1
|
Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022; 11:foods11050733. [PMID: 35267366 PMCID: PMC8909232 DOI: 10.3390/foods11050733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Consumption of lactic acid fermented fruits and vegetables has been correlated with a series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid microbiota, while others to its metabolic potential and the production of bioactive compounds. The factors that affect the latter have been in the epicenter of intensive research over the last decade. The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and vegetables has attracted specific attention. On the other hand, the production of biogenic amines has also been intensively studied due to the adverse health effects caused by their consumption. The data that are currently available indicate that the production of these compounds is a strain-dependent characteristic that may also be affected by the raw materials used as well as the fermentation conditions. The aim of the present review paper is to collect all data referring to the production of the aforementioned compounds and to present and discuss them in a concise and comprehensive way.
Collapse
|
2
|
Arulkumar A, Paramithiotis S, Paramasivam S. Biogenic amines in fresh fish and fishery products and emerging control. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Molecular Mechanisms Underpinning Aggregation in Acidiphilium sp. C61 Isolated from Iron-Rich Pelagic Aggregates. Microorganisms 2020; 8:microorganisms8030314. [PMID: 32106516 PMCID: PMC7142476 DOI: 10.3390/microorganisms8030314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/04/2022] Open
Abstract
Iron-rich pelagic aggregates (iron snow) are hot spots for microbial interactions. Using iron snow isolates, we previously demonstrated that the iron-oxidizer Acidithrix sp. C25 triggers Acidiphilium sp. C61 aggregation by producing the infochemical 2-phenethylamine (PEA). Here, we showed slightly enhanced aggregate formation in the presence of PEA on different Acidiphilium spp. but not other iron-snow microorganisms, including Acidocella sp. C78 and Ferrovum sp. PN-J47. Next, we sequenced the Acidiphilium sp. C61 genome to reconstruct its metabolic potential. Pangenome analyses of Acidiphilium spp. genomes revealed the core genome contained 65 gene clusters associated with aggregation, including autoaggregation, motility, and biofilm formation. Screening the Acidiphilium sp. C61 genome revealed the presence of autotransporter, flagellar, and extracellular polymeric substances (EPS) production genes. RNA-seq analyses of Acidiphilium sp. C61 incubations (+/− 10 µM PEA) indicated genes involved in energy production, respiration, and genetic processing were the most upregulated differentially expressed genes in the presence of PEA. Additionally, genes involved in flagellar basal body synthesis were highly upregulated, whereas the expression pattern of biofilm formation-related genes was inconclusive. Our data shows aggregation is a common trait among Acidiphilium spp. and PEA stimulates the central cellular metabolism, potentially advantageous in aggregates rapidly falling through the water column.
Collapse
|
4
|
Abstract
Bacteria can migrate in groups of flagella-driven cells over semisolid surfaces. This coordinated form of motility is called swarming behavior. Swarming is associated with enhanced virulence and antibiotic resistance of various human pathogens and may be considered as favorable adaptation to the diverse challenges that microbes face in rapidly changing environments. Consequently, the differentiation of motile swarmer cells is tightly regulated and involves multi-layered signaling networks. Controlling swarming behavior is of major interest for the development of novel anti-infective strategies. In addition, compounds that block swarming represent important tools for more detailed insights into the molecular mechanisms of the coordination of bacterial population behavior. Over the past decades, there has been major progress in the discovery of small-molecule modulators and mechanisms that allow selective inhibition of swarming behavior. Herein, an overview of the achievements in the field and future directions and challenges will be presented.
Collapse
Affiliation(s)
- Sina Rütschlin
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| | - Thomas Böttcher
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| |
Collapse
|
5
|
Methods for Transposon Mutagenesis in Proteus mirabilis. Methods Mol Biol 2019. [PMID: 31197711 DOI: 10.1007/978-1-4939-9570-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several methods for transposon mutagenesis have been employed for use in P. mirabilis. The first method involves the use of mini-Tn5 derivatives, which are delivered by conjugation of a suicide plasmid containing this transposon, followed by transposition into the chromosome. A second method is the use of preformed transposon/transposase complexes (transposomes), which are introduced into P. mirabilis cells by electroporation. Each of these methods will be discussed along with the advantages and disadvantages of each.
