1
|
Zhang Y, Gallant É, Park JD, Seyedsayamdost MR. The Small-Molecule Language of Dynamic Microbial Interactions. Annu Rev Microbiol 2022; 76:641-660. [PMID: 35679616 PMCID: PMC10171915 DOI: 10.1146/annurev-micro-042722-091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microbes are routinely grown in monocultures in the laboratory, they are almost never encountered as single species in the wild. Our ability to detect and identify new microorganisms has advanced significantly in recent years, but our understanding of the mechanisms that mediate microbial interactions has lagged behind. What makes this task more challenging is that microbial alliances can be dynamic, consisting of multiple phases. The transitions between phases, and the interactions in general, are often mediated by a chemical language consisting of small molecules, also referred to as secondary metabolites or natural products. In this microbial lexicon, the molecules are like words and through their effects on recipient cells they convey meaning. The current review highlights three dynamic microbial interactions in which some of the words and their meanings have been characterized, especially those that mediate transitions in selected multiphasic associations. These systems provide insights into the principles that govern microbial symbioses and a playbook for interrogating similar associations in diverse ecological niches. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; ,
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , .,Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| |
Collapse
|
2
|
Singh S, Bhatia S. Quorum Sensing Inhibitors: Curbing Pathogenic Infections through Inhibition of Bacterial Communication. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:486-514. [PMID: 34567177 PMCID: PMC8457738 DOI: 10.22037/ijpr.2020.113470.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently, most of the developed and developing countries are facing the problem of infectious diseases. The genius way of an exaggerated application of antibiotics led the infectious agents to respond by bringing a regime of persisters to resist antibiotics attacks prolonging their survival. Persisters have the dexterity to communicate among themself using signal molecules via the process of Quorum Sensing (QS), which regulates virulence gene expression and biofilms formation, making them more vulnerable to antibiotic attack. Our review aims at the different approaches applied in the ordeal to solve the riddle for QS inhibitors. QS inhibitors, their origin, structures and key interactions for QS inhibitory activity have been summarized. Solicitation of a potent QS inhibitor molecule would be beneficial, giving new life to the simplest antibiotics in adjuvant therapy.
Collapse
Affiliation(s)
- Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini-211007, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
3
|
Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, Janczarek M, Vinardell JM. Rhizobial Exopolysaccharides: Genetic Regulation of Their Synthesis and Relevance in Symbiosis with Legumes. Int J Mol Sci 2021; 22:6233. [PMID: 34207734 PMCID: PMC8227245 DOI: 10.3390/ijms22126233] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/11/2022] Open
Abstract
Rhizobia are soil proteobacteria able to engage in a nitrogen-fixing symbiotic interaction with legumes that involves the rhizobial infection of roots and the bacterial invasion of new organs formed by the plant in response to the presence of appropriate bacterial partners. This interaction relies on a complex molecular dialogue between both symbionts. Bacterial N-acetyl-glucosamine oligomers called Nod factors are indispensable in most cases for early steps of the symbiotic interaction. In addition, different rhizobial surface polysaccharides, such as exopolysaccharides (EPS), may also be symbiotically relevant. EPS are acidic polysaccharides located out of the cell with little or no cell association that carry out important roles both in free-life and in symbiosis. EPS production is very complexly modulated and, frequently, co-regulated with Nod factors, but the type of co-regulation varies depending on the rhizobial strain. Many studies point out a signalling role for EPS-derived oligosaccharides in root infection and nodule invasion but, in certain symbiotic couples, EPS can be dispensable for a successful interaction. In summary, the complex regulation of the production of rhizobial EPS varies in different rhizobia, and the relevance of this polysaccharide in symbiosis with legumes depends on the specific interacting couple.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Francisco Fuentes-Romero
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Jose-Enrique Ruiz-Sainz
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - José-María Vinardell
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| |
Collapse
|
4
|
Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front Microbiol 2021; 12:638003. [PMID: 33796089 PMCID: PMC8008120 DOI: 10.3389/fmicb.2021.638003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Touseef Hussain
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Kawal Jeet Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shashank S. Kamble
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
5
|
Primo E, Bogino P, Cossovich S, Foresto E, Nievas F, Giordano W. Exopolysaccharide II Is Relevant for the Survival of Sinorhizobium meliloti under Water Deficiency and Salinity Stress. Molecules 2020; 25:E4876. [PMID: 33105680 PMCID: PMC7659973 DOI: 10.3390/molecules25214876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Sinorhizobium meliloti is a soil bacterium of great agricultural importance because of its ability to fix atmospheric nitrogen in symbiotic association with alfalfa (Medicago sativa) roots. We looked into the involvement of exopolysaccharides (EPS) in its survival when exposed to different environmental stressors, as well as in bacteria-bacteria and bacteria-substrate interactions. The strains used were wild-type Rm8530 and two strains that are defective in the biosynthesis of EPS II: wild-type Rm1021, which has a non-functional expR locus, and mutant Rm8530 expA. Under stress by water deficiency, Rm8530 remained viable and increased in number, whereas Rm1021 and Rm8530 expA did not. These differences could be due to Rm8530's ability to produce EPS II. Survival experiments under saline stress showed that viability was reduced for Rm1021 but not for Rm8530 or Rm8530 expA, which suggests the existence of some regulating mechanism dependent on a functional expR that is absent in Rm1021. The results of salinity-induced stress assays regarding biofilm-forming capacity (BFC) and autoaggregation indicated the protective role of EPS II. As a whole, our observations demonstrate that EPS play major roles in rhizobacterial survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto X5804BYA, Córdoba, Argentina; (E.P.); (P.B.); (S.C.); (E.F.); (F.N.)
| |
Collapse
|
6
|
Baena I, Pérez-Mendoza D, Sauviac L, Francesch K, Martín M, Rivilla R, Bonilla I, Bruand C, Sanjuán J, Lloret J. A partner-switching system controls activation of mixed-linkage β-glucan synthesis by c-di-GMP in Sinorhizobium meliloti. Environ Microbiol 2019; 21:3379-3391. [PMID: 30963697 DOI: 10.1111/1462-2920.14624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/06/2019] [Indexed: 11/29/2022]
Abstract
Sinorhizobium meliloti synthesizes a linear mixed-linkage (1 → 3)(1 → 4)-β-d-glucan (ML β-glucan, MLG) in response to high levels of cyclic diguanylate (c-di-GMP). Two proteins BgsA and BgsB are required for MLG synthesis, BgsA being the glucan synthase which is activated upon c-di-GMP binding to its C-terminal domain. Here we report that the product of bgrR (SMb20447) is a diguanylate cyclase (DGC) that provides c-di-GMP for the synthesis of MLG by BgsA. bgrR is the first gene of a hexacistronic bgrRSTUWV operon, likely encoding a partner-switching regulatory network where BgrR is the final target. Using different approaches, we have determined that the products of genes bgrU (containing a putative PP2C serine phosphatase domain) and bgrW (with predicted kinase effector domain), modulate the phosphorylation status and the activity of the STAS domain protein BgrV. We propose that unphosphorylated BgrV inhibits BgrR DGC activity, perhaps through direct protein-protein interactions as established for other partner switchers. A bgrRSTUWV operon coexists with MLG structural bgsBA genes in many rhizobial genomes but is also present in some MLG non-producers, suggesting a role of this partner-switching system in other processes besides MLG biosynthesis.
