1
|
He W, Yang P, Huang T, Liu Y, Zhang Y, Zhang W, Zhang T, Zheng M, Ma L, Zhao C, Li H, Liao Y, Wu A, Zhang J. Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2395-2409. [PMID: 38593377 PMCID: PMC11331793 DOI: 10.1111/pbi.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.
Collapse
Affiliation(s)
- Wei‐Jie He
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Peng Yang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Jiangsu Ruihua Agricultural Science and Technology Co., Ltd.SuqianChina
| | - Tao Huang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Fan Liu
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Wei Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wen‐Min Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tian‐Tian Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Meng‐Ru Zheng
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ling Ma
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chang‐Xing Zhao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - He‐Ping Li
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Cai Liao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ai‐Bo Wu
- SIBS‐UGENT‐SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing‐Bo Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
2
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Zhang W, Feng C, Zhang C, Song J, Li L, Xia M, Ding W, Zheng Y, Wang M. Improving the alcohol respiratory chain and energy metabolism by enhancing PQQ synthesis in Acetobacter pasteurianus. J Ind Microbiol Biotechnol 2024; 51:kuae036. [PMID: 39341788 PMCID: PMC11503474 DOI: 10.1093/jimb/kuae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Pyrroloquinoline quinone (PQQ) is one of the important coenzymes in living organisms. In acetic acid bacteria (AAB), it plays a crucial role in the alcohol respiratory chain, as a coenzyme of alcohol dehydrogenase (ADH). In this work, the PQQ biosynthetic genes were overexpressed in Acetobacter pasteurianus CGMCC 3089 to improve the fermentation performance. The result shows that the intracellular and extracellular PQQ contents in the recombinant strain A. pasteurianus (pBBR1-p264-pqq) were 152.53% and 141.08% higher than those of the control A. pasteurianus (pBBR1-p264), respectively. The catalytic activity of ADH and aldehyde dehydrogenase increased by 52.92% and 67.04%, respectively. The results indicated that the energy charge and intracellular ATP were also improved in the recombinant strain. The acetic acid fermentation was carried out using a 5 L self-aspirating fermenter, and the acetic acid production rate of the recombinant strain was 23.20% higher compared with the control. Furthermore, the relationship between the PQQ and acetic acid tolerance of cells was analyzed. The biomass of recombinant strain was 180.2%, 44.3%, and 38.6% higher than those of control under 2%, 3%, and 4% acetic acid stress, respectively. After being treated with 6% acetic acid for 40 min, the survival rate of the recombinant strain was increased by 76.20% compared with the control. Those results demonstrated that overexpression of PQQ biosynthetic genes increased the content of PQQ, therefore improving the acetic acid fermentation and the cell tolerance against acetic acid by improving the alcohol respiratory chain and energy metabolism. ONE SENTENCE SUMMARY The increase in PQQ content enhances the activity of the alcohol respiratory chain of Acetobacter pasteurianus, and the increase in energy charge enhances the tolerance of cells against acetic acid, therefore, improving the efficiency of acetic acid fermentation.
