Collapse
|
7
|
Characterization of biochemical properties of an apurinic/apyrimidinic endonuclease from Helicobacter pylori. PLoS One 2018; 13:e0202232. [PMID: 30110394 PMCID: PMC6093668 DOI: 10.1371/journal.pone.0202232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases play critical roles in the repair of abasic sites and strand breaks in DNA. Complete genome sequences of Helicobacter pylori reveal that this bacterial specie has a single AP endonuclease. An H. pylori homolog of Xth (HpXth) is a member of exonuclease III family, which is represented by Escherichia coli Xth. Currently, it remains unknown whether this single AP endonuclease has DNA repair activities similar to those of its counterpart in E. coli and other bacteria. We report that HpXth possesses efficient AP site cleavage, 3’-repair phosphodiesterase, and 3’-phosphatase activities but not the nucleotide incision repair function. Optimal reaction conditions for HpXth’s AP endonuclease activity are low ionic strength, high Mg2+ concentration, pH in the range 7–8, and temperature 30 °C. The kinetic parameters measured under steady-state conditions showed that HpXth removes the AP site, 3’-blocking sugar-phosphate, and 3’-terminal phosphate in DNA strand breaks with good efficiency (kcat/KM = 1240, 44, and 5,4 μM–1·min–1, respectively), similar to that of E. coli Xth. As expected, the presence of HpXth protein in AP endonuclease—deficient E. coli xth nfo strain significantly reduced the sensitivity to an alkylating agent and H2O2. Mutation of active site residue D144 in HpXth predicted to be essential for catalysis resulted in a complete loss of enzyme activities. Several important structural features of HpXth were uncovered by homology modeling and phylogenetic analysis. Our data show the DNA substrate specificity of H. pylori AP endonuclease and suggest that HpXth counteracts the genotoxic effects of DNA damage generated by endogenous and host-imposed factors.
Collapse
|
8
|
ComB proteins expression levels determine Helicobacter pylori competence capacity. Sci Rep 2017; 7:41495. [PMID: 28128333 PMCID: PMC5269756 DOI: 10.1038/srep41495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori chronically colonises half of the world’s human population and is the main cause of ulcers and gastric cancers. Its prevalence and the increase in antibiotic resistance observed recently reflect the high genetic adaptability of this pathogen. Together with high mutation rates and an efficient DNA recombination system, horizontal gene transfer through natural competence makes of H. pylori one of the most genetically diverse bacteria. We show here that transformation capacity is enhanced in strains defective for recN, extending previous work with other homologous recombination genes. However, inactivation of either mutY or polA has no effect on DNA transformation, suggesting that natural competence can be boosted in H. pylori by the persistence of DNA breaks but not by enhanced mutagenesis. The transformation efficiency of the different DNA repair impaired strains correlates with the number of transforming DNA foci formed on the cell surface and with the expression of comB8 and comB10 competence genes. Overexpression of the comB6-B10 operon is sufficient to increase the transformation capacity of a wild type strain, indicating that the ComB complex, present in the bacterial wall and essential for DNA uptake, can be a limiting factor for transformation efficiency.
Collapse
|
9
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
10
|
García-Ortíz MV, Marsin S, Arana ME, Gasparutto D, Guérois R, Kunkel TA, Radicella JP. Unexpected role for Helicobacter pylori DNA polymerase I as a source of genetic variability. PLoS Genet 2011; 7:e1002152. [PMID: 21731507 PMCID: PMC3121766 DOI: 10.1371/journal.pgen.1002152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/09/2011] [Indexed: 01/28/2023] Open
Abstract
Helicobacter pylori, a human pathogen infecting about half of the world population, is characterised by its large intraspecies variability. Its genome plasticity has been invoked as the basis for its high adaptation capacity. Consistent with its small genome, H. pylori possesses only two bona fide DNA polymerases, Pol I and the replicative Pol III, lacking homologues of translesion synthesis DNA polymerases. Bacterial DNA polymerases I are implicated both in normal DNA replication and in DNA repair. We report that H. pylori DNA Pol I 5'- 3' exonuclease domain is essential for viability, probably through its involvement in DNA replication. We show here that, despite the fact that it also plays crucial roles in DNA repair, Pol I contributes to genomic instability. Indeed, strains defective in the DNA polymerase activity of the protein, although sensitive to genotoxic agents, display reduced mutation frequencies. Conversely, overexpression of Pol I leads to a hypermutator phenotype. Although the purified protein displays an intrinsic fidelity during replication of undamaged DNA, it lacks a proofreading activity, allowing it to efficiently elongate mismatched primers and perform mutagenic translesion synthesis. In agreement with this finding, we show that the spontaneous mutator phenotype of a strain deficient in the removal of oxidised pyrimidines from the genome is in part dependent on the presence of an active DNA Pol I. This study provides evidence for an unexpected role of DNA polymerase I in generating genomic plasticity.