Collapse
Affiliation(s)
- Irene Baena
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Pérez-Mendoza
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Laurent Sauviac
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Kevin Francesch
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Claude Bruand
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Juan Sanjuán
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Javier Lloret
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Xu YY, Yang JS, Liu C, Wang ET, Wang RN, Qiu XQ, Li BZ, Chen WF, Yuan HL. Water-Soluble Humic Materials Regulate Quorum Sensing in Sinorhizobium meliloti Through a Novel Repressor of expR. Front Microbiol 2018; 9:3194. [PMID: 30627123 PMCID: PMC6309736 DOI: 10.3389/fmicb.2018.03194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 11/23/2022] Open
Abstract
Quorum sensing (QS) plays an important role in the growth, nodulation, and nitrogen fixation of rhizobia. In this study, we show that water-soluble humic materials (WSHM) repress the expression of the QS related genes sinI, sinR, and expR in Sinorhizobium meliloti. This decreased the production of N-acetyl homoserine lactones (AHL) and exopolysaccharides (EPS), and ultimately increased S. meliloti cell density. We also identified a novel regulator, SMc03890 (renamed QsrR), which binds directly to the expR promoter. Deletion of qsrR increased expR expression. WSHM repressed the expression of expR by augmenting the interaction between QsrR and the expR promoter; this was determined by a bacterial-one-hybrid assay. These effects of WSHM on the QS system in S. meliloti may be the underlying mechanism by which WSHM increase the symbiotic nitrogen fixation of Medicago sativa inoculated with S. meliloti. This study provides the first evidence that humic acids regulate the QS of rhizobia and suggests that WSHM could be used as fertilizers to improve the efficiency of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin-Shui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - En-Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ruo-Nan Wang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao-Qian Qiu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bao-Zhen Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Feng Chen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Li Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Bacterial Exopolysaccharides as Reducing and/or Stabilizing Agents during Synthesis of Metal Nanoparticles with Biomedical Applications. INT J POLYM SCI 2018. [DOI: 10.1155/2018/7045852] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are biomolecules secreted in the extracellular space and have diverse biological functionalities, such as environmental protection, surface adherence, and cellular interactions. EPSs have been found to be biocompatible and eco-friendly, therefore making them suitable for applications in many areas of study and various industrial products. Recently, synthesis and stabilization of metal nanoparticles have been of interest because their usefulness for many biomedical applications, such as antimicrobials, anticancer drugs, antioxidants, drug delivery systems, chemical sensors, contrast agents, and as catalysts. In this context, bacterial EPSs have been explored as agents to aid in a greener production of a myriad of metal nanoparticles, since they have the ability to reduce metal ions to form nanoparticles and stabilize them acting as capping agents. In addition, by incorporating EPS to the metal nanoparticles, the EPS confers them biocompatibility. Thus, the present review describes the main bacterial EPS utilized in the synthesis and stabilization of metal nanoparticles, the mechanisms involved in this process, and the different applications of these nanoparticles, emphasizing in their biomedical applications.
Collapse
|
9
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
10
|
Hawkins JP, Geddes BA, Oresnik IJ. Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:1009-1019. [PMID: 28871850 DOI: 10.1094/mpmi-07-17-0176-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, the hypothesis that exopolysaccharide plays a role in the survival of Sinorhizobium meliloti at low pH levels is addressed. When S. meliloti was grown at pH 5.75, synthesis of succinoglycan increased, whereas synthesis of galactoglucan decreased. Succinoglycan that was isolated from cultures grown at low pH had a lower degree of polymerization relative to that which was isolated from cultures grown at neutral pH, suggesting that low-molecular weight (LMW) succinoglycan might play a role in adaptation to low pH. Mutants unable to produce succinoglycan or only able to produce high-molecular weight polysaccharide were found to be sensitive to low pH. However, strains unable to produce LMW polysaccharide were 10-fold more sensitive. In response to low pH, transcription of genes encoding proteins for succinoglycan, glycogen, and cyclic β(1-2) glucans biosynthesis increased, while those encoding proteins necessary for the biosynthesis of galactoglucan decreased. While changes in pH did not affect the production of glycogen or cyclic β(1-2) glucan, it was found that the inability to produce cyclic β(1-2) glucan did contribute to pH tolerance in the absence of succinoglycan. Finally, in addition to being sensitive to low pH, a strain carrying mutations in exoK and exsH, which encode the glycanases responsible for the cleavage of succinoglycan to LMW succinoglycan, exhibited a delay in nodulation and was uncompetitive for nodule occupancy. Taken together, the data suggest that the role for LMW succinoglycan in nodule development may be to enhance survival in the colonized curled root hair.
Collapse
Affiliation(s)
- Justin P Hawkins
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Barney A Geddes
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Ivan J Oresnik
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
11
|
Döhlemann J, Wagner M, Happel C, Carrillo M, Sobetzko P, Erb TJ, Thanbichler M, Becker A. A Family of Single Copy repABC-Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium Sinorhizobium meliloti. ACS Synth Biol 2017; 6:968-984. [PMID: 28264559 PMCID: PMC7610768 DOI: 10.1021/acssynbio.6b00320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
A considerable
share of bacterial species maintains segmented genomes.
Plant symbiotic α-proteobacterial rhizobia contain up to six repABC-type replicons in addition to the primary chromosome.
These low or unit-copy replicons, classified as secondary chromosomes,
chromids, or megaplasmids, are exclusively found in α-proteobacteria.
Replication and faithful partitioning of these replicons to the daughter
cells is mediated by the repABC region. The importance
of α-rhizobial symbiotic nitrogen fixation for sustainable agriculture
and Agrobacterium-mediated plant transformation as
a tool in plant sciences has increasingly moved biological engineering
of these organisms into focus. Plasmids are ideal DNA-carrying vectors
for these engineering efforts. On the basis of repABC regions collected from α-rhizobial secondary replicons, and
origins of replication derived from traditional cloning vectors, we
devised the versatile family of pABC shuttle vectors propagating in Sinorhizobium meliloti, related members of the Rhizobiales, and Escherichia coli. A modular plasmid library
providing the elemental parts for pABC vector assembly was founded.
The standardized design of these vectors involves five basic modules:
(1) repABC cassette, (2) plasmid-derived origin of
replication, (3) RK2/RP4 mobilization site (optional), (4) antibiotic
resistance gene, and (5) multiple cloning site flanked by transcription
terminators. In S. meliloti, pABC vectors showed
high propagation stability and unit-copy number. We demonstrated stable
coexistence of three pABC vectors in addition to the two indigenous
megaplasmids in S. meliloti, suggesting combinability
of multiple compatible pABC plasmids. We further devised an in vivo cloning strategy involving Cre/lox-mediated translocation of large DNA fragments to an autonomously
replicating repABC-based vector, followed by conjugation-mediated
transfer either to compatible rhizobia or E. coli.