Collapse
Affiliation(s)
- Wenqing Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunxue Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Ding
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co., Ltd., Taiyuan 030400, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co., Ltd., Taiyuan 030400, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Nguyen NL, Van Dung V, Van Tung N, Nguyen TKL, Quan ND, Giang TTH, Ngan NTT, Hien NT, Nguyen HH. Draft genome sequencing of halotolerant bacterium Salinicola sp. DM10 unravels plant growth-promoting potentials. 3 Biotech 2023; 13:416. [PMID: 38009164 PMCID: PMC10667196 DOI: 10.1007/s13205-023-03833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2023] [Indexed: 11/28/2023] Open
Abstract
In this study, strain DM10 was isolated from mangrove roots and characterized as a halotolerant plant growth-promoting bacterium. Strain DM10 exhibited the ability to solubilize phosphate, produce siderophore, show 1-aminocyclopropane-1-carboxylic acid deaminase activity, and hydrolyze starch. The rice plants subjected to a treatment of NaCl (200 mM) and inoculated with strain DM10 showed an improvement in the shoot length, root length, and dried weight, when compared to those exposed solely to saline treatment. The comprehensive genome sequencing of strain DM10 revealed a genome spanning of 4,171,745 bp, harboring 3626 protein coding sequences. Within its genome, strain DM10 possesses genes responsible for both salt-in and salt-out strategies, indicative of a robust genetic adaptation aimed at fostering salt tolerance. Additionally, the genome encodes genes involved in phosphate solubilization, such as the synthesis of gluconic acid, high-affinity phosphate transport systems, and alkaline phosphatase. In the genome of DM10, we identified the acdS gene, responsible for encoding 1-aminocyclopropane-1-carboxylate deaminase, as well as the amy1A gene, which encodes α-amylase. Furthermore, the genome of DM10 contains sequences associated with the iron (3+)-hydroxamate and iron uptake clusters, responsible for siderophore production. Such data provide a deep understanding of the mechanism employed by strain DM10 to combat osmotic and salinity stress, facilitate plant growth, and elucidate its molecular-level behaviors.
Collapse
Affiliation(s)
- Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Vu Van Dung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Thi Kim Lien Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Duc Quan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Tran Thi Huong Giang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Thanh Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| |
Collapse
|
5
|
Li D, Chen Y, Huang F, Wang J, Li X, Yang Y. CRISPRe: An innate transcriptional enhancer for endogenous genes in CRISPR-Cas immunity. iScience 2023; 26:107814. [PMID: 37766991 PMCID: PMC10520945 DOI: 10.1016/j.isci.2023.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
CRISPR-Cas system has been repurposed to the promising strategy of CRISPR-based transcriptional interference/activation (CRISPRi/CRISPRa) without eliciting DNA breaks that enables Cas complex a block for transcription initiation or elongation, which greatly expands its application fields and values. However, loss of Cas nuclease ability, especially the endogenous nuclease, may affect genome stability seriously. Here, we found a transcriptional enhancer for genes (CRISPRe) in type I-C system of industrial strain Ketogulonicigenium vulgare by maintaining the natural activity of Cas3 nuclease and introducing the specific motifs that do not trigger immunity. CRISPRe greatly improved the expression of heterologous and endogenous genes and the biosynthesis of products by facilitating transcriptional elongation. Besides, the mechanism for pyrroloquinoline quinone (PQQ) biosynthesis regulated by coupling transcriptional-translational elongation in operon was elucidated. Hence, we enrich the toolbox for CRISPR-Cas system and provide a new framework for gene regulation at transcription.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- School of Liquor-making Engineering, Sichuan University Jinjiang College, Meishan 620680, China
| | - Yihong Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Huang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xufeng Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Lo SC, Tsai SY, Chang WH, Wu IC, Sou NL, Hung SHW, Chiang EPI, Huang CC. Characterization of the Pyrroloquinoline Quinone Producing Rhodopseudomonas palustris as a Plant Growth-Promoting Bacterium under Photoautotrophic and Photoheterotrophic Culture Conditions. Int J Mol Sci 2023; 24:14080. [PMID: 37762380 PMCID: PMC10531626 DOI: 10.3390/ijms241814080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.
Collapse
Affiliation(s)
- Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Shang-Yieng Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Wei-Hsiang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - I-Chen Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Nga-Lai Sou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
| | - Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
7
|
Low pH Stress Enhances Gluconic Acid Accumulation with Enzymatic Hydrolysate as Feedstock Using Gluconobacter oxydans. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Gluconic acid has been increasingly in demand in recent years due to the wide applications in the food, healthcare and construction industries. Plant-derived biomass is rich in biopolymers that comprise glucose as the monomeric unit, which provide abundant feedstock for gluconic acid production. Gluconobacter oxydans can rapidly and incompletely oxidize glucose to gluconic acid and it is regarded as ideal industrial microorganism. Once glucose is depleted, the gluconic acid will be further bio-oxidized to 2-ketogluconic acid by Gluconobacter oxydans. The endpoint is difficult to be controlled, especially in an industrial fermentation process. In this study, it was found that the low pH environment (2.5~3.5) could limit the further metabolism of gluconic acid and that it resulted in a yield over 95%. Therefore, the low pH stress strategy for efficiently producing gluconic acid from biomass-derived glucose was put forward and investigated with enzymatic hydrolysate. As a result, 98.8 g/L gluconic acid with a yield of 96% could be obtained from concentrated corncob enzymatic hydrolysate that initially contained 100 g/L glucose with 1.4 g/L cells loading of Gluconobacter oxydans. In addition, the low pH stress strategy could effectively control end-point and decrease the risk of microbial contamination. Overall, this strategy provides a potential for industrial gluconic acid production from lignocellulosic materials.