Collapse
Affiliation(s)
| | - Stéphanie Marsin
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, UMR 217 CNRS/CEA, Fontenay aux Roses, France
| | - Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | | | - Raphaël Guérois
- CEA, iBiTecS, Gif sur Yvette, France
- CNRS, URA 2096, Gif sur Yvette, France
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - J. Pablo Radicella
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, UMR 217 CNRS/CEA, Fontenay aux Roses, France
| |
Collapse
|
11
|
Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori. PLoS One 2008; 3:e3797. [PMID: 19030104 PMCID: PMC2582958 DOI: 10.1371/journal.pone.0003797] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 11/04/2008] [Indexed: 01/27/2023] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen.
Collapse
|
12
|
The Helicobacter pylori mutY homologue HP0142 is an antimutator gene that prevents specific C to A transversions. Arch Microbiol 2007; 189:263-70. [DOI: 10.1007/s00203-007-0315-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/05/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
|
13
|
Critical role of RecN in recombinational DNA repair and survival of Helicobacter pylori. Infect Immun 2007; 76:153-60. [PMID: 17954726 DOI: 10.1128/iai.00791-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination is one of the key mechanisms responsible for the repair of DNA double-strand breaks. Recombinational repair normally requires a battery of proteins, each with specific DNA recognition, strand transfer, resolution, or other functions. Helicobacter pylori lacks many of the proteins normally involved in the early stage (presynapsis) of recombinational repair, but it has a RecN homologue with an unclear function. A recN mutant strain of H. pylori was shown to be much more sensitive than its parent to mitomycin C, an agent predominantly causing DNA double-strand breaks. The recN strain was unable to survive exposure to either air or acid as well as the parent strain, and air exposure resulted in no viable recN cells recovered after 8 h. In oxidative stress conditions (i.e., air exposure), a recN strain accumulated significantly more damaged (multiply fragmented) DNA than the parent strain. To assess the DNA recombination abilities of strains, their transformation abilities were compared by separately monitoring transformation using H. pylori DNA fragments containing either a site-specific mutation (conferring rifampin resistance) or a large insertion (kanamycin resistance cassette). The transformation frequencies using the two types of DNA donor were 10- and 50-fold lower, respectively, for the recN strain than for the wild type, indicating that RecN plays an important role in facilitating DNA recombination. In two separate mouse colonization experiments, the recN strain colonized most of the stomachs, but the average number of recovered cells was 10-fold less for the mutant than for the parent strain (a statistically significant difference). Complementation of the recN strain by chromosomal insertion of a functional recN gene restored both the recombination frequency and mouse colonization ability to the wild-type levels. Thus, H. pylori RecN, as a component of DNA recombinational repair, plays a significant role in H. pylori survival in vivo.
Collapse
|
14
|
Suerbaum S, Josenhans C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 2007; 5:441-52. [PMID: 17505524 DOI: 10.1038/nrmicro1658] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori colonizes the stomachs of more than 50% of the world's population, making it one of the most successful of all human pathogens. One striking characteristic of H. pylori biology is its remarkable allelic diversity and genetic variability. Not only does almost every infected person harbour their own individual H. pylori strain, but strains can undergo genetic alteration in vivo, driven by an elevated mutation rate and frequent intraspecific recombination. This genetic variability, which affects both housekeeping and virulence genes, has long been thought to contribute to host adaptation, and several recently published studies support this concept. We review the available knowledge relating to the genetic variation of H. pylori, with special emphasis on the changes that occur during chronic colonization, and argue that H. pylori uses mutation and recombination processes to adapt to its individual host by modifying molecules that interact with the host. Finally, we put forward the hypothesis that the lack of opportunity for intraspecies recombination as a result of the decreasing prevalence of H. pylori could accelerate its disappearance from Western populations.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | |
Collapse
|