Collapse
Affiliation(s)
- Johannes Döhlemann
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Marcel Wagner
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Carina Happel
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Martina Carrillo
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
| | - Tobias J. Erb
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Martin Thanbichler
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
12
|
diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nat Commun 2016; 7:12219. [PMID: 27447951 PMCID: PMC4961836 DOI: 10.1038/ncomms12219] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. The genome of some bacteria consists of two or more chromosomes or replicons. Here, diCenzo et al. integrate genome-scale metabolic modelling and growth data from a collection of mutants of the plant symbiont Sinorhizobium meliloti to estimate the fitness contribution of each replicon in three environments.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1
| | - Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Sciences, University of Florence, 50144 Sesto Fiorentino, Italy
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1
| | - Marco Galardini
- EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti. J Bacteriol 2015; 198:521-35. [PMID: 26574513 DOI: 10.1128/jb.00795-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Sinorhizobium meliloti undergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3',5'-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG in S. meliloti Rm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation of N-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of the S. meliloti genes pleD, SMb20523, SMb20447, SMc01464, and SMc03178 encoding putative DGCs and of SMb21517 encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, an S. meliloti strain that did not produce detectable levels of cdG (cdG(0)) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. The SMc01790-SMc01796 locus, homologous to the Agrobacterium tumefaciens uppABCDEF cluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility. IMPORTANCE We present the first systematic genome-wide investigation of the role of 3',5'-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a symbiotic alpha-rhizobial species. Phenotypes of an S. meliloti strain unable to produce cdG (cdG(0)) demonstrated that this second messenger is not essential for root nodule symbiosis but may contribute to acid tolerance. Our data further suggest that enhanced levels of cdG promote sessility of S. meliloti and uncovered a single-domain PilZ protein as regulator of motility.
Collapse
|
14
|
Koul S, Prakash J, Mishra A, Kalia VC. Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria. Indian J Microbiol 2015; 56:1-18. [PMID: 26843692 DOI: 10.1007/s12088-015-0558-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance.
Collapse
Affiliation(s)
- Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Anjali Mishra
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|
15
|
Charoenpanich P, Soto MJ, Becker A, McIntosh M. Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:373-382. [PMID: 25534533 DOI: 10.1111/1758-2229.12262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Microbial cooperative behaviours, such as quorum sensing (QS), improve survival and this explains their prevalence throughout the microbial world. However, relatively little is known about the mechanisms by which cooperation promotes survival. Furthermore, cooperation typically requires costly contributions, e.g. exopolysaccharides, which are produced from limited resources. Inevitably, cooperation is vulnerable to damaging mutations which results in mutants that are relieved of the burden of contributing but nonetheless benefit from the contributions of their parent. Unless somehow prevented, such mutants may outcompete and replace the parent. The bacterium Sinorhizobium meliloti uses QS to activate the production of copious levels of exopolysaccharide (EPS). Domestication of this bacterium is typified by the appearance of spontaneous mutants incapable of EPS production, which take advantage of EPS production by the parent and outcompete the parent. We found that all of the mutants were defect in QS, implying that loss of QS is a typical consequence of the domestication of this bacterium. This instability was traced to several QS-regulated processes, including a QS-dependent restraint of growth, providing the mutant with a significant growth advantage. A model is proposed whereby QS restrains population growth to prevent overcrowding and prepares the population for the survival of severe conditions.
Collapse
Affiliation(s)
- Pornsri Charoenpanich
- LOEWE Center for Synthetic Microbiology, Faculty of Biology, University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
16
|
Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti. Proc Natl Acad Sci U S A 2015; 112:E757-65. [PMID: 25650430 DOI: 10.1073/pnas.1421748112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An artificial increase of cyclic diguanylate (c-di-GMP) levels in Sinorhizobium meliloti 8530, a bacterium that does not carry known cellulose synthesis genes, leads to overproduction of a substance that binds the dyes Congo red and calcofluor. Sugar composition and methylation analyses and NMR studies identified this compound as a linear mixed-linkage (1 → 3)(1 → 4)-β-D-glucan (ML β-glucan), not previously described in bacteria but resembling ML β-glucans found in plants and lichens. This unique polymer is hydrolyzed by the specific endoglucanase lichenase, but, unlike lichenan and barley glucan, it generates a disaccharidic → 4)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → repeating unit. A two-gene operon bgsBA required for production of this ML β-glucan is conserved among several genera within the order Rhizobiales, where bgsA encodes a glycosyl transferase with domain resemblance and phylogenetic relationship to curdlan synthases and to bacterial cellulose synthases. ML β-glucan synthesis is subjected to both transcriptional and posttranslational regulation. bgsBA transcription is dependent on the exopolysaccharide/quorum sensing ExpR/SinI regulatory system, and posttranslational regulation seems to involve allosteric activation of the ML β-glucan synthase BgsA by c-di-GMP binding to its C-terminal domain. To our knowledge, this is the first report on a linear mixed-linkage (1 → 3)(1 → 4)-β-glucan produced by a bacterium. The S. meliloti ML β-glucan participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of a host plant, resembling the biological role of cellulose in other bacteria.
Collapse
|
17
|
Schlüter JP, Czuppon P, Schauer O, Pfaffelhuber P, McIntosh M, Becker A. Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level. J Biotechnol 2015; 198:3-14. [PMID: 25661839 DOI: 10.1016/j.jbiotec.2015.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/17/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Phenotypic heterogeneity, defined as the unequal behavior of individuals in an isogenic population, is prevalent in microorganisms. It has a significant impact both on industrial bioprocesses and microbial ecology. We introduce a new versatile reporter system designed for simultaneous monitoring of the activities of three different promoters, where each promoter is fused to a dedicated fluorescent reporter gene (cerulean, mCherry, and mVenus). The compact 3.1 kb triple reporter cassette can either be carried on a replicating plasmid or integrated into the genome avoiding artifacts associated with variation in copy number of plasmid-borne reporter constructs. This construct was applied to monitor promoter activities related to quorum sensing (sinI promoter) and biosynthesis of the exopolysaccharide galactoglucan (wgeA promoter) at single cell level in colonies of the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti growing in a microfluidics system. The T5-promoter served as a constitutive and homogeneously active control promoter indicating cell viability. wgeA promoter activity was heterogeneous over the whole period of colony development, whereas sinI promoter activity passed through a phase of heterogeneity before becoming homogeneous at late stages. Although quorum sensing-dependent regulation is a major factor activating galactoglucan production, activities of both promoters did not correlate at single cell level. We developed a novel mathematical strategy for classification of the gene expression status in cell populations based on the increase in fluorescence over time in each individual. With respect to galactoglucan biosynthesis, cells in the population were classified into non-contributors, weak contributors, and strong contributors.
Collapse
Affiliation(s)
- Jan-Philip Schlüter
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Peter Czuppon
- Department of Mathematical Stochastics, Faculty of Mathematics and Physics, Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Schauer
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Peter Pfaffelhuber
- Department of Mathematical Stochastics, Faculty of Mathematics and Physics, Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany
| | - Matthew McIntosh
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany.