Collapse
|
8
|
Lv Y, Zhou S, Zhang X, Xu Y. A smart self-balancing biosystem with reversible competitive adsorption of in-situ anion exchange resin for whole-cell catalysis preparation of lignocellulosic xylonic acid. BIORESOURCE TECHNOLOGY 2022; 363:127998. [PMID: 36150427 DOI: 10.1016/j.biortech.2022.127998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Xylonic acid (XA) bioproduction via whole-cell catalysis of Gluconobacter oxydans is a promising strategy for xylose bioconversion, which is hindered by inhibitor formation during lignocellulosic hydrolysates. Therefore, it is important to develop a catalytic system that can directly utilize hydrolysate and efficiently produce XA. Determination of the dynamic adsorption characteristics of 335 anion exchange resin resulted in a unique and interesting reversible competitive adsorption between acetic acid-like bioinhibitor, fermentable sugar and XA. Xylose in crude lignocellulosic hydrolysates was completely oxidized to 52.52 g/L XA in unprecedented self-balancing biological system through reversible competition. The obtained results showed that in-situ resin adsorption significantly affected the direct utilization of crude lignocellulosic hydrolysate for XA bioproduction (p ≤ 0.05). In addition, the resin adsorbed ca. 90 % of XA during bioconversion. The study achieved a multiple functions and integrated system, "detoxification, neutralization and product separation" for one-pot bioreaction of lignocellulosic hydrolysate.
Collapse
Affiliation(s)
- Yang Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Shaonuo Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Xiaolei Zhang
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
9
|
Vobruba S, Kadlcik S, Janata J, Kamenik Z. TldD/TldE peptidases and N-deacetylases: A structurally unique yet ubiquitous protein family in the microbial metabolism. Microbiol Res 2022; 265:127186. [PMID: 36155963 DOI: 10.1016/j.micres.2022.127186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Here we provide a review on TldD/TldE family proteins, summarizing current knowledge and outlining further research perspectives. Despite being widely distributed in bacteria and archaea, TldD/TldE proteins have been escaping attention for a long time until several recent reports pointed to their unique features. Specifically, TldD/TldE generally act as peptidases, though some of them turned out to be N-deacetylases. Biological function of TldD/TldE has been extensively described in bacterial specialized metabolism, in which they participate in the biosynthesis of lincosamide antibiotics (as N-deacetylases), and in the biosynthesis of ribosomally synthesized and post-translationally modified bioactive peptides (as peptidases). These enzymes possess special position in the relevant biosynthesis since they convert non-bioactive intermediates into bioactive metabolites. Further, based on a recent study of Escherichia coli TldD/TldE, these heterodimeric metallopeptidases possess a new protein fold exhibiting several structural features with no precedent in the Protein Data Bank. The most interesting ones are structural elements forming metal-containing active site on the inner surface of the catalytically active subunit TldD, in which substrates bind through β sheet interactions in the sequence-independent manner. It results in relaxed substrate specificity of TldD/TldE, which is counterbalanced by enclosing the active centre within the hollow core of the heterodimer and only appropriate substrates can entry through a narrow channel. Based on the published data, we hypothesize a yet unrecognized central metabolic function of TldD/TldE in the degradation of (partially) unfolded proteins, i.e., in protein quality control.
