1
|
Cooke MB, Herman C. Conjugation's Toolkit: the Roles of Nonstructural Proteins in Bacterial Sex. J Bacteriol 2023; 205:e0043822. [PMID: 36847532 PMCID: PMC10029717 DOI: 10.1128/jb.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Bacterial conjugation, a form of horizontal gene transfer, relies on a type 4 secretion system (T4SS) and a set of nonstructural genes that are closely linked. These nonstructural genes aid in the mobile lifestyle of conjugative elements but are not part of the T4SS apparatus for conjugative transfer, such as the membrane pore and relaxosome, or the plasmid maintenance and replication machineries. While these nonstructural genes are not essential for conjugation, they assist in core conjugative functions and mitigate the cellular burden on the host. This review compiles and categorizes known functions of nonstructural genes by the stage of conjugation they modulate: dormancy, transfer, and new host establishment. Themes include establishing a commensalistic relationship with the host, manipulating the host for efficient T4SS assembly and function and assisting in conjugative evasion of recipient cell immune functions. These genes, taken in a broad ecological context, play important roles in ensuring proper propagation of the conjugation system in a natural environment.
Collapse
Affiliation(s)
- Matthew B. Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Protein Transfer through an F Plasmid-Encoded Type IV Secretion System Suppresses the Mating-Induced SOS Response. mBio 2021; 12:e0162921. [PMID: 34253063 PMCID: PMC8406263 DOI: 10.1128/mbio.01629-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial type IV secretion systems (T4SSs) mediate the conjugative transfer of mobile genetic elements (MGEs) and their cargoes of antibiotic resistance and virulence genes. Here, we report that the pED208-encoded T4SS (TrapED208) translocates not only this F plasmid but several plasmid-encoded proteins, including ParA, ParB1, single-stranded DNA-binding protein SSB, ParB2, PsiB, and PsiA, to recipient cells. Conjugative protein translocation through the TrapED208 T4SS required engagement of the pED208 relaxosome with the TraD substrate receptor or coupling protein. T4SSs translocate MGEs as single-stranded DNA intermediates (T-strands), which triggers the SOS response in recipient cells. Transfer of pED208 deleted of psiB or ssb, which, respectively, encode the SOS inhibitor protein PsiB and single-stranded DNA-binding protein SSB, elicited a significantly stronger SOS response than pED208 or mutant plasmids deleted of psiA, parA, parB1, or parB2. Conversely, translocation of PsiB or SSB, but not PsiA, through the TrapED208 T4SS suppressed the mating-induced SOS response. Our findings expand the repertoire of known substrates of conjugation systems to include proteins with functions associated with plasmid maintenance. Furthermore, for this and other F-encoded Tra systems, docking of the DNA substrate with the TraD receptor appears to serve as a critical activating signal for protein translocation. Finally, the observed effects of PsiB and SSB on suppression of the mating-induced SOS response establishes a novel biological function for conjugative protein translocation and suggests the potential for interbacterial protein translocation to manifest in diverse outcomes influencing bacterial communication, physiology, and evolution.
Collapse
|
3
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
4
|
Álvarez-Rodríguez I, Arana L, Ugarte-Uribe B, Gómez-Rubio E, Martín-Santamaría S, Garbisu C, Alkorta I. Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance. Front Mol Biosci 2020; 7:201. [PMID: 32903459 PMCID: PMC7434980 DOI: 10.3389/fmolb.2020.00201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
The increase of infections caused by multidrug-resistant bacteria, together with the loss of effectiveness of currently available antibiotics, represents one of the most serious threats to public health worldwide. The loss of human lives and the economic costs associated to the problem of the dissemination of antibiotic resistance require immediate action. Bacteria, known by their great genetic plasticity, are capable not only of mutating their genes to adapt to disturbances and environmental changes but also of acquiring new genes that allow them to survive in hostile environments, such as in the presence of antibiotics. One of the major mechanisms responsible for the horizontal acquisition of new genes (e.g., antibiotic resistance genes) is bacterial conjugation, a process mediated by mobile genetic elements such as conjugative plasmids and integrative conjugative elements. Conjugative plasmids harboring antibiotic resistance genes can be transferred from a donor to a recipient bacterium in a process that requires physical contact. After conjugation, the recipient bacterium not only harbors the antibiotic resistance genes but it can also transfer the acquired plasmid to other bacteria, thus contributing to the spread of antibiotic resistance. Conjugative plasmids have genes that encode all the proteins necessary for the conjugation to take place, such as the type IV coupling proteins (T4CPs) present in all conjugative plasmids. Type VI coupling proteins constitute a heterogeneous family of hexameric ATPases that use energy from the ATP hydrolysis for plasmid transfer. Taking into account their essential role in bacterial conjugation, T4CPs are attractive targets for the inhibition of bacterial conjugation and, concomitantly, the limitation of antibiotic resistance dissemination. This review aims to compile present knowledge on T4CPs as a starting point for delving into their molecular structure and functioning in future studies. Likewise, the scientific literature on bacterial conjugation inhibitors has been reviewed here, in an attempt to elucidate the possibility of designing T4CP-inhibitors as a potential solution to the dissemination of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Itxaso Álvarez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Lide Arana