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
18
|
Avenhaus U, Cabeza RA, Liese R, Lingner A, Dittert K, Salinas-Riester G, Pommerenke C, Schulze J. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration. FRONTIERS IN PLANT SCIENCE 2015; 6:1133. [PMID: 26779207 PMCID: PMC4702478 DOI: 10.3389/fpls.2015.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 05/19/2023]
Abstract
Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be induced by increased formation of NCR peptides and necessitates an efficient iron supply to the bacteroid, which is probably mediated by nicotianamine. The paper is dedicated to the 85th birthday of Prof. Dr. Günther Schilling, University of Halle/Wittenberg, Germany, https://de.wikipedia.org/wiki/Günther_Schilling.
Collapse
Affiliation(s)
- Ulrike Avenhaus
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Ricardo A. Cabeza
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
- Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de ChileLa Pintana, Chile
| | - Rebecca Liese
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Annika Lingner
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Klaus Dittert
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University of GoettingenGoettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University of GoettingenGoettingen, Germany
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
- *Correspondence: Joachim Schulze,
| |
Collapse
|
19
|
Geddes BA, González JE, Oresnik IJ. Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1307-17. [PMID: 25387133 DOI: 10.1094/mpmi-06-14-0168-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sinorhizobium meliloti strains unable to utilize galactose as a sole carbon source, due to mutations in the De-Ley Doudoroff pathway (dgoK), were previously shown to be more competitive for nodule occupancy. In this work, we show that strains carrying this mutation have galactose-dependent exopolysaccharide (EPS) phenotypes that were manifested as aberrant Calcofluor staining as well as decreased mucoidy when in an expR(+) genetic background. The aberrant Calcofluor staining was correlated with changes in the pH of the growth medium. Strains carrying dgoK mutations were subsequently demonstrated to show earlier acidification of their growth medium that was correlated with an increase expression of genes associated with succinoglycan biosynthesis as well as increased accumulation of high and low molecular weight EPS in the medium. In addition, it was shown that the acidification of the medium was dependent on the inability of S. meliloti strains to initiate the catabolism of galactose. To more fully understand why strains carrying the dgoK allele were more competitive for nodule occupancy, early nodulation phenotypes were investigated. It was found that strains carrying the dgoK allele had a faster rate of nodulation. In addition, nodule competition experiments using genetic backgrounds unable to synthesize either succinoglycan or EPSII were consistent with the hypothesis that the increased competition phenotype was dependent upon the synthesis of succinoglycan. Fluorescent microscopy experiments on infected root-hair cells, using the acidotropic dye Lysotracker Red DND-99, provide evidence that the colonized curled root hair is an acidic compartment.
Collapse
|
20
|
RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant. Appl Environ Microbiol 2014; 80:5655-71. [PMID: 25002423 DOI: 10.1128/aem.01835-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The alphaproteobacterium Sinorhizobium fredii NGR234 has an exceptionally wide host range, as it forms nitrogen-fixing nodules with more legumes than any other known microsymbiont. Within its 6.9-Mbp genome, it encodes two N-acyl-homoserine-lactone synthase genes (i.e., traI and ngrI) involved in the biosynthesis of two distinct autoinducer I-type molecules. Here, we report on the construction of an NGR234-ΔtraI and an NGR234-ΔngrI mutant and their genome-wide transcriptome analysis. A high-resolution RNA sequencing (RNA-seq) analysis of early-stationary-phase cultures in the NGR234-ΔtraI background suggested that up to 316 genes were differentially expressed in the NGR234-ΔtraI mutant versus the parent strain. Similarly, in the background of NGR234-ΔngrI 466 differentially regulated genes were identified. Accordingly, a common set of 186 genes was regulated by the TraI/R and NgrI/R regulon. Coregulated genes included 42 flagellar biosynthesis genes and 22 genes linked to exopolysaccharide (EPS) biosynthesis. Among the genes and open reading frames (ORFs) that were differentially regulated in NGR234-ΔtraI were those linked to replication of the pNGR234a symbiotic plasmid and cytochrome c oxidases. Biotin and pyrroloquinoline quinone biosynthesis genes were differentially expressed in the NGR234-ΔngrI mutant as well as the entire cluster of 21 genes linked to assembly of the NGR234 type III secretion system (T3SS-II). Further, we also discovered that genes responsible for rhizopine catabolism in NGR234 were strongly repressed in the presence of high levels of N-acyl-homoserine-lactones. Together with nodulation assays, the RNA-seq-based findings suggested that quorum sensing (QS)-dependent gene regulation appears to be of higher relevance during nonsymbiotic growth rather than for life within root nodules.
Collapse
|
21
|
Torres MJ, Rubia MI, de la Peña TC, Pueyo JJ, Bedmar EJ, Delgado MJ. Genetic basis for denitrification in Ensifer meliloti. BMC Microbiol 2014; 14:142. [PMID: 24888981 PMCID: PMC4064527 DOI: 10.1186/1471-2180-14-142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/28/2014] [Indexed: 11/20/2022] Open
Abstract
Background Denitrification is defined as the dissimilatory reduction of nitrate or nitrite to nitric oxide (NO), nitrous oxide (N2O), or dinitrogen gas (N2). N2O is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Legume crops might contribute to N2O production by providing nitrogen-rich residues for decomposition or by associating with rhizobia that are able to denitrify under free-living and symbiotic conditions. However, there are limited direct empirical data concerning N2O production by endosymbiotic bacteria associated with legume crops. Analysis of the Ensifer meliloti 1021 genome sequence revealed the presence of the napEFDABC, nirK, norECBQD and nosRZDFYLX denitrification genes. It was recently reported that this bacterium is able to grow using nitrate respiration when cells are incubated with an initial O2 concentration of 2%; however, these cells were unable to use nitrate respiration when initially incubated anoxically. The involvement of the nap, nirK, nor and nos genes in E. meliloti denitrification has not been reported. Results E. meliloti nap, nirK and norC mutant strains exhibited defects in their ability to grow using nitrate as a respiratory substrate. However, E meliloti nosZ was not essential for growth under these conditions. The E. meliloti napA, nirK, norC and nosZ genes encode corresponding nitrate, nitrite, nitric oxide and nitrous oxide reductases, respectively. The NorC component of the E. meliloti nitric oxide reductase has been identified as a c-type cytochrome that is 16 kDa in size. Herein, we also show that maximal expression of the E. meliloti napA, nirK, norC and nosZ genes occurred when cells were initially incubated anoxically with nitrate. Conclusion The E. meliloti napA, nirK, norC and nosZ genes are involved in nitrate respiration and in the expression of denitrification enzymes in this bacterium. Our findings expand the short list of rhizobia for which denitrification gene function has been demonstrated. The inability of E. meliloti to grow when cells are initially subjected to anoxic conditions is not attributable to defects in the expression of the napA, nirK, norC and nosZ denitrification genes.
Collapse
Affiliation(s)
| | | | | | | | | | - María J Delgado
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), P,O, Box 419, 18080 Granada, Spain.
| |
Collapse
|
22
|
ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti. Appl Environ Microbiol 2014; 80:2429-39. [PMID: 24509921 DOI: 10.1128/aem.04088-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction.