Collapse
Affiliation(s)
- Simon Vobruba
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Stanislav Kadlcik
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Jiri Janata
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Zdenek Kamenik
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic.
| |
Collapse
|
10
|
Shabbir MAB, Ul-Rahman A, Khalid AR, Ijaz N, Aleem MT, Ahmed S, Alouffi A, Ahmed W, Aslam F, Maan MK, Tahir AH, Aziz MW, Almutairi MM, Hao H. Inter-Relationship Between a Transcriptional Regulator of Flagella Genes cj0440c and Thiamine Metabolic Pathway in Campylobacter jejuni. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4539367. [PMID: 36046445 PMCID: PMC9420602 DOI: 10.1155/2022/4539367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022]
Abstract
Campylobacter jejuni is a major cause of gastroenteritis in humans. It has been reported that the pathogenesis of C. jejuni is closely related to the formation, adhesion, and invasion of flagella toxin in host epithelial cells. A putative transcriptional regulator, known as cj0440c, is thought to be involved in the regulation of flagellar synthesis. However, confirmation of this hypothesis requires deep insight into the regulation mechanism of cj0440c and its possible relationship with different antibiotics. Therefore, the study explained here was designed to determine the relationship and function (phenotypically and genotypically) of cj0440c in the flagellar synthesis of C. jejuni NCTC11168. The study determined the mode of expression of cj0440c and flagella-related genes under exposure to various drugs. To verify the involvement of cj0440c protein in the metabolic pathway of thiamine, an enzymatic hydrolysis experiment was performed and analyzed through the application of mass spectrometry. The overexpression vector of C. jejuni NCTC11168 was also constructed to find out whether or not target genes were regulated by cj0440c. The findings of the study showed that cj0440c and other flagella-related genes were expressed differentially under the influence of various antibiotics including erythromycin, tylosin, azithromycin, gentamicin, etimicin, enrofloxacin, gatifloxacin, tetracycline, and tigecycline. The analysis showed that the cj0440c protein did not catalyze the degradation of thiamine. In conclusion, the study aids in the understanding of the inter-relationship between the regulatory mechanism of flagella genes and the thiamine metabolic pathway.
Collapse
Affiliation(s)
| | - Aziz Ul-Rahman
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan 66000, Pakistan
| | - Abdur Rauf Khalid
- Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nabeel Ijaz
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammmad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Islamabad, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Waqas Ahmed
- Department of Biomedical and Diagnostic Science, University of Tennessee Knoxville, USA
| | - Faiza Aslam
- Livestock and Dairy Development Department, Lahore 54000, Pakistan
| | - Muhammad Kashif Maan
- Department of Veterinary Surgery and Pet Sciences, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adnan Hassan Tahir
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, 54600, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality & Safety of Livestock & Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Discovery of a novel acrylic acid formation pathway in Gluconobacter oxydans and its application in biosynthesis of acrylic acid from glycerol. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Enhanced production of l-sorbose by systematic engineering of dehydrogenases in Gluconobacter oxydans. Synth Syst Biotechnol 2022; 7:730-737. [PMID: 35356389 PMCID: PMC8927921 DOI: 10.1016/j.synbio.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