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Begoña Ugarte-Uribe
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Elena Gómez-Rubio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Cient fico y Tecnológico de Bizkaia, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
5
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
6
|
Zrimec J, Lapanje A. DNA structure at the plasmid origin-of-transfer indicates its potential transfer range. Sci Rep 2018; 8:1820. [PMID: 29379098 PMCID: PMC5789077 DOI: 10.1038/s41598-018-20157-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/10/2018] [Indexed: 11/29/2022] Open
Abstract
Horizontal gene transfer via plasmid conjugation enables antimicrobial resistance (AMR) to spread among bacteria and is a major health concern. The range of potential transfer hosts of a particular conjugative plasmid is characterised by its mobility (MOB) group, which is currently determined based on the amino acid sequence of the plasmid-encoded relaxase. To facilitate prediction of plasmid MOB groups, we have developed a bioinformatic procedure based on analysis of the origin-of-transfer (oriT), a merely 230 bp long non-coding plasmid DNA region that is the enzymatic substrate for the relaxase. By computationally interpreting conformational and physicochemical properties of the oriT region, which facilitate relaxase-oriT recognition and initiation of nicking, MOB groups can be resolved with over 99% accuracy. We have shown that oriT structural properties are highly conserved and can be used to discriminate among MOB groups more efficiently than the oriT nucleotide sequence. The procedure for prediction of MOB groups and potential transfer range of plasmids was implemented using published data and is available at http://dnatools.eu/MOB/plasmid.html.
Collapse
Affiliation(s)
- Jan Zrimec
- Institute of Metagenomics and Microbial Technologies, 1000, Ljubljana, Slovenia. .,Faculty of Health Sciences, University of Primorska, 6320, Izola, Slovenia. .,Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| | - Aleš Lapanje
- Institute of Metagenomics and Microbial Technologies, 1000, Ljubljana, Slovenia. .,Department of Nanotechnology, Saratov State University, 410012, Saratov, Russian Federation. .,Department of Environmental Sciences, Institute Jožef Štefan, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Abstract
Escherichia coli and other Gram-negative and -positive bacteria employ type IV secretion systems (T4SSs) to translocate DNA and protein substrates, generally by contact-dependent mechanisms, to other cells. The T4SSs functionally encompass two major subfamilies, the conjugation systems and the effector translocators. The conjugation systems are responsible for interbacterial transfer of antibiotic resistance genes, virulence determinants, and genes encoding other traits of potential benefit to the bacterial host. The effector translocators are used by many Gram-negative pathogens for delivery of potentially hundreds of virulence proteins termed effectors to eukaryotic cells during infection. In E. coli and other species of Enterobacteriaceae, T4SSs identified to date function exclusively in conjugative DNA transfer. In these species, the plasmid-encoded systems can be classified as the P, F, and I types. The P-type systems are the simplest in terms of subunit composition and architecture, and members of this subfamily share features in common with the paradigmatic Agrobacterium tumefaciens VirB/VirD4 T4SS. This review will summarize our current knowledge of the E. coli systems and the A. tumefaciens P-type system, with emphasis on the structural diversity of the T4SSs. Ancestral P-, F-, and I-type systems were adapted throughout evolution to yield the extant effector translocators, and information about well-characterized effector translocators also is included to further illustrate the adaptive and mosaic nature of these highly versatile machines.
Collapse
|
8
|
Redzej A, Ukleja M, Connery S, Trokter M, Felisberto-Rodrigues C, Cryar A, Thalassinos K, Hayward RD, Orlova EV, Waksman G. Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J 2017; 36:3080-3095. [PMID: 28923826 PMCID: PMC5916273 DOI: 10.15252/embj.201796629] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/09/2017] [Accepted: 08/22/2017] [Indexed: 01/26/2023] Open
Abstract
Type IV secretion (T4S) systems are versatile bacterial secretion systems mediating transport of protein and/or DNA. T4S systems are generally composed of 11 VirB proteins and 1 VirD protein (VirD4). The VirB1‐11 proteins assemble to form a secretion machinery and a pilus while the VirD4 protein is responsible for substrate recruitment. The structure of VirD4 in isolation is known; however, its structure bound to the VirB1‐11 apparatus has not been determined. Here, we purify a T4S system with VirD4 bound, define the biochemical requirements for complex formation and describe the protein–protein interaction network in which VirD4 is involved. We also solve the structure of this complex by negative stain electron microscopy, demonstrating that two copies of VirD4 dimers locate on both sides of the apparatus, in between the VirB4 ATPases. Given the central role of VirD4 in type IV secretion, our study provides mechanistic insights on a process that mediates the dangerous spread of antibiotic resistance genes among bacterial populations.