Collapse
|
23
|
Garg N, Manchanda G, Kumar A. Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 2013; 105:289-305. [DOI: 10.1007/s10482-013-0082-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
|
24
|
The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa. Appl Environ Microbiol 2013; 79:7150-9. [PMID: 24038694 DOI: 10.1128/aem.02225-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.
Collapse
|
25
|
Mendis HC, Queiroux C, Brewer TE, Davis OM, Washburn BK, Jones KM. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1089-1105. [PMID: 23656330 DOI: 10.1094/mpmi-03-13-0087-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The acidic polysaccharide succinoglycan produced by the nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and to efficiently invade the host plant M. sativa (alfalfa). The β-glucanase enzyme encoded by exoK has previously been demonstrated to cleave succinoglycan and participate in producing the low molecular weight form of this polysaccharide. Here, we show that exoK is required for efficient S. meliloti invasion of both M. truncatula and alfalfa. Deletion mutants of exoK have a substantial reduction in symbiotic productivity on both of these plant hosts. Insertion mutants of exoK have an even less productive symbiosis than the deletion mutants with the host M. truncatula that is caused by a secondary effect of the insertion itself, and may be due to a polar effect on the expression of the downstream exoLAMON genes.
Collapse
Affiliation(s)
- Hajeewaka C Mendis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | |
Collapse
|
26
|
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 2013; 195:3224-36. [PMID: 23687265 DOI: 10.1128/jb.00234-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sin quorum sensing (QS) system of S. meliloti activates exopolysaccharide and represses flagellum production. The system consists of an N-acyl-homoserine lactone (AHL) synthase, SinI, and at least two LuxR-type regulators, SinR and ExpR. SinR appears to be independent of AHLs for its control of sinI expression, while ExpR is almost completely dependent upon AHLs. In this study, we confirmed 7 previously detected ExpR-DNA binding sites and used the consensus sequence to identify another 26 sites, some of which regulate genes previously not known to be members of the ExpR/AHL regulon. The activities of promoters dependent upon ExpR/AHL were titrated against AHL levels, with varied outcomes in AHL sensitivity. The data suggest a type of temporal expression program whereby the activity of each promoter is subject to a specific range of AHL concentrations. For example, genes responsible for exopolysaccharide production are activated at lower concentrations of AHLs than those required for the repression of genes controlling flagellum production. Several features of ExpR-regulated promoters appear to determine their response to AHLs. The location of the ExpR-binding site with respect to the relevant transcription start within each promoter region determines whether ExpR/AHL activates or represses promoter activity. Furthermore, the strength of the response is dependent upon the concentration of AHLs. We propose that this differential sensitivity to AHLs provides a bacterial colony with a transcription control program that is dynamic and precise.
Collapse
|
27
|
Zhuang X, Gao J, Ma A, Fu S, Zhuang G. Bioactive molecules in soil ecosystems: masters of the underground. Int J Mol Sci 2013; 14:8841-68. [PMID: 23615474 PMCID: PMC3676760 DOI: 10.3390/ijms14058841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 11/17/2022] Open
Abstract
Complex biological and ecological processes occur in the rhizosphere through ecosystem-level interactions between roots, microorganisms and soil fauna. Over the past decade, studies of the rhizosphere have revealed that when roots, microorganisms and soil fauna physically contact one another, bioactive molecular exchanges often mediate these interactions as intercellular signal, which prepare the partners for successful interactions. Despite the importance of bioactive molecules in sustainable agriculture, little is known of their numerous functions, and improving plant health and productivity by altering ecological processes remains difficult. In this review, we describe the major bioactive molecules present in below-ground ecosystems (i.e., flavonoids, exopolysaccharides, antibiotics and quorum-sensing signals), and we discuss how these molecules affect microbial communities, nutrient availability and plant defense responses.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; E-Mails: (J.G.); (A.M.); (G.Z.)
| | - Jie Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; E-Mails: (J.G.); (A.M.); (G.Z.)
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; E-Mails: (J.G.); (A.M.); (G.Z.)
| | - Shenglei Fu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mail:
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; E-Mails: (J.G.); (A.M.); (G.Z.)
| |
Collapse
|
28
|
Relevance of fucose-rich extracellular polysaccharides produced by Rhizobium sullae strains nodulating Hedysarum coronarium l. legumes. Appl Environ Microbiol 2012. [PMID: 23183977 DOI: 10.1128/aem.02903-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specific and complex interactions between soil bacteria, known as rhizobia, and their leguminous host plants result in the development of root nodules. This process implies a complex dialogue between the partners. Rhizobia synthesize different classes of polysaccharides: exopolysaccharides (EPS), Kdo-rich capsular polysaccharides, lipopolysaccharides, and cyclic β-(1,2)-glucans. These polymers are actors of a successful symbiosis with legumes. We focus here on studying the EPS produced by Rhizobium sullae bacteria that nodulate Hedysarum coronarium L., largely distributed in Algeria. We describe the influence of the carbon source on the production and on the composition of EPS produced by R. sullae A6 and RHF strains. High-molecular-weight EPS preserve the bacteria from desiccation. The structural characterization of the EPS produced by R. sullae strains has been performed through sugar analysis by gas chromatography-mass spectrometry. The low-molecular-weight EPS of one strain (RHF) has been totally elucidated using nuclear magnetic resonance and quantitative time-of-flight tandem mass spectrometry analyses. An unusual fucose-rich EPS has been characterized. The presence of this deoxy sugar seems to be related to nodulation capacity.
Collapse
|
29
|
Lon protease of Azorhizobium caulinodans ORS571 is required for suppression of reb gene expression. Appl Environ Microbiol 2012; 78:6251-61. [PMID: 22752172 DOI: 10.1128/aem.01039-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by the lon mutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by the lon mutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to a praR mutant highly expressing the reb genes. Quantitative reverse transcription-PCR analyses revealed that reb genes were also highly expressed in the lon mutant. Furthermore, a lon reb double mutant formed stem nodules showing higher nitrogen fixation activity than the lon mutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of the reb genes and that high expression of reb genes in part causes aberrance in the A. caulinodans-S. rostrata symbiosis. In addition to the suppression of reb genes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells.