l-Sorbose is an essential intermediate for the industrial production of vitamin C (l-ascorbic acid). However, the formation of fructose and some unknown by-products significantly reduces the conversion ratio of D-sorbitol to l-sorbose. This study aimed to identify the key D-sorbitol dehydrogenases in Gluconobacter oxydans WSH-003 by gene knockout. Then, a total of 38 dehydrogenases were knocked out in G. oxydans WSH-003, and 23 dehydrogenase-deficient strains could increase l-sorbose production. G. oxydans-30, wherein a pyrroloquinoline quinone-dependent glucose dehydrogenase was deleted, showed a significant reduction of a by-product with the extension of fermentation time. In addition, the highest conversion ratio of 99.60% was achieved in G. oxydans MD-16, in which 16 different types of dehydrogenases were inactivated consecutively. Finally, the gene vhb encoding hemoglobin was introduced into the strain. The titer of l-sorbose was 298.61 g/L in a 5-L bioreactor. The results showed that the systematic engineering of dehydrogenase could significantly enhance the production of l-sorbose.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
13
|
He Y, Xie Z, Zhang H, Liebl W, Toyama H, Chen F. Oxidative Fermentation of Acetic Acid Bacteria and Its Products. Front Microbiol 2022; 13:879246. [PMID: 35685922 PMCID: PMC9171043 DOI: 10.3389/fmicb.2022.879246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acetic acid bacteria (AAB) are a group of Gram-negative, strictly aerobic bacteria, including 19 reported genera until 2021, which are widely found on the surface of flowers and fruits, or in traditionally fermented products. Many AAB strains have the great abilities to incompletely oxidize a large variety of carbohydrates, alcohols and related compounds to the corresponding products mainly including acetic acid, gluconic acid, gulonic acid, galactonic acid, sorbose, dihydroxyacetone and miglitol via the membrane-binding dehydrogenases, which is termed as AAB oxidative fermentation (AOF). Up to now, at least 86 AOF products have been reported in the literatures, but no any monograph or review of them has been published. In this review, at first, we briefly introduce the classification progress of AAB due to the rapid changes of AAB classification in recent years, then systematically describe the enzymes involved in AOF and classify the AOF products. Finally, we summarize the application of molecular biology technologies in AOF researches.
Collapse
Affiliation(s)
- Yating He
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhen Xie
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Hirohide Toyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
14
|
Mao X, Zhang B, Zhao C, Lin J, Wei D. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate. Microb Cell Fact 2022; 21:35. [PMID: 35264166 PMCID: PMC8905809 DOI: 10.1186/s12934-022-01763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background d-Xylonic acid is a versatile platform chemical with broad potential applications as a water reducer and disperser for cement and as a precursor for 1,4-butanediol and 1,2,4-tributantriol. Microbial production of d-xylonic acid with bacteria such as Gluconobacter oxydans from inexpensive lignocellulosic feedstock is generally regarded as one of the most promising and cost-effective methods for industrial production. However, high substrate concentrations and hydrolysate inhibitors reduce xylonic acid productivity. Results The d-xylonic acid productivity of G. oxydans DSM2003 was improved by overexpressing the mGDH gene, which encodes membrane-bound glucose dehydrogenase. Using the mutated plasmids based on pBBR1MCS-5 in our previous work, the recombinant strain G. oxydans/pBBR-R3510-mGDH was obtained with a significant improvement in d-xylonic acid production and a strengthened tolerance to hydrolysate inhibitors. The fed-batch biotransformation of d-xylose by this recombinant strain reached a high titer (588.7 g/L), yield (99.4%), and volumetric productivity (8.66 g/L/h). Moreover, up to 246.4 g/L d-xylonic acid was produced directly from corn stover hydrolysate without detoxification at a yield of 98.9% and volumetric productivity of 11.2 g/L/h. In addition, G. oxydans/pBBR-R3510-mGDH exhibited a strong tolerance to typical inhibitors, i.e., formic acid, furfural, and 5-hydroxymethylfurfural. Conclusion Through overexpressing mgdh in G. oxydans, we obtained the recombinant strain G. oxydans/pBBR-R3510-mGDH, and it was capable of efficiently producing xylonic acid from corn stover hydrolysate under high inhibitor concentrations. The high d-xylonic acid productivity of G. oxydans/pBBR-R3510-mGDH made it an attractive choice for biotechnological production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01763-y.