Collapse
Affiliation(s)
- Adam Redzej
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, London, UK
| | - Marta Ukleja
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, London, UK
| | - Sarah Connery
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, London, UK
| | - Martina Trokter
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, London, UK
| | | | - Adam Cryar
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, London, UK
| | - Konstantinos Thalassinos
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, London, UK.,Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, London, UK
| | - Richard D Hayward
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, London, UK.,Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, London, UK
| | - Elena V Orlova
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, London, UK
| | - Gabriel Waksman
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, London, UK .,Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, London, UK
| |
Collapse
|
9
|
Gordon JE, Costa TRD, Patel RS, Gonzalez-Rivera C, Sarkar MK, Orlova EV, Waksman G, Christie PJ. Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol Microbiol 2017; 105:273-293. [PMID: 28452085 PMCID: PMC5518639 DOI: 10.1111/mmi.13700] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Recent studies have shown that conjugation systems of Gram-negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved - but also intrinsically conformationally flexible - scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.
Collapse
Affiliation(s)
- Jay E. Gordon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Tiago R. D. Costa
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Roosheel S. Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Mayukh K. Sarkar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| |
Collapse
|
10
|
Ilangovan A, Kay CWM, Roier S, El Mkami H, Salvadori E, Zechner EL, Zanetti G, Waksman G. Cryo-EM Structure of a Relaxase Reveals the Molecular Basis of DNA Unwinding during Bacterial Conjugation. Cell 2017; 169:708-721.e12. [PMID: 28457609 PMCID: PMC5422253 DOI: 10.1016/j.cell.2017.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/28/2017] [Accepted: 04/06/2017] [Indexed: 11/20/2022]
Abstract
Relaxases play essential roles in conjugation, the main process by which bacteria exchange genetic material, notably antibiotic resistance genes. They are bifunctional enzymes containing a trans-esterase activity, which is responsible for nicking the DNA strand to be transferred and for covalent attachment to the resulting 5'-phosphate end, and a helicase activity, which is responsible for unwinding the DNA while it is being transported to a recipient cell. Here we show that these two activities are carried out by two conformers that can both load simultaneously on the origin of transfer DNA. We solve the structure of one of these conformers by cryo electron microscopy to near-atomic resolution, elucidating the molecular basis of helicase function by relaxases and revealing insights into the mechanistic events taking place in the cell prior to substrate transport during conjugation.
Collapse
Affiliation(s)
- Aravindan Ilangovan
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Christopher W M Kay
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Sandro Roier
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Abstract
All plasmids that spread by conjugative transfer encode a relaxase. That includes plasmids that encode the type IV secretion machinery necessary to mediate cell to cell transfer, as well as mobilizable plasmids that exploit the existence of other plasmids' type IV secretion machinery to enable their own lateral spread. Relaxases perform key functions in plasmid transfer by first binding to their cognate plasmid as part of a multiprotein complex called the relaxosome, which is then specifically recognized by a receptor protein at the opening of the secretion channel. Relaxases catalyze a site- and DNA-strand-specific cleavage reaction on the plasmid then pilot the single strand of plasmid DNA through the membrane-spanning type IV secretion channel as a nucleoprotein complex. In the recipient cell, relaxases help terminate the transfer process efficiently and stabilize the incoming plasmid DNA. Here, we review the well-studied MOBF family of relaxases to describe the biochemistry of these versatile enzymes and integrate current knowledge into a mechanistic model of plasmid transfer in Gram-negative bacteria.
Collapse
|
12
|
Abstract
Type IV coupling proteins (T4CPs) are essential constituents of most type IV secretion systems (T4SSs), and probably the most intriguing component in terms of their evolutionary origin and functional role. Coupling proteins have coevolved with their cognate secretion system and translocated substrates. They are present in all conjugative systems, leading to the suggestion that they play a specific role in DNA transfer. However, they are also part of many T4SSs involved in bacterial virulence, where they are required for protein translocation, with no apparent involvement in DNA secretion. Their name reflects genetic and biochemical evidence of a connecting role between the substrate and the T4SS, thus probably playing a major role in substrate recruitment. Increasing evidence supports also a role in signal transmission leading to activation of secretion. Most studies have addressed conjugative coupling proteins of the VirD4-like protein family. Their conserved features include a nucleotide-binding domain, essential for substrate translocation, a C-terminal domain involved in substrate interactions, and a transmembrane domain anchoring them to the inner membrane, which is an important regulator of protein function. Purified soluble deletion mutants display ATP hydrolysis activity and unspecific DNA binding. Elucidation of the 3D structure of the soluble deletion mutant of the conjugative coupling protein TrwB, TrwBΔN70, provided the basis for further mutagenesis studies rendering interesting insights into the structure-function of these proteins. Their key role as couplers between substrate and transporter provides biotechnological potential as targets for anti-virulence strategies, as well as for customization of substrate delivery through heterologous secretion systems.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria (UC), and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), UC-CSIC-SODERCAN, C/Albert Einstein 22, 39011, Santander, Spain.
| | - Itziar Alkorta
- Departamento de Bioquímica y Biología Molecular (UPV/EHU), Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena S/N, 48940, Leioa, Spain
| |
Collapse
|
13
|
Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine. J Bacteriol 2016; 198:2701-18. [PMID: 27432829 PMCID: PMC5019051 DOI: 10.1128/jb.00378-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Bacterial type IV secretion systems (T4SSs) are composed of two major subfamilies, conjugation machines dedicated to DNA transfer and effector translocators for protein transfer. We show here that the Escherichia coli pKM101-encoded conjugation system, coupled with chimeric substrate receptors, can be repurposed for transfer of heterologous effector proteins. The chimeric receptors were composed of the N-terminal transmembrane domain of pKM101-encoded TraJ fused to soluble domains of VirD4 homologs functioning in Agrobacterium tumefaciens, Anaplasma phagocytophilum, or Wolbachia pipientis A chimeric receptor assembled from A. tumefaciens VirD4 (VirD4At) mediated transfer of a MOBQ plasmid (pML122) and A. tumefaciens effector proteins (VirE2, VirE3, and VirF) through the pKM101 transfer channel. Equivalent chimeric receptors assembled from the rickettsial VirD4 homologs similarly supported the transfer of known or candidate effectors from rickettsial species. These findings establish a proof of principle for use of the dedicated pKM101 conjugation channel, coupled with chimeric substrate receptors, to screen for translocation competency of protein effectors from recalcitrant species. Many T4SS receptors carry sequence-variable C-terminal domains (CTDs) with unknown function. While VirD4At and the TraJ/VirD4At chimera with their CTDs deleted supported pML122 transfer at wild-type levels, ΔCTD variants supported transfer of protein substrates at strongly diminished or elevated levels. We were unable to detect binding of VirD4At's CTD to the VirE2 effector, although other VirD4At domains bound this substrate in vitro We propose that CTDs evolved to govern the dynamics of substrate presentation to the T4SS either through transient substrate contacts or by controlling substrate access to other receptor domains. IMPORTANCE Bacterial type IV secretion systems (T4SSs) display striking versatility in their capacity to translocate DNA and protein substrates to prokaryotic and eukaryotic target cells. A hexameric ATPase, the type IV coupling protein (T4CP), functions as a substrate receptor for nearly all T4SSs. Here, we report that chimeric T4CPs mediate transfer of effector proteins through the Escherichia coli pKM101-encoded conjugation system. Studies with these repurposed conjugation systems established a role for acidic C-terminal domains of T4CPs in regulating substrate translocation. Our findings advance a mechanistic understanding of T4CP receptor activity and, further, support a model in which T4SS channels function as passive conduits for any DNA or protein substrates that successfully engage with and pass through the T4CP specificity checkpoint.
Collapse
|
14
|
Gruber CJ, Lang S, Rajendra VKH, Nuk M, Raffl S, Schildbach JF, Zechner EL. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins. Front Mol Biosci 2016; 3:32. [PMID: 27486582 PMCID: PMC4949242 DOI: 10.3389/fmolb.2016.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.
Collapse
Affiliation(s)
- Christian J Gruber
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Silvia Lang
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Vinod K H Rajendra
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Monika Nuk
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | - Sandra Raffl
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| | | | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria
| |
Collapse
|
15
|
Garcillán-Barcia MP, de la Cruz F. Ordering the bestiary of genetic elements transmissible by conjugation. Mob Genet Elements 2014; 3:e24263. [PMID: 23734300 PMCID: PMC3661145 DOI: 10.4161/mge.24263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic reconstruction of three highly conserved proteins involved in bacterial conjugation (relaxase, coupling protein and a type IV secretion system ATPase) allowed the classification of transmissible elements in relaxase MOB families and mating pair formation MPF groups. These evolutionary studies point to the existence of a limited number of module combinations in transmissible elements, preferentially associated with specific genetic or environmental backgrounds. A practical protocol based on the MOB classification was implemented to detect and assort transmissible plasmids and integrative elements from γ-Proteobacteria. It was called “Degenerate Primer MOB Typing” or DPMT. It resulted in a powerful technique that discovers not only backbones related to previously classified elements (typically by PCR-based replicon typing or PBRT), but also distant new members sharing a common evolutionary ancestor. The DPMT method, conjointly with PBRT, promises to be useful to gain information on plasmid backbones and helpful to investigate the dissemination routes of transmissible elements in microbial ecosystems.
Collapse
Affiliation(s)
- Maria Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC); Universidad de Cantabria-CSIC-SODERCAN; Santander, Cantabria Spain
| | | |
Collapse
|
16
|
Peng Y, Lu J, Wong JJW, Edwards RA, Frost LS, Mark Glover JN. Mechanistic basis of plasmid-specific DNA binding of the F plasmid regulatory protein, TraM. J Mol Biol 2014; 426:3783-3795. [PMID: 25284757 DOI: 10.1016/j.jmb.2014.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
Abstract
The conjugative transfer of bacterial F plasmids relies on TraM, a plasmid-encoded protein that recognizes multiple DNA sites to recruit the plasmid to the conjugative pore. In spite of the high degree of amino acid sequence conservation between TraM proteins, many of these proteins have markedly different DNA binding specificities that ensure the selective recruitment of a plasmid to its cognate pore. Here we present the structure of F TraM RHH (ribbon-helix-helix) domain bound to its sbmA site. The structure indicates that a pair of TraM tetramers cooperatively binds an underwound sbmA site containing 12 base pairs per turn. The sbmA is composed of 4 copies of a 5-base-pair motif, each of which is recognized by an RHH domain. The structure reveals that a single conservative amino acid difference in the RHH β-ribbon between F and pED208 TraM changes its specificity for its cognate 5-base-pair sequence motif. Specificity is also dictated by the positioning of 2-base-pair spacer elements within sbmA; in F sbmA, the spacers are positioned between motifs 1 and 2 and between motifs 3 and 4, whereas in pED208 sbmA, there is a single spacer between motifs 2 and 3. We also demonstrate that a pair of F TraM tetramers can cooperatively bind its sbmC site with an affinity similar to that of sbmA in spite of a lack of sequence similarity between these DNA elements. These results provide a basis for the prediction of the DNA binding properties of the family of TraM proteins.
Collapse
Affiliation(s)
- Yun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jun Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Joyce J W Wong
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Laura S Frost
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
17
|
Clark NJ, Raththagala M, Wright NT, Buenger EA, Schildbach JF, Krueger S, Curtis JE. Structures of TraI in solution. J Mol Model 2014; 20:2308. [PMID: 24898939 DOI: 10.1007/s00894-014-2308-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Bacterial conjugation, a DNA transfer mechanism involving transport of one plasmid strand from donor to recipient, is driven by plasmid-encoded proteins. The F TraI protein nicks one F plasmid strand, separates cut and uncut strands, and pilots the cut strand through a secretion pore into the recipient. TraI is a modular protein with identifiable nickase, ssDNA-binding, helicase and protein-protein interaction domains. While domain structures corresponding to roughly 1/3 of TraI have been determined, there has been no comprehensive structural study of the entire TraI molecule, nor an examination of structural changes to TraI upon binding DNA. Here, we combine solution studies using small-angle scattering and circular dichroism spectroscopy with molecular Monte Carlo and molecular dynamics simulations to assess solution behavior of individual and groups of domains. Despite having several long (>100 residues) apparently disordered or highly dynamic regions, TraI folds into a compact molecule. Based on the biophysical characterization, we have generated models of intact TraI. These data and the resulting models have provided clues to the regulation of TraI function.
Collapse
Affiliation(s)
- Nicholas J Clark
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD, 20899, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Common requirement for the relaxosome of plasmid R1 in multiple activities of the conjugative type IV secretion system. J Bacteriol 2014; 196:2108-21. [PMID: 24682328 DOI: 10.1128/jb.00045-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macromolecular transport by bacterial type IV secretion systems involves regulated uptake of (nucleo)protein complexes by the cell envelope-spanning transport channel. A coupling protein receptor is believed to recognize the specific proteins destined for transfer, but the steps initiating their translocation remain unknown. Here, we investigate the contribution of a complex of transfer initiation proteins, the relaxosome, of plasmid R1 to translocation of competing transferable substrates from mobilizable plasmids ColE1 and CloDF13 or the bacteriophage R17. We found that not only does the R1 translocation machinery engage the R1 relaxosome during conjugative self-transfer and during infection by R17 phage but it is also activated by its cognate relaxosome to mediate the export of an alternative plasmid. Transporter activity was optimized by the R1 relaxosome even when this complex itself could not be transferred, i.e., when the N-terminal activation domain (amino acids 1 to 992 [N1-992]) of TraI was present without the C-terminal conjugative helicase domain. We propose that the functional dependence of the transfer machinery on the R1 relaxosome for initiating translocation ensures that dissemination of heterologous plasmids does not occur at the expense of self-transfer.
Collapse
|
19
|
Segura RL, Águila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I. The transmembrane domain of the T4SS coupling protein TrwB and its role in protein–protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2015-25. [DOI: 10.1016/j.bbamem.2013.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 11/15/2022]
|
20
|
Redzej A, Ilangovan A, Lang S, Gruber CJ, Topf M, Zangger K, Zechner EL, Waksman G. Structure of a translocation signal domain mediating conjugative transfer by type IV secretion systems. Mol Microbiol 2013; 89:324-33. [PMID: 23710762 PMCID: PMC3912908 DOI: 10.1111/mmi.12275] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 01/26/2023]
Abstract
Relaxases are proteins responsible for the transfer of plasmid and chromosomal DNA from one bacterium to another during conjugation. They covalently react with a specific phosphodiester bond within DNA origin of transfer sequences, forming a nucleo-protein complex which is subsequently recruited for transport by a plasmid-encoded type IV secretion system. In previous work we identified the targeting translocation signals presented by the conjugative relaxase TraI of plasmid R1. Here we report the structure of TraI translocation signal TSA. In contrast to known translocation signals we show that TSA is an independent folding unit and thus forms a bona fide structural domain. This domain can be further divided into three subdomains with striking structural homology with helicase subdomains of the SF1B family. We also show that TSA is part of a larger vestigial helicase domain which has lost its helicase activity but not its single-stranded DNA binding capability. Finally, we further delineate the binding site responsible for translocation activity of TSA by targeting single residues for mutations. Overall, this study provides the first evidence that translocation signals can be part of larger structural scaffolds, overlapping with translocation-independent activities.
Collapse
Affiliation(s)
- Adam Redzej
- Institute of Structural and Molecular Biology, UCL and BirkbeckMalet Street, London, WC1E 7HX, UK
| | - Aravindan Ilangovan
- Institute of Structural and Molecular Biology, UCL and BirkbeckMalet Street, London, WC1E 7HX, UK
| | - Silvia Lang
- University of Graz, Institute of Molecular BiosciencesHumboldtstrasse 50, 8010, Graz, Austria
| | - Christian J Gruber
- University of Graz, Institute of Molecular BiosciencesHumboldtstrasse 50, 8010, Graz, Austria
| | - Maya Topf
- Institute of Structural and Molecular Biology, UCL and BirkbeckMalet Street, London, WC1E 7HX, UK
| | - Klaus Zangger
- University of Graz, Institute of ChemistryHeinrichstrasse 28, 8010, Graz, Austria
| | - Ellen L Zechner
- University of Graz, Institute of Molecular BiosciencesHumboldtstrasse 50, 8010, Graz, Austria
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, UCL and BirkbeckMalet Street, London, WC1E 7HX, UK
| |
Collapse
|
21
|
Dominguez W, O'Sullivan DJ. Developing an efficient and reproducible conjugation-based gene transfer system for bifidobacteria. MICROBIOLOGY-SGM 2012. [PMID: 23197173 DOI: 10.1099/mic.0.061408-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bifidobacteria are widely used as probiotics and have attracted increasing research interest worldwide. However, molecular techniques are still very scarce mainly due to the low efficiencies and strain-specific electroporation protocols that have been developed. Bacterial conjugation enables the transfer of genetic material among a relatively wide range of organisms and with virtually no size limitation. A conjugation protocol was developed based on the RP4 conjugative machinery in the Escherichia coli strain WM3064(pBB109). Using this machinery, the newly constructed transmissible E. coli-Bifidobacterium shuttle vector, pDOJHR-WD2, was successfully and consistently transferred into several strains representing four Bifidobacterium species at efficiencies which correlated with the E. coli to bifidobacteria ratios. Higher ratios were found to significantly improve transfer frequency per recipient, with almost 100 % transfer frequency occurring when the ratio was 10(5) : 1. The incompatible resident plasmid, pDOJH10S, in Bifidobacterium longum DJO10A was able to coexist, albeit at lower copy numbers, with the incoming vector pDOJHR-WD2 even though they possess the same ori. In some cases the copy number of this resident plasmid was too low to observe via gel electrophoresis, but it could be detected by Southern hybridization. Plasmid curing resulted in a strain, DJO10A-W3, that had lost both plasmids and this showed a one-log increase in conjugation efficiency due to the lack of plasmid incompatibility. In conclusion, this novel conjugative gene transfer protocol can be used for the introduction of genetic material (without size restriction) into Bifdobacterium species and is particularly useful for strains that are recalcitrant to electroporation.
Collapse
Affiliation(s)
- Wilfredo Dominguez
- Department of Food Science and Nutrition, Cargill Building for Microbial and Plant Genomics, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, St Paul, MN 55108-1038, USA
| | - Daniel J O'Sullivan
- Department of Food Science and Nutrition, Cargill Building for Microbial and Plant Genomics, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, St Paul, MN 55108-1038, USA
| |
Collapse
|
22
|
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol 2012; 85:602-17. [PMID: 22788760 DOI: 10.1111/j.1365-2958.2012.08131.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | |
Collapse
|
23
|
Zechner EL, Lang S, Schildbach JF. Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci 2012; 367:1073-87. [PMID: 22411979 PMCID: PMC3297438 DOI: 10.1098/rstb.2011.0207] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type IV secretion occurs across a wide range of prokaryotic cell envelopes: Gram-negative, Gram-positive, cell wall-less bacteria and some archaea. This diversity is reflected in the heterogeneity of components that constitute the secretion machines. Macromolecules are secreted in an ATP-dependent process using an envelope-spanning multi-protein channel. Similar to the type III systems, this apparatus extends beyond the cell surface as a pilus structure important for direct contact and penetration of the recipient cell surface. Type IV systems are remarkably versatile in that they mobilize a broad range of substrates, including single proteins, protein complexes, DNA and nucleoprotein complexes, across the cell envelope. These machines have broad clinical significance not only for delivering bacterial toxins or effector proteins directly into targeted host cells, but also for direct involvement in phenomena such as biofilm formation and the rapid horizontal spread of antibiotic resistance genes among the microbial community.
Collapse
Affiliation(s)
- Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/I, Graz 8010, Austria.
| | | | | |
Collapse
|
24
|
Lang S, Zechner EL. General requirements for protein secretion by the F-like conjugation system R1. Plasmid 2012; 67:128-38. [PMID: 22248924 PMCID: PMC3338209 DOI: 10.1016/j.plasmid.2011.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022]
Abstract
Bacterial conjugation disseminates genes among bacteria via a process requiring direct cell contact. The cell envelope spanning secretion apparatus involved belongs to the type IV family of bacterial secretion systems, which transport protein as well as nucleoprotein substrates. This study aims to understand mechanisms leading to the initiation of type IV secretion using conjugative plasmid paradigm R1. We analyze the general requirements for plasmid encoded conjugation proteins and DNA sequence within the origin of transfer (oriT) for protein secretion activity using a Cre recombinase reporter system. We find that similar to conjugative plasmid DNA strand transfer, activation of the R1 system for protein secretion depends on binding interactions between the multimeric, ATP-binding coupling protein and the R1 relaxosome including an intact oriT. Evidence for DNA independent protein secretion was not found.
Collapse
Affiliation(s)
- Silvia Lang
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50/I, 8010 Graz, Austria
| | | |
Collapse
|
25
|
Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S, Zellnig G, Zangger K, Zechner EL. An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 2011; 82:1071-85. [PMID: 22066957 PMCID: PMC3245843 DOI: 10.1111/j.1365-2958.2011.07872.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.
Collapse
Affiliation(s)
- Silvia Lang
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Berry TM, Christie PJ. Caught in the act: the dialogue between bacteriophage R17 and the type IV secretion machine of plasmid R1. Mol Microbiol 2011; 82:1039-43. [PMID: 22023392 DOI: 10.1111/j.1365-2958.2011.07870.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria communicate with each other through contact-independent and -dependent signalling mechanisms. Sensory perception of both types of signals is needed for conjugative transfer of mobile DNA elements via type IV secretion systems (T4SSs) to bacterial or eukaryotic target cells. While the regulatory circuitries coupling extracellular quorum and environmental signals to transcription of T4SS genes are increasingly understood, it remains fundamentally unknown how a potential recipient cell stimulates donor conjugative DNA transfer upon contact. In this issue, Lang et al. (2011) report use of the male-specific bacteriophage R17, a phage that binds conjugative pili elaborated by IncF plasmid R1, to define requirements for phage-contact-mediated T4SS activation and phage penetration. They report that R17 penetrates only through T4SS channels engaged for delivery of their plasmid cargo to recipient cells. Engagement requires docking of catalytically active relaxase TraI bound at oriT with the TraD substrate receptor (also termed the T4CP). The data, together with recent ultrastructural and biochemical findings, support an intriguing new model that the T4CP cumulatively senses an intracellular signal (substrate docking) and an extracellular signal (pilus bound by phage or a recipient cell) to co-ordinate a late stage morphogenetic or gating reaction that enables bidirectional transmission of nucleoprotein substrates through the T4SS.
Collapse
Affiliation(s)
- Trista M Berry
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
27
|
Functional organization of MobB, a small protein required for efficient conjugal transfer of plasmid R1162. J Bacteriol 2011; 193:3904-11. [PMID: 21622757 DOI: 10.1128/jb.05084-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MobB is a small (molecular weight = 15,097) protein encoded by the broad-host-range plasmid R1162 and is required for its efficient transfer by conjugation. The C-terminal half of the protein contains a membrane domain essential for transfer. This region can be replaced by a putative membrane domain from another, unrelated protein, and thus is likely to function independently from the rest of MobB. The other, functionally active region of MobB, identified by mutagenesis, is at the N-terminal end. One mutation affecting this region inhibits replication, suggesting that this part of the protein is contacting and sequestering the relaxase-linked primase. The overall organization reflects a multimeric and bipolar organization, with molecules of MobB anchored in the membrane at one end and engaging the relaxase at the other. This arrangement could increase the transfer frequency by raising the probability of contact between the relaxase and the membrane-embedded, coupling protein for type IV secretion.
Collapse
|
28
|
Abstract
Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.
Collapse
|
29
|
Dostál L, Shao S, Schildbach JF. Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer. Nucleic Acids Res 2010; 39:2658-70. [PMID: 21109533 PMCID: PMC3074121 DOI: 10.1093/nar/gkq1137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5′-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3′-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is transported to the recipient during transfer. We track the secondary cleavage reaction and provide evidence it occurs in the donor and F ssDNA is transferred to the recipient with a free 3′-hydroxyl. Phe substitutions for four Tyr within the TraI active site implicate only Tyr16 in the two cleavage reactions required for transfer. Therefore, two TraI molecules are required for F plasmid transfer. Analysis of TraI translocation on various linear and circular ssDNA substrates supports the assertion that TraI slowly dissociates from the 3′-end of cleaved F plasmid, likely a characteristic essential for plasmid re-circularization.
Collapse
Affiliation(s)
- Lubomír Dostál
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
30
|
Lang S, Gruber K, Mihajlovic S, Arnold R, Gruber CJ, Steinlechner S, Jehl MA, Rattei T, Fröhlich KU, Zechner EL. Molecular recognition determinants for type IV secretion of diverse families of conjugative relaxases. Mol Microbiol 2010; 78:1539-55. [PMID: 21143323 DOI: 10.1111/j.1365-2958.2010.07423.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In preparation for transfer conjugative type IV secretion systems (T4SS) produce a nucleoprotein adduct containing a relaxase enzyme covalently linked to the 5' end of single-stranded plasmid DNA. The bound relaxase is expected to present features necessary for selective recognition by the type IV coupling protein (T4CP), which controls substrate entry to the envelope spanning secretion machinery. We prove that the IncF plasmid R1 relaxase TraI is translocated to the recipient cells. Using a Cre recombinase assay (CRAfT) we mapped two internally positioned translocation signals (TS) on F-like TraI proteins that independently mediate efficient recognition and secretion. Tertiary structure predictions for the TS matched best helicase RecD2 from Deinococcus radiodurans. The TS is widely conserved in MOB(F) and MOB(Q) families of relaxases. Structure/function relationships within the TS were identified by mutation. A key residue in specific recognition by T4CP TraD was revealed by a fidelity switch phenotype for an F to plasmid R1 exchange L626H mutation. Finally, we show that physical linkage of the relaxase catalytic domain to a TraI TS is necessary for efficient conjugative transfer.
Collapse
Affiliation(s)
- Silvia Lang
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The conjugative coupling protein TrwB is responsible for connecting the relaxosome to the type IV secretion system during conjugative DNA transfer of plasmid R388. It is directly involved in transport of the relaxase TrwC, and it displays an ATPase activity probably involved in DNA pumping. We designed a conjugation assay in which the frequency of DNA transfer is directly proportional to the amount of TrwB. A collection of point mutants was constructed in the TrwB cytoplasmic domain on the basis of the crystal structure of TrwB Delta N70, targeting the nucleotide triphosphate (NTP)-binding region, the cytoplasmic surface, or the internal channel in the hexamer. An additional set of transfer-deficient mutants was obtained by random mutagenesis. Most mutants were impaired in both DNA and protein transport. We found that the integrity of the nucleotide binding domain is absolutely required for TrwB function, which is also involved in monomer-monomer interactions. Polar residues surrounding the entrance and inside the internal channel were important for TrwB function and may be involved in interactions with the relaxosomal components. Finally, the N-terminal transmembrane domain of TrwB was subjected to random mutagenesis followed by a two-hybrid screen for mutants showing enhanced protein-protein interactions with the related TrwE protein of Bartonella tribocorum. Several point mutants were obtained with mutations in the transmembranal helices: specifically, one proline from each protein may be the key residue involved in the interaction of the coupling protein with the type IV secretion apparatus.
Collapse
|
32
|
de la Cruz F, Frost LS, Meyer RJ, Zechner EL. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 2010; 34:18-40. [PMID: 19919603 DOI: 10.1111/j.1574-6976.2009.00195.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.
Collapse
|
33
|
Protein and DNA effectors control the TraI conjugative helicase of plasmid R1. J Bacteriol 2009; 191:6888-99. [PMID: 19767439 DOI: 10.1128/jb.00920-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms controlling progression of conjugative DNA processing from a preinitiation stage of specific plasmid strand cleavage at the transfer origin to a stage competent for unwinding the DNA strand destined for transfer remain obscure. Linear heteroduplex substrates containing double-stranded DNA binding sites for plasmid R1 relaxosome proteins and various regions of open duplex for TraI helicase loading were constructed to model putative intermediate structures in the initiation pathway. The activity of TraI was compared in steady-state multiple turnover experiments that measured the net production of unwound DNA as well as transesterase-catalyzed cleavage at nic. Helicase efficiency was enhanced by the relaxosome components TraM and integration host factor. The magnitude of stimulation depended on the proximity of the specific protein binding sites to the position of open DNA. The cytoplasmic domain of the R1 coupling protein, TraDDeltaN130, stimulated helicase efficiency on all substrates in a manner consistent with cooperative interaction and sequence-independent DNA binding. Variation in the position of duplex opening also revealed an unsuspected autoinhibition of the unwinding reaction catalyzed by full-length TraI. The activity reduction was sequence dependent and was not observed with a truncated helicase, TraIDeltaN308, lacking the site-specific DNA binding transesterase domain. Given that transesterase and helicase domains are physically tethered in the wild-type protein, this observation suggests that an intramolecular switch controls helicase activation. The data support a model where protein-protein and DNA ligand interactions at the coupling protein interface coordinate the transition initiating production and uptake of the nucleoprotein secretion substrate.
Collapse
|