Collapse
|
6
|
Hemolytic Escherichia coli Inhibits Swarming and Differentiation of Proteus mirabilis. Curr Microbiol 2017; 75:471-475. [PMID: 29209821 DOI: 10.1007/s00284-017-1404-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Swarming is a hallmark of Proteus mirabilis, whether common gram-negative bacilli affect the swarming of P. mirabilis is still unclear. In this study, we found that P. mirabilis swarming was inhibited by Escherichia coli ATCC25922, but was not affected by Klebsiella pneumoniae, Acinetobacter baumannii, or Pseudomonas aeruginosa strains. The migration distance of P. mirabilis when mixed with E. coli ATCC25922 was strongly reduced, and the inhibition of the swarming of P. mirabilis by E. coli ATCC25922 was dependent on cell density. In addition, initiation of P. mirabilis swarming was delayed by E. coli ATCC25922. Among clinical isolates, including gram-negative bacilli and gram-positive cocci, only hemolytic E. coli inhibited the swarming of P. mirabilis. In summary, hemolytic E. coli inhibited the swarming and differentiation of P. mirabilis.
Collapse
|
7
|
Sticking together: inter-species aggregation of bacteria isolated from iron snow is controlled by chemical signaling. ISME JOURNAL 2017; 11:1075-1086. [PMID: 28140394 PMCID: PMC5437920 DOI: 10.1038/ismej.2016.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 11/09/2022]
Abstract
Marine and lake snow is a continuous shower of mixed organic and inorganic aggregates falling from the upper water where primary production is substantial. These pelagic aggregates provide a niche for microbes that can exploit these physical structures and resources for growth, thus are local hot spots for microbial activity. However, processes underlying their formation remain unknown. Here, we investigated the role of chemical signaling between two co-occurring bacteria that each make up more than 10% of the community in iron-rich lakes aggregates (iron snow). The filamentous iron-oxidizing Acidithrix strain showed increased rates of Fe(II) oxidation when incubated with cell-free supernatant of the heterotrophic iron-reducing Acidiphilium strain. Amendment of Acidithrix supernatant to motile cells of Acidiphilium triggered formation of cell aggregates displaying similar morphology to those of iron snow. Comparative metabolomics enabled the identification of the aggregation-inducing signal, 2-phenethylamine, which also induced faster growth of Acidiphilium. We propose a model that shows rapid iron snow formation, and ultimately energy transfer from the photic zone to deeper water layers, is controlled via a chemically mediated interplay.
Collapse
|
8
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
9
|
The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genet 2016; 62:775-789. [DOI: 10.1007/s00294-016-0579-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
10
|
Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli. J Bacteriol 2013; 195:5141-50. [PMID: 24013633 DOI: 10.1128/jb.00837-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
FeaR is an AraC family regulator that activates transcription of the tynA and feaB genes in Escherichia coli. TynA is a periplasmic topaquinone- and copper-containing amine oxidase, and FeaB is a cytosolic NAD-linked aldehyde dehydrogenase. Phenylethylamine, tyramine, and dopamine are oxidized by TynA to the corresponding aldehydes, releasing one equivalent of H2O2 and NH3. The aldehydes can be oxidized to carboxylic acids by FeaB, and (in the case of phenylacetate) can be further degraded to enter central metabolism. Thus, phenylethylamine can be used as a carbon and nitrogen source, while tyramine and dopamine can be used only as sources of nitrogen. Using genetic, biochemical and computational approaches, we show that the FeaR binding site is a TGNCA-N8-AAA motif that occurs in 2 copies in the tynA and feaB promoters. We show that the coactivator for FeaR is the product rather than the substrate of the TynA reaction. The feaR gene is upregulated by carbon or nitrogen limitation, which we propose reflects regulation of feaR by the cyclic AMP receptor protein (CRP) and the nitrogen assimilation control protein (NAC), respectively. In carbon-limited cells grown in the presence of a TynA substrate, tynA and feaB are induced, whereas in nitrogen-limited cells, only the tynA promoter is induced. We propose that tynA and feaB expression is finely tuned to provide the FeaB activity that is required for carbon source utilization and the TynA activity required for nitrogen and carbon source utilization.
Collapse
|
11
|
Homeostasis of glutathione is associated with polyamine-mediated β-lactam susceptibility in Acinetobacter baumannii ATCC 19606. Antimicrob Agents Chemother 2013; 57:5457-61. [PMID: 23979736 DOI: 10.1128/aac.00692-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutathione is a tripeptide (l-γ-glutamyl-l-cysteinyl-glycine) thiol compound existing in many bacteria and maintains a proper cellular redox state, thus protecting cells against toxic substances such as reactive oxygen species. Polyamines (spermine and spermidine) are low-molecular-weight aliphatic polycations ubiquitously presenting in all living cells and modulate many cellular functions. We previously reported that exogenous polyamines significantly enhanced β-lactam susceptibility of β-lactam-associated multidrug-resistant Acinetobacter baumannii. In this study, three genes differentially associated with the polyamine effects on β-lactam susceptibility were identified by transposon mutagenesis of A. baumannii ATCC 19606. All three genes encoded components of membrane transport systems. Inactivation of one of the genes encoding a putative glutathione transport ATP-binding protein increased the accumulation of intracellular glutathione (∼150 to ∼200%) and significantly decreased the polyamine effects on β-lactam susceptibility in A. baumannii ATCC 19606. When the cells were grown with polyamines, the levels of intracellular glutathione in A. baumannii ATCC 19606 significantly decreased from ∼0.5 to ∼0.2 nmol, while the levels of extracellular glutathione were correspondingly increased. However, the levels of total glutathione (intra- plus extracellular) were unchanged when the cells were grown with or without polyamines. Overall, these results suggest that exogenous polyamines induce glutathione export, resulting in decreased levels of intracellular glutathione, which may produce an improper cellular redox state that is associated with the polyamine-mediated β-lactam susceptibility of A. baumannii. This finding may provide a clue for development of new antimicrobial agents and/or novel strategies to treat multidrug-resistant A. baumannii.
Collapse
|
12
|
Abstract
The disA gene encodes a putative amino acid decarboxylase that inhibits swarming in Proteus mirabilis. 5' rapid amplification of cDNA ends (RACE) and deletion analysis were used to identify the disA promoter. The use of a disA-lacZ fusion indicated that FlhD(4)C(2), the class I flagellar master regulator, did not have a role in disA regulation. The putative product of DisA, phenethylamine, was able to inhibit disA expression, indicating that a negative regulatory feedback loop was present. Transposon mutagenesis was used to identify regulators of disA and revealed that umoB (igaA) was a negative regulator of disA. Our data demonstrate that the regulation of disA by UmoB is mediated through the Rcs phosphorelay.
Collapse
|
13
|
Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 2012; 10:743-54. [PMID: 23042564 DOI: 10.1038/nrmicro2890] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteus mirabilis, named for the Greek god who changed shape to avoid capture, has fascinated microbiologists for more than a century with its unique swarming differentiation, Dienes line formation and potent urease activity. Transcriptome profiling during both host infection and swarming motility, coupled with the availability of the complete genome sequence for P. mirabilis, has revealed the occurrence of interbacterial competition and killing through a type VI secretion system, and the reciprocal regulation of adhesion and motility, as well as the intimate connections between metabolism, swarming and virulence. This Review addresses some of the unique and recently described aspects of P. mirabilis biology and pathogenesis, and emphasizes the potential role of this bacterium in single-species and polymicrobial urinary tract infections.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Medical Science Building II, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
14
|
Stevenson LG, Szostek BA, Clemmer KM, Rather PN. Expression of the DisA amino acid decarboxylase from Proteus mirabilis inhibits motility and class 2 flagellar gene expression in Escherichia coli. Res Microbiol 2012; 164:31-7. [PMID: 22982608 DOI: 10.1016/j.resmic.2012.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022]
Abstract
In Proteus mirabilis, a putative phenylalanine decarboxylase (DisA) acts in a regulatory pathway to inhibit class 2 flagellar gene expression and motility. In this study, we demonstrate that DisA expression in Escherichia coli blocked motility and resulted in a 50-fold decrease in the expression of class 2 (fliA) and class 3 (fliC) flagellar genes. However, the expression of flhDC encoding the class 1 activator of the flagellar cascade was unchanged by DisA expression at both the transcriptional and translational levels. Phenethylamine, a decarboxylation product derived from phenylalanine, was able to mimic DisA overexpression and decrease both motility and class 2/3 flagellar gene expression. In addition, both DisA overexpression and phenethylamine strongly inhibited biofilm formation in E. coli. DisA overexpression and exogenous phenethylamine could also reduce motility in other enteric bacteria, but had no effect on motility in non-enteric Gram-negative bacteria. It is hypothesized that phenethylamine or a closely related compound formed by the DisA decarboxylation reaction inhibits the formation or activity of the FlhD(4)C(2) complex required for activation of class 2 genes.
Collapse
Affiliation(s)
- Lindsay G Stevenson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.
Collapse
|
16
|
Patrick JE, Kearns DB. Swarming motility and the control of master regulators of flagellar biosynthesis. Mol Microbiol 2011; 83:14-23. [PMID: 22092493 DOI: 10.1111/j.1365-2958.2011.07917.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Swarming motility is the movement of bacteria over a solid surface powered by rotating flagella. The expression of flagellar biosynthesis genes is governed by species-specific master regulator transcription factors. Mutations that reduce or enhance master regulator activity have a commensurate effect on swarming motility. Here we review what is known about the proteins that modulate swarming motility and appear to act upstream of the master flagellar regulators in diverse swarming bacteria. We hypothesize that environmental control of the master regulators is important to the swarming phenotype perhaps at the level of controlling flagellar number.
Collapse
Affiliation(s)
- Joyce E Patrick
- Indiana University, Department of Biology, 1001 East Third Street, Bloomington, IN 47405, USA
| | | |
Collapse
|
17
|
Abstract
How bacteria regulate, assemble and rotate flagella to swim in liquid media is reasonably well understood. Much less is known about how some bacteria use flagella to move over the tops of solid surfaces in a form of movement called swarming. The focus of bacteriology is changing from planktonic to surface environments, and so interest in swarming motility is on the rise. Here, I review the requirements that define swarming motility in diverse bacterial model systems, including an increase in the number of flagella per cell, the secretion of a surfactant to reduce surface tension and allow spreading, and movement in multicellular groups rather than as individuals.
Collapse
|
18
|
Pearson MM, Rasko DA, Smith SN, Mobley HLT. Transcriptome of swarming Proteus mirabilis. Infect Immun 2010; 78:2834-45. [PMID: 20368347 PMCID: PMC2876570 DOI: 10.1128/iai.01222-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/14/2009] [Accepted: 03/28/2010] [Indexed: 11/20/2022] Open
Abstract
Swarming motility by the urinary tract pathogen Proteus mirabilis has been a long-studied but little understood phenomenon. On agar, a P. mirabilis colony grows outward in a bull's-eye pattern formed by consecutive waves of rapid swarming followed by consolidation into shorter cells. To examine differential gene expression in these growth phases, a microarray was constructed based on the completed genome sequence and annotation. RNA was extracted from broth-cultured, swarming, and consolidation-phase cells to assess transcription during each of these growth states. A total of 587 genes were differentially expressed in broth-cultured cells versus swarming cells, and 527 genes were differentially expressed in broth-cultured cells versus consolidation-phase cells (consolidate). Flagellar genes were highly upregulated in both swarming cells and consolidation-phase cells. Fimbriae were downregulated in swarming cells, while genes involved in cell division and anaerobic growth were upregulated in broth-cultured cells. Direct comparison of swarming cells to consolidation-phase cells found that 541 genes were upregulated in consolidate, but only nine genes were upregulated in swarm cells. Genes involved in flagellar biosynthesis, oligopeptide transport, amino acid import and metabolism, cell division, and phage were upregulated in consolidate. Mutation of dppA, oppB, and cysJ, upregulated during consolidation compared to during swarming, revealed that although these genes play a minor role in swarming, dppA and cysJ are required during ascending urinary tract infection. Swarming on agar to which chloramphenicol had been added suggested that protein synthesis is not required for swarming. These data suggest that the consolidation phase is a state in which P. mirabilis prepares for the next wave of swarming.
Collapse
Affiliation(s)
- Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Rodríguez-Herva JJ, Duque E, Molina-Henares MA, Navarro-Avilés G, Van Dillewijn P, De La Torre J, Molina-Henares AJ, La Campa ASD, Ran FA, Segura A, Shingler V, Ramos JL. Physiological and transcriptomic characterization of a fliA mutant of Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:373-380. [PMID: 23766109 DOI: 10.1111/j.1758-2229.2009.00084.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas putida KT2440 encodes 23 alternative sigma factors. The fliA gene, which encodes σ(28) , is in a cluster with other genes involved in flagella biosynthesis and chemotaxis. Reverse transcriptase-PCR revealed that this cluster is comprised of four independent transcriptional units: flhAF, fleNfliA, cheYZA and cheBmotAB. We generated a nonpolar fliA mutant by homologous recombination and tested its motility, adhesion to biotic and abiotic surfaces, and responses to various stress conditions. The mutant strain was nonmotile and exhibited decreased capacity to bind to corn seeds, although its ability to colonize the rhizosphere of plants was unaffected. The mutant was also affected in binding to abiotic surfaces and its ability to form biofilms decreased by almost threefold. In the fliA mutant background expression of 25 genes was affected: two genes were upregulated and 23 genes were downregulated. In addition to a number of motility and chemotaxis genes, the fliA gene product is also necessary for the expression of some genes potentially involved in amino acid utilization or stress responses; however, we were unable to assign specific phenotypes linked to these genes since the fliA mutant used the same range of amino acids as the parental strain, and was as tolerant as the wild type to stress imposed by heat, antibiotics, NaCl, sodium dodecyl sulfate, H2 O2 and benzoate. Based on the sequence alignment of promoters recognized by FliA and genome in silico analysis, we propose that P. putidaσ(28) recognizes a TCAAG-t-N12 -GCCGATA consensus sequence located between -34 and -8 and that this sequence is preferentially associated with an AT-rich upstream region.
Collapse
Affiliation(s)
- José Juan Rodríguez-Herva
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain. Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden. Unidad Asociada de Contaminación Atmosférica, CSIC-Universidad de Huelva, Huelva, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Morgenstein RM, Szostek B, Rather PN. Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol Rev 2010; 34:753-63. [PMID: 20497230 DOI: 10.1111/j.1574-6976.2010.00229.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gram-negative bacterium Proteus mirabilis can exist in either of two cell types, a vegetative cell characterized as a short rod and a highly elongated and hyperflagellated swarmer cell. This differentiation is triggered by growth on solid surfaces and multiple inputs are sensed by the cell to initiate the differentiation process. These include the inhibition of flagellar rotation, the accumulation of extracellular putrescine and O-antigen interactions with a surface. A key event in the differentiation process is the upregulation of FlhD(2)C(2), which activates the flagellar regulon and additional genes required for differentiation. There are a number of genes that influence FlhD(2)C(2) expression and the function of these genes, if known, will be discussed in this review. Additional genes that have been shown to regulate gene expression during swarming will also be reviewed. Although P. mirabilis represents an excellent system to study microbial differentiation, it is largely understudied relative to other systems. Therefore, this review will also discuss some of the unanswered questions that are central to understanding this process in P. mirabilis.
Collapse
Affiliation(s)
- Randy M Morgenstein
- Department of Microbiology and Immunology, 3001 Rollins Research Center, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
21
|
Loss of the waaL O-antigen ligase prevents surface activation of the flagellar gene cascade in Proteus mirabilis. J Bacteriol 2010; 192:3213-21. [PMID: 20382766 DOI: 10.1128/jb.00196-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium that undergoes a physical and biochemical change from a vegetative swimmer cell (a typical Gram-negative rod) to an elongated swarmer cell when grown on a solid surface. In this study, we report that a transposon insertion in the waaL gene, encoding O-antigen ligase, blocked swarming motility on solid surfaces but had little effect on swimming motility in soft agar. The waaL mutant was unable to differentiate into a swarmer cell. Differentiation was also prevented by a mutation in wzz, encoding a chain length determinant for O antigen, but not by a mutation in wzyE, encoding an enzyme that polymerizes enterobacterial common antigen, a surface polysaccharide different from the lipid A::core. In wild-type P. mirabilis, increased expression of the flhDC operon occurs after growth on solid surfaces and is required for the high-level expression of flagellin that is characteristic of swarmer cells. However, in both the waaL and the wzz mutants, the flhDC operon was not activated during growth on agar. A loss-of-function mutation in the rcsB response regulator or overexpression of flhDC restored swarming to the waaL mutant, despite the absence of O antigen. Therefore, although O antigen may serve a role in swarming by promoting wettability, the loss of O antigen blocks a regulatory pathway that links surface contact with the upregulation of flhDC expression.
Collapse
|
22
|
Clemmer KM, Rather PN. The Lon protease regulates swarming motility and virulence gene expression in Proteus mirabilis. J Med Microbiol 2008; 57:931-937. [PMID: 18628491 DOI: 10.1099/jmm.0.47778-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mini-Tn5lacZ1 transposon insertion in a gene encoding an orthologue of the Lon protease conferred a hyper-swarming phenotype on Proteus mirabilis. The lon mutation increased the accumulation of mRNA for representative class 1 (flhDC), class 2 (fliA) and class 3 (flaA) genes during swarmer cell differentiation. In addition, the stability of the FlhD protein was fourfold higher in the lon : mini-Tn5lacZ1 background. Expression of a single-copy lon : lacZ fusion increased during the swarming cycle and reached peak levels of expression at a point just after swarmer cell differentiation had initiated. In liquid media, a condition normally non-permissive for swarming, the lon : : mini-Tn5lacZ1 insertion resulted in motile, highly elongated cells that overexpressed flagellin. Finally, the lon : : mini-Tn5lacZ1 mutation was shown to result in increased expression of the hpmBA and zapA virulence genes during swarmer cell differentiation.
Collapse
Affiliation(s)
- Katy M Clemmer
- Research Service, Veterans Affairs Medical Center, Decatur, GA, USA
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.,Research Service, Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
23
|
Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J. Living on a surface: swarming and biofilm formation. Trends Microbiol 2008; 16:496-506. [PMID: 18775660 DOI: 10.1016/j.tim.2008.07.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/16/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Swarming is the fastest known bacterial mode of surface translocation and enables the rapid colonization of a nutrient-rich environment and host tissues. This complex multicellular behavior requires the integration of chemical and physical signals, which leads to the physiological and morphological differentiation of the bacteria into swarmer cells. Here, we provide a review of recent advances in the study of the regulatory pathways that lead to swarming behavior of different model bacteria. It has now become clear that many of these pathways also affect the formation of biofilms, surface-attached bacterial colonies. Decision-making between rapidly colonizing a surface and biofilm formation is central to bacterial survival among competitors. In the second part of this article, we review recent developments in the understanding of the transition between motile and sessile lifestyles of bacteria.
Collapse
Affiliation(s)
- Natalie Verstraeten
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of a novel gene, wosA, regulating FlhDC expression in Proteus mirabilis. J Bacteriol 2008; 190:1946-55. [PMID: 18192389 DOI: 10.1128/jb.01010-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we describe wosA, a Proteus mirabilis gene identified by its ability to increase swarming motility when overexpressed. At various times during the swarming cycle, the increased expression of wosA resulted in a 4- to 16-fold upregulation of the transcription of flhDC, encoding the master regulator of the flagellar cascade. In turn, the expression of flaA, encoding flagellin, was substantially increased in wosA-overexpressing strains. The overexpression of wosA also resulted in constitutive swarmer cell differentiation in liquid medium, a normally nonpermissive condition. However, in wosA-overexpressing strains, the onset of swarming was not altered. A null wosA allele resulted in a slight decrease in swarming motility. The expression of wosA was growth phase dependent during growth in liquid and on agar plates during swarmer cell differentiation. Increasing the viscosity of liquid medium by the addition of polyvinylpyrrolidone induced swarmer cell differentiation and resulted in a fourfold increase in wosA transcription. A fliL mutation that results in constitutive swarmer cell elongation also increased wosA transcription. In this study, we discuss the possible role of the wosA gene product in signal transduction from solid surfaces to induce swarmer cell differentiation, possibly via alterations in the motor switch complex. This study also suggests that despite constitutive swarmer cell differentiation in wosA-overexpressing strains, there are additional regulatory and/or environmental conditions that may control the onset of swarming migration.
Collapse
|
25
|
Wortham BW, Patel CN, Oliveira MA. Polyamines in bacteria: pleiotropic effects yet specific mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 603:106-15. [PMID: 17966408 DOI: 10.1007/978-0-387-72124-8_9] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Extensive data in a wide range of organisms point to the importance of polyamine homeostasis for growth. The two most common polyamines found in bacteria are putrescine and spermidine. The investigation of polyamine function in bacteria has revealed that they are involved in a number of functions other than growth, which include incorporation into the cell wall and biosynthesis of siderophores. They are also important in acid resistance and can act as a free radical ion scavenger. More recently it has been suggested that polyamines play a potential role in signaling cellular differentiation in Proteus mirabilis. Polyamines have also been shown to be essential in biofilm formation in Yersinia pestis. The pleiotropic nature of polyamines has made their investigation difficult, particularly in discerning any specific effect from more global growth effects. Here we describe key developments in the investigation of the function of polyamines in bacteria that have revealed new roles for polyamines distinct from growth. We describe the bacterial genes necessary for biosynthesis and transport, with a focus on Y. pestis. Finally we review a novel role for polyamines in the regulation of biofilm development in Y. pestis and provide evidence that the investigation of polyamines in Y. pestis may provide a model for understanding the mechanism through which polyamines regulate biofilm formation.
Collapse
Affiliation(s)
- Brian W Wortham
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, USA
| | | | | |
Collapse
|