Collapse
Affiliation(s)
- Xinlei Mao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Baoqi Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chenxiu Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
15
|
Feito J, Contente D, Ponce-Alonso M, Díaz-Formoso L, Araújo C, Peña N, Borrero J, Gómez-Sala B, del Campo R, Muñoz-Atienza E, Hernández PE, Cintas LM. Draft Genome Sequence of Lactococcus lactis Subsp. cremoris WA2-67: A Promising Nisin-Producing Probiotic Strain Isolated from the Rearing Environment of a Spanish Rainbow Trout ( Oncorhynchus mykiss, Walbaum) Farm. Microorganisms 2022; 10:521. [PMID: 35336097 PMCID: PMC8954438 DOI: 10.3390/microorganisms10030521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Probiotics are a viable alternative to traditional chemotherapy agents to control infectious diseases in aquaculture. In this regard, Lactococcus lactis subsp. cremoris WA2-67 has previously demonstrated several probiotic features, such as a strong antimicrobial activity against ichthyopathogens, survival in freshwater, resistance to fish bile and low pH, and hydrophobicity. The aim of this manuscript is an in silico analysis of the whole-genome sequence (WGS) of this strain to gain deeper insights into its probiotic properties and their genetic basis. Genomic DNA was purified, and libraries prepared for Illumina sequencing. After trimming and assembly, resulting contigs were subjected to bioinformatic analyses. The draft genome of L. cremoris WA2-67 consists of 30 contigs (2,573,139 bp), and a total number of 2493 coding DNA sequences (CDSs). Via in silico analysis, the bacteriocinogenic genetic clusters encoding the lantibiotic nisin Z (NisZ) and two new bacteriocins were identified, in addition to several probiotic traits, such as the production of vitamins, amino acids, adhesion/aggregation, and stress resistance factors, as well as the absence of transferable antibiotic resistance determinants and genes encoding detrimental enzymatic activities and virulence factors. These results unveil diverse beneficial properties that support the use of L. cremoris WA2-67 as a probiotic for aquaculture.
Collapse
Affiliation(s)
- Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9, 100., 28034 Madrid, Spain; (M.P.-A.); (R.d.C.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Nuria Peña
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9, 100., 28034 Madrid, Spain; (M.P.-A.); (R.d.C.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| |
Collapse
|
16
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
17
|
Generation of a Gluconobacter oxydans knockout collection for improved extraction of rare earth elements. Nat Commun 2021; 12:6693. [PMID: 34795278 PMCID: PMC8602642 DOI: 10.1038/s41467-021-27047-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
Bioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans, offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching. We find 304 genes whose disruption alters the production of acidic biolixiviant. Disruption of genes underlying synthesis of the cofactor pyrroloquinoline quinone (PQQ) and the PQQ-dependent membrane-bound glucose dehydrogenase nearly eliminates bioleaching. Disruption of phosphate-specific transport system genes enhances bioleaching by up to 18%. Our results provide a comprehensive roadmap for engineering the genome of G. oxydans to further increase its bioleaching efficiency.
Collapse
|
18
|
A Combination of Genomics, Transcriptomics, and Genetics Provides Insights into the Mineral Weathering Phenotype of Pseudomonas azotoformans F77. Appl Environ Microbiol 2021; 87:e0155221. [PMID: 34586903 DOI: 10.1128/aem.01552-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Silicate mineral weathering (dissolution) plays important roles in soil formation and global biogeochemical cycling. In this study, a combination of genomics, transcriptomics, and genetics was used to identify the molecular basis of mineral weathering activity and acid tolerance in Pseudomonas azotoformans F77. Biotite was chosen as a silicate mineral to investigate mineral weathering. The genome of strain F77 was sequenced, and the genes significantly upregulated when grown in the presence of biotite included mineral weathering-related genes associated with gluconic acid metabolism, flagellar assembly, and pilus biosynthesis and acid tolerance-related genes associated with neutralizing component production, reducing power, and proton efflux. Then, the biotite-weathering behaviors of strain F77 and its mutants that were created by deleting the tkt, tal, gntP, potF, nuoF, and gdtO genes, which are involved in gluconic acid metabolism and acid tolerance, respectively, were determined. The Fe and Al concentrations in the strain F77-inoculated medium increased 2.2- to 13.7-fold compared to the controls. The cell numbers of strain F77 increased over time, while the pH values in the medium ranged from 3.75 to 3.90 between 20 and 36 h of incubation. The release of Al and Fe was significantly reduced in the mutants F77Δtal, F77ΔgntP, F77ΔpotF, and F77ΔnuoF. Bacterial growth was significantly reduced in the presence of biotite in the mutants F77ΔpotF and F77ΔnuoF. Our results demonstrated the acid tolerance of strain F77 and suggested that multiple genes and metabolic pathways in strain F77 are involved in biotite weathering and acid tolerance during the mineral weathering process. IMPORTANCE Acid production and tolerance play important roles in effective and persistent mineral weathering in bacteria, although the molecular mechanisms governing acid production and acid tolerance in bacteria have not been fully elucidated. In this study, the molecular mechanisms underlying biotite (as a silicate mineral) weathering (dissolution) and acid tolerance of P. azotoformans F77 were characterized using genomics, transcriptomics, and genetics analyses. Our results showed that the genes and metabolic pathways for gluconic acid metabolism, flagellar assembly, and pilus biosynthesis may play important roles in mineral weathering by strain F77. Notably, the genes associated with neutralizing component production, reducing power, and proton efflux may be related to acid tolerance in strain F77. The expression of these acid production- and acid tolerance-related genes was observed to be increased by biotite in strain F77. Our findings may help to elucidate the molecular mechanisms governing mineral weathering and, especially, acid tolerance in mineral-weathering bacteria.