Collapse
|
30
|
Janczarek M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 2011; 12:7898-933. [PMID: 22174640 PMCID: PMC3233446 DOI: 10.3390/ijms12117898] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/16/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS) is indispensable for the invasion of a great majority of host plants which form indeterminate-type nodules. Various functions are ascribed to this heteropolymer, including protection against environmental stress and host defense, attachment to abiotic and biotic surfaces, and in signaling. The synthesis of EPS in rhizobia is a multi-step process regulated by several proteins at both transcriptional and post-transcriptional levels. Also, some environmental factors (carbon source, nitrogen and phosphate starvation, flavonoids) and stress conditions (osmolarity, ionic strength) affect EPS production. This paper discusses the recent data concerning the function of the genes required for EPS synthesis and the regulation of this process by several environmental signals. Up till now, the synthesis of rhizobial EPS has been best studied in two species, Sinorhizobium meliloti and Rhizobium leguminosarum. The latest data indicate that EPS synthesis in rhizobia undergoes very complex hierarchical regulation, in which proteins engaged in quorum sensing and the regulation of motility genes also participate. This finding enables a better understanding of the complex processes occurring in the rhizosphere which are crucial for successful colonization and infection of host plant roots.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., Lublin 20-033, Poland; E-Mail: ; Tel.: +48-81-537-5974
| |
Collapse
|
31
|
Freitas F, Alves VD, Reis MA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 2011; 29:388-98. [DOI: 10.1016/j.tibtech.2011.03.008] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 01/27/2023]
|
32
|
Frederix M, Edwards A, McAnulla C, Downie JA. Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor. Mol Microbiol 2011; 81:994-1007. [PMID: 21732996 DOI: 10.1111/j.1365-2958.2011.07738.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Analysis of quorum-sensing (QS) regulation in Rhizobium leguminosarum revealed an unusual type of gene regulation that relies on the population density-dependent accumulation of an anti-repressor. The cinS gene, which is co-transcribed with the N-acyl-homoserine-lactone synthase gene cinI, is required to fully induce rhiR and raiR, whose products, together with their partner AHL synthases, regulate other genes in a QS-regulated hierarchy. Purified CinS bound to the R. leguminosarum transcriptional regulator PraR, which repressed rhiR and raiR expression. PraR bound to the rhiR and raiR promoters and CinS displaced PraR from these promoters, thereby inducing their expression. Although induction of cinS required CinI-made AHL, it appears CinS does not require the AHL for its anti-repressor function. The LuxR-type regulator ExpR was also required for normal induction of rhiR and raiR and it appears that this occurs by ExpR repressing the transcription of praR. Therefore ExpR and CinS act independently to attenuate PraR action, ExpR by repressing its transcription and CinS by attenuating its repressive activity. Thus, as CinS accumulates in a population density-dependent manner it induces the QS hierarchy by relieving PraR-mediated repression of rhiR and raiR.
Collapse
Affiliation(s)
- Marijke Frederix
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | | | | | | |
Collapse
|
33
|
Wang Y, Xu J, Chen A, Wang Y, Zhu J, Yu G, Xu L, Luo L. GGDEF and EAL proteins play different roles in the control of Sinorhizobium meliloti growth, motility, exopolysaccharide production, and competitive nodulation on host alfalfa. Acta Biochim Biophys Sin (Shanghai) 2010; 42:410-7. [PMID: 20539941 DOI: 10.1093/abbs/gmq034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A new bacterial secondary messenger, bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), is usually synthesized or decomposed by proteins containing GGDEF or glutamate-alanine-leucine (EAL) domain. They often act as cyclase or phosphodiesterase of c-di-GMP and their genes are distributed among almost all bacteria according to known genomic DNA sequences. However, the systematic identification of GGDEF and EAL genes remains unclear in rhizobia, soil bacteria that interact with compatible legumes to form nitrogen-fixing nodules. In this study, 19 putative GGDEF and EAL genes were identified in a model rhizobium, Sinorhizobium meliloti, by bioinformatic analysis (encoding 5 GGDEF proteins, 4 EAL proteins, and 10 GGDEF and EAL double-domain proteins). Null mutants of 14 genes were constructed through systematic plasmid insertion. All 14 gene mutants showed deficient growth in minimal medium and defective motility, and 11 gene mutants produced a lot more exopolysaccharide and displayed less competitive nodulation on the host plant, alfalfa. Our results suggested that GGDEF and EAL proteins may play different roles in the control of S. meliloti physiology, although they contain conserved catalytic (GGDEF or EAL) domains. Our finding also implied that c-di-GMP may play an important role in the interactions between this rhizobium and its host plants to establish efficient symbiosis.
Collapse
Affiliation(s)
- Yiwen Wang
- East China Normal University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 2009; 34:150-70. [PMID: 20070373 DOI: 10.1111/j.1574-6976.2009.00205.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rhizobia adopt many different lifestyles including survival in soil, growth in the rhizosphere, attachment to root hairs and infection and growth within legume roots, both in infection threads and in nodules where they fix nitrogen. They are actively involved in extracellular signalling to their host legumes to initiate infection and nodule morphogenesis. Rhizobia also use quorum-sensing gene regulation via N-acyl-homoserine lactone signals and this can enhance their interaction with legumes as well as their survival under stress and their ability to induce conjugation of plasmids and symbiotic islands, thereby spreading their symbiotic capacity. They produce several surface polysaccharides that are critical for attachment and biofilm formation; some of these polysaccharides are specific for their growth on root hairs and can considerably enhance their ability to infect their host legumes. Different rhizobia use several different types of protein secretion mechanisms (Types I, III, IV, V and VI), and many of the secreted proteins play an important role in their interaction with plants. This review summarizes many of the aspects of the extracellular biology of rhizobia, in particular in relation to their symbiotic interaction with legumes.
Collapse
|
35
|
Abstract
Biofilms are bacterial communities enclosed within an extracellular matrix of polysaccharides produced by the bacteria, which adhere to a living or an inert macrosurface. In nature, biofilms constitute a protected growth modality allowing bacteria to survive in hostile environments. Studies of environmental isolates have revealed a highly ordered, three-dimensional organization of the extracellular matrix, which has important implications for biofilm physiology. The zone of soil immediately surrounding a plant root where complex biological and ecological processes occur, termed rhizosphere, forms an environment that fulfills the requirements for biofilm formation, including sufficient moisture and supply of nutrients, which are provided by the plant. Biofilm formation on plants appears to be associated with symbiotic and pathogenic responses, but it is unclear how plants regulate the association. Biofilms function as structures resistant against stress factors such as desiccation, UV radiation, predation, and antibiosis, which help create protective niches for rhizobia. However, the role of biofilms in rhizobial-legume symbiosis remains to be clarified. Here, the mechanisms involved in bacterial biofilm formation and attachment on plant roots, and the relation of these mechanisms to rhizobial function and survival are reviewed.
Collapse
Affiliation(s)
- Luciana V Rinaudi
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | | |
Collapse
|
36
|
Rinaudi LV, Sorroche F, Zorreguieta A, Giordano W. Analysis of the mucR gene regulating biosynthesis of exopolysaccharides: implications for biofilm formation in Sinorhizobium meliloti Rm1021. FEMS Microbiol Lett 2009; 302:15-21. [PMID: 19929968 DOI: 10.1111/j.1574-6968.2009.01826.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bacterial surface polysaccharides are crucial for establishment of successful rhizobia-legume symbiosis, and in most bacteria, are also critical for biofilm formation and surface colonization. In Sinorhizobium meliloti, the regulatory protein MucR controls exopolysaccharide production. To clarify the relationship between exopolysaccharide synthesis and biofilm formation, we studied mucR expression under growth conditions that influence attachment to polyvinylchloride, developed a microtiter plate assay to quantify biofilm formation in S. meliloti strain Rm1021 and mutants defective in succinoglycan (EPS I) and/or galactoglucan (EPS II) production, and analyzed expression of EPS I and EPS II genes by quantitative reverse transcriptase-PCR. Consistent with previous studies of planktonic bacteria, we found that disruption of the mucR gene in Rm1021 biofilms increased EPS II, but reduced EPS I gene expression. mucR expression was not affected by environmental conditions that influence biofilm formation on polyvinylchloride, and biofilm formation by Rm1021 was independent of exopolysaccharide synthesis. Other factors on the Rm1021 cell surface, and growth conditions, presumably regulate attachment and/or growth as a biofilm on polyvinylchloride.
Collapse
Affiliation(s)
- Luciana V Rinaudi
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | | | | | | |
Collapse
|
37
|
The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J Bacteriol 2009; 191:7216-24. [PMID: 19783627 DOI: 10.1128/jb.01063-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sinorhizobium meliloti is a soil bacterium that elicits the formation of root organs called nodules on its host plant, Medicago sativa. Inside these structures, the bacteria are able to convert atmospheric nitrogen into ammonia, which is then used by the plant as a nitrogen source. The synthesis by S. meliloti of at least one exopolysaccharide, succinoglycan or EPS II, is essential for a successful symbiosis. While exopolysaccharide-deficient mutants induce the formation of nodules, they fail to invade them, and as a result, no nitrogen fixation occurs. Interestingly, the low-molecular-weight fractions of these exopolysaccharides are the symbiotically active forms, and it has been suggested that they act as signals to the host plant to initiate infection thread formation. In this work, we explored the role of these rhizobial exopolysaccharides in biofilm formation and their importance in the symbiotic relationship with the host. We showed that the ExpR/Sin quorum-sensing system controls biofilm formation in S. meliloti through the production of EPS II, which provides the matrix for the development of structured and highly organized biofilms. Moreover, the presence of the low-molecular-weight fraction of EPS II is vital for biofilm formation, both in vitro and in vivo. This is the first report where the symbiotically active fraction of EPS II is shown to be a critical factor for biofilm formation and root colonization. Thus, the ability of S. meliloti to properly attach to root surfaces and form biofilms conferred by the synthesis of exopolysaccharides may embody the main function of these symbiotically essential molecules.
Collapse
|
38
|
The novel genes emmABC are associated with exopolysaccharide production, motility, stress adaptation, and symbiosis in Sinorhizobium meliloti. J Bacteriol 2009; 191:5890-900. [PMID: 19633078 DOI: 10.1128/jb.00760-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nitrogen-fixing symbiont Sinorhizobium meliloti senses and responds to constantly changing environmental conditions as it makes its way through the soil in search of its leguminous plant host, Medicago sativa (alfalfa). As a result, this bacterium regulates various aspects of its physiology in order to respond appropriately to stress, starvation, and competition. For example, exopolysaccharide production, which has been shown to play an important role in the ability of S. meliloti to successfully invade its host, also helps the bacterium withstand osmotic changes and other environmental stresses. In an effort to further elucidate the intricate regulation of this important cell component, we set out to identify genetic factors that may affect its production. Here we characterize novel genes that encode a small protein (EmmA) and a putative two-component system (EmmB-EmmC). A mutation in any of these genes leads to increased production of the symbiotically important exopolysaccharide succinoglycan. In addition, emm mutants display membrane-associated defects, are nonmotile, and are unable to form an optimal symbiosis with alfalfa, suggesting that these novel genes may play a greater role in the overall fitness of S. meliloti both during the free-living stage and in its association with its host.
Collapse
|
39
|
Abstract
The ExpR/Sin quorum-sensing system of the gram-negative soil bacterium Sinorhizobium meliloti plays an important role in the establishment of symbiosis with its host plant Medicago sativa. A mutant unable to produce autoinducer signal molecules (sinI) is deficient in its ability to invade the host, but paradoxically, a strain lacking the quorum-sensing transcriptional regulator ExpR is as efficient as the wild type. We compared the whole-genome expression profile of the wild-type strain with strains missing one of the quorum-sensing regulatory components to identify genes controlled by the ExpR/Sin system throughout the different phases of the bacterial growth cycle, as well as in planta. Our analyses revealed that ExpR is a highly versatile regulator with a unique ability to show different regulatory capabilities in the presence or absence of an autoinducer. In addition, this study provided us with insight into the plant invasion defect displayed by the autoinducer mutant. We also discovered that the ExpR/Sin quorum-sensing system is repressed after plant invasion. Therefore, quorum sensing plays a crucial role in the regulation of many cell functions that ensures the successful invasion of the host and is inactivated once symbiosis is established.
Collapse
|
40
|
Subramoni S, Venturi V. LuxR-family 'solos': bachelor sensors/regulators of signalling molecules. MICROBIOLOGY-SGM 2009; 155:1377-1385. [PMID: 19383698 DOI: 10.1099/mic.0.026849-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-Acylhomoserine lactone (AHL) quorum-sensing (QS) signalling is the best-understood chemical language in proteobacteria. In the last 15 years a large amount of research in several bacterial species has revealed in detail the genetic, molecular and biochemical mechanisms underlying AHL signalling. These studies have revealed the role played by protein pairs of the AHL synthase belonging to the LuxI family and cognate LuxR-family AHL sensor-regulator. Proteobacteria however commonly possess a QS LuxR-family protein for which there is no obvious cognate LuxI synthase; these proteins are found in bacteria which possess a complete AHL QS system(s) as well as in bacteria that do not. Scientists are beginning to address the roles played by these proteins and it is emerging that they could allow bacteria to respond to endogenous and exogenous signals produced by their neighbours. AHL QS research thus far has mainly focused on a cell-density response involving laboratory monoculture studies. Recent findings on the role played by the unpaired LuxR-family proteins highlight the need to address bacterial behaviour and response to signals in mixed communities. Here we review recent progress with respect to these LuxR proteins, which we propose to call LuxR 'solos' since they act on their own without the need for a cognate signal generator. Initial investigations have revealed that LuxR solos have diverse roles in bacterial interspecies and interkingdom communication.
Collapse
Affiliation(s)
- Sujatha Subramoni
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
41
|
Abstract
Bacteria can modulate their behavior by releasing and responding to the accumulation of signal molecules. This population co-ordination, referred to as quorum sensing, is prevalent in Gram-negative and Gram-positive bacteria. The essential constituents of quorum-sensing systems include a signal producer, or synthase, and a cognate transcriptional regulator that responds to the accumulated signal molecules. With the availability of bacterial genome sequences and an increased elucidation of quorum-sensing circuits, genes that code for additional transcriptional regulators, usually in excess of the synthase, have been identified. These additional regulators are referred to as 'orphan' regulators, because they are not directly associated with a synthase. Here, we review orphan regulators characterized in various Gram-negative bacteria and their role in expanding the bacterial regulatory network.
Collapse
Affiliation(s)
- Arati V Patankar
- Department of Molecular Biology and Immunology, Center at Fort Worth, University of North Texas Health Science, Fort Worth, TX 75080, USA
| | | |
Collapse
|
42
|
The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI. J Bacteriol 2009; 191:3059-67. [PMID: 19270098 DOI: 10.1128/jb.01650-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand how the Rhizobium leguminosarum raiI-raiR quorum-sensing system is regulated, we identified mutants with decreased levels of RaiI-made N-acyl homoserine lactones (AHLs). A LuxR-type regulator, ExpR, is required for raiR expression, and RaiR is required to induce raiI. Since raiR (and raiI) expression is also reduced in cinI and cinR quorum-sensing mutants, we thought CinI-made AHLs may activate ExpR to induce raiR. However, added CinI-made AHLs did not induce raiR expression in a cinI mutant. The reduced raiR expression in cinI and cinR mutants was due to lack of expression of cinS immediately downstream of cinI. cinS encodes a 67-residue protein, translationally coupled to CinI, and cinS acts downstream of expR for raiR induction. Cloned cinS in R. leguminosarum caused an unusual collapse of colony structure, and this was delayed by mutation of expR. The phenotype looked like a loss of exopolysaccharide (EPS) integrity; mutations in cinI, cinR, cinS, and expR all reduced expression of plyB, encoding an EPS glycanase, and mutation of plyB abolished the effect of cloned cinS on colony morphology. We conclude that CinS and ExpR act to increase PlyB levels, thereby influencing the bacterial surface. CinS is conserved in other rhizobia, including Rhizobium etli; the previously observed effect of cinI and cinR mutations decreasing swarming in that strain is primarily due to a lack of CinS rather than a lack of CinI-made AHL. We conclude that CinS mediates quorum-sensing regulation because it is coregulated with an AHL synthase and demonstrate that its regulatory effects can occur in the absence of AHLs.
Collapse
|
43
|
An orphan LuxR homolog of Sinorhizobium meliloti affects stress adaptation and competition for nodulation. Appl Environ Microbiol 2008; 75:946-55. [PMID: 19088317 DOI: 10.1128/aem.01692-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory roles remain to be identified. These response regulators contain the characteristic domains of the LuxR family of proteins, which include an N-terminal autoinducer/response regulatory domain and a C-terminal helix-turn-helix domain. This study elucidates the regulatory role of one of the orphan LuxR-type response regulators, NesR. Through expression and phenotypic analyses, nesR was determined to affect the active methyl cycle of S. meliloti. Moreover, nesR was shown to influence nutritional and stress response activities in S. meliloti. Finally, the nesR mutant was deficient in competing with the wild-type strain for plant nodulation. Taken together, these results suggest that NesR potentially contributes to the adaptability of S. meliloti when it encounters challenges such as high osmolarity, nutrient starvation, and/or competition for nodulation, thus increasing its chances for survival in the stressful rhizosphere.
Collapse
|
44
|
Bahlawane C, McIntosh M, Krol E, Becker A. Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1498-1509. [PMID: 18842098 DOI: 10.1094/mpmi-21-11-1498] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In order to enter symbiosis with its legume partner, Sinorhizobium meliloti requires regulatory systems for the appropriate responses to its environment. For example, motility is required for the chemotactic movement of bacteria toward the compounds released by its host, and exopolysaccharides (EPS) are required for bacterial attachment to the root or for invasion of the infection thread. Previous research has shown that ExoR/ExoS/ChvI as well as the ExpR/Sin quorum-sensing system inversely regulate both motility and EPS production, although the regulation mechanisms were unknown. We were able to attribute the ExpR-mediated regulation of motility to the ability of ExpR to bind a DNA sequence upstream of visN when activated by N-acyl-homoserine lactone. Furthermore, MucR, previously characterized as a regulator of EPS production, also affected motility. MucR inhibited expression of rem encoding an activator of motility gene expression and, consequently, the expression of Rem-regulated genes such as flaF and flgG. Binding of MucR to the rem promoter region was demonstrated and a sequence motif similar to the previously identified MucR binding consensus was identified within this region. The swarming ability of S. meliloti Rm2011 was shown to depend on a functional ExpR/Sin quorum-sensing system and the production of both flagella and EPS. Finally, we propose a model for the coordination of motility and EPS synthesis in S. meliloti.
Collapse
Affiliation(s)
- Christelle Bahlawane
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
45
|
Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. J Bacteriol 2008; 190:5308-17. [PMID: 18515420 DOI: 10.1128/jb.00063-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti possesses the Sin quorum-sensing system based on N-acyl homoserine lactones (AHLs) as signal molecules. The Sin system consists of SinI, the AHL synthase, and SinR, the LuxR-type regulator. This system regulates the expression of a multitude of S. meliloti genes through ExpR, another LuxR-type regulator. Analysis of the activity of the sinI promoter showed that the expression of sinI is dependent on sinR and enhanced by a combination of expR and Sin AHLs. The characterization of the ExpR binding site upstream of sinI and the identification of binding sites upstream of the galactoglucan biosynthesis genes wgaA (expA1) and wgeA (expE1) allowed the definition of a consensus sequence for these binding sites. Based on this consensus, two additional ExpR binding sites in the promoter regions of exoI and exsH, two genes related to the production of succinoglycan, were found. The specific binding of ExpR to the wgaA and wgeA promoters was enhanced in the presence of oxo-C(14)-HL. Positive regulation of the galactoglucan biosynthesis genes by ExpR was shown to be dependent on WggR (ExpG) and influenced by MucR, both of which are previously characterized regulators of these genes. Based on these results, a reworked model of the Sin-ExpR quorum-sensing regulation scheme of galactoglucan production in S. meliloti is suggested.
Collapse
|
46
|
Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J Bacteriol 2007; 190:861-71. [PMID: 18024512 DOI: 10.1128/jb.01310-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A successful symbiotic relationship between Sinorhizobium meliloti and its host Medicago sativa (alfalfa) depends on several signaling mechanisms, such as the biosynthesis of exopolysaccharides (EPS) by S. meliloti. Previous work in our laboratory has shown that a quorum-sensing mechanism controls the production of the symbiotically active EPS II. Recent microarray analysis of the whole-genome expression profile of S. meliloti reveals that the ExpR/Sin quorum-sensing system regulates additional physiological processes that include low-molecular-weight succinoglycan production, nitrogen utilization, metal transport, motility, and chemotaxis. Nearly half of the flagellar genes and their dependence on quorum sensing are prominently displayed in our microarray analyses. We extend those observations in this work and confirm the findings by real-time PCR expression analysis of selected genes, including the flaF, flbT, flaC, cheY1, and flgB genes, involved in motility and chemotaxis. These genes code for regulators of flagellum synthesis, the chemotactic response, or parts of the flagellar apparatus. Gene expression analyses and visualization of flagella by electron microscopy performed at different points in the growth phase support our proposed model in which quorum sensing downregulates motility in S. meliloti. We demonstrate that the ExpR/Sin quorum-sensing system controls motility gene expression through the VisN/VisR/Rem relay. We also show that the ExoS-dependent two-component system suppresses motility gene expression through VisN and Rem in parallel to quorum sensing. This study contributes to our understanding of the mechanisms that govern motility in S. meliloti.
Collapse
|