Collapse
|
19
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
20
|
Gao L, Wu X, Xia X, Jin Z. Fine-tuning ethanol oxidation pathway enzymes and cofactor PQQ coordinates the conflict between fitness and acetic acid production by Acetobacter pasteurianus. Microb Biotechnol 2020; 14:643-655. [PMID: 33174682 PMCID: PMC7936290 DOI: 10.1111/1751-7915.13703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/23/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
The very high concentrations required for industrial production of free acetic acid create toxicity and low pH values, which usually conflict with the host cell growth, leading to a poor productivity. Achieving a balance between cell fitness and product synthesis is the key challenge to improving acetic acid production efficiency in metabolic engineering. Here, we show that the synergistic regulation of alcohol/aldehyde dehydrogenase expression and cofactor PQQ level could not only efficiently relieve conflict between increased acetic acid production and compromised cell fitness, but also greatly enhance acetic acid tolerance of Acetobacter pasteurianus to a high initial concentration (3% v/v) of acetic acid. Combinatorial expression of adhA and pqqABCDE greatly shortens the duration of starting‐up process from 116 to 99 h, leading to a yield of 69 g l‐1 acetic acid in semi‐continuous fermentation. As a final result, average acetic acid productivity has been raised to 0.99 g l‐1 h‐1, which was 32% higher than the parental A. pasteurianus. This study is of great significance for decreasing cost of semi‐continuous fermentation for producing high‐strength acetic acid industrially. We envisioned that this strategy will be useful for production of many other desired organic acids, especially those involving cofactor reactions.
Collapse
Affiliation(s)
- Ling Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xiaodan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaole Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Xu Y, Chi P, Lv J, Bilal M, Cheng H. L-Xylo-3-hexulose, a new rare sugar produced by the action of acetic acid bacteria on galactitol, an exception to Bertrand Hudson's rule. Biochim Biophys Acta Gen Subj 2020; 1865:129740. [PMID: 32956752 DOI: 10.1016/j.bbagen.2020.129740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND In acetic acid bacteria such as Gluconobacter oxydans or Gluconobacter cerinus, pyrroloquinoline quinone (PQQ) in the periplasm serves as the redox cofactor for several membrane-bound dehydrogenases that oxidize polyhydric alcohols to rare sugars, which can be used as a healthy alternative for traditional sugars and sweeteners. These oxidation reactions obey the generally accepted Bertrand Hudson's rule, in which only the polyhydric alcohols that possess cis d-erythro hydroxyl groups can be oxidized to 2-ketoses using PQQ as a cofactor, while the polyhydric alcohols excluding cis d-erythro hydroxyl groups ruled out oxidation by PQQ-dependent membrane-bound dehydrogenases. METHODS Membrane fractions of G. oxydans were prepared and used as a cell-free catalyst to oxidize galactitol, with or without PQQ as a cofactor. RESULTS In this study, we reported an interesting oxidation reaction that the polyhydric alcohols galactitol (dulcitol), which do not possess cis d-erythro hydroxyl groups, can be oxidized by PQQ-dependent membrane-bound dehydrogenase(s) of acetic acid bacteria at the C-3 and C-5 hydroxyl groups to produce rare sugars l-xylo-3-hexulose and d-tagatose. CONCLUSIONS This reaction may represent an exception to Bertrand Hudson's rule. GENERAL SIGNIFICANCE Bertrand Hudson's rule is a well-known theory in polyhydric alcohols oxidation by PQQ-dependent membrane-bound dehydrogenase in acetic acid bacteria. In this study, galactitol oxidation by a PQQ-dependent membrane-bound dehydrogenase represents an exception to the Bertrand Hudson's rule. Further identification of the associated enzymes and deciphering the explicit enzymatic mechanism will prove this theory.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyang Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Jiangsu, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Liu D, Ke X, Hu ZC, Zheng YG. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation. Enzyme Microb Technol 2020; 141:109670. [PMID: 33051020 DOI: 10.1016/j.enzmictec.2020.109670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
6-(N-hydroxyethyl)-amino-6-deoxy-l-sorbofuranose (6NSL), a key precursor in the synthesis of miglitol, is produced from N-2-hydroxyethyl-glucamine (NHEG) by the regioselective oxidation of Gluconobacter oxydans. The limitation of PQQ biosynthesis became a bottleneck for improvement of PQQ-dependent D-sorbitol dehydrogenase (mSLDH) activity. Five expression plasmids were constructed for the co-expression of the pqqABCDE gene cluster and the tldD gene on the basis of pBBR1-gHp0169-sldAB in G. oxydans to increase the biosynthesis of PQQ. The G. oxydans/pGA004, in which pqqABCDE and tldD were expressed as a cluster under the control of gHp0169 promoter, showed the optimal performance. The intracellular PQQ concentration and specific activity of mSLDH in cells increased by 79.3 % and 53.7 %, respectively, compared to that in G. oxydans/pBBR-sldAB. Then, the repeated batch biotransformation of NHEG to 6NSL by G. oxydans/pGA004 was carried out. Up to 75.0 ± 3.0 g/L of 6NSL production with 94.5 ± 3.6 % of average conversion rate of NHEG to 6NSL was achieved after four cycles of run. These results indicated that G. oxydans/pGA004 with high productivity had great potential for 6NSL production in industrial bioprocess.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
23
|
Breeding of Gluconobacter oxydans with high PQQ-dependent D-sorbitol dehydrogenase for improvement of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Alaylar B, Egamberdieva D, Gulluce M, Karadayi M, Arora NK. Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World J Microbiol Biotechnol 2020; 36:93. [DOI: 10.1007/s11274-020-02870-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/12/2020] [Indexed: 01/23/2023]
|
25
|
Mi Z, Sun Z, Huang Z, Zhao P, Li Q, Tian P. Engineering CRISPR interference system to enhance the production of pyrroloquinoline quinone in Klebsiella pneumonia. Lett Appl Microbiol 2020; 71:242-250. [PMID: 32394472 DOI: 10.1111/lam.13311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is a cofactor of glucose dehydrogenase (GDH) and thus participates in glucose utilization. In Klebsiella pneumoniae, glucose utilization involves PQQ-dependent direct oxidation pathway (DOP) and phosphoenolpyruvate-dependent transport system (PTS). It is challenging to overproduce PQQ, as its biosynthesis remains unclear. Here, we report that PQQ production can be enhanced by stimulating the metabolic demand for it. First, we developed CRISPR interference (CRISPRi) system to block PTS and thereby intensify DOP. In shake-flask cultivation, the strain with CRISPRi system (simultaneously inhibiting four PTS-related genes) produced 225·65 nmol l-1 PQQ, which was 2·14 times that of wild type. In parallel, an exogenous soluble glucose dehydrogenase (sGDH) was overexpressed in K. pneumoniae. In the shake-flask cultivation, this sGDH-overexpressing strain accumulated 140·05 nmol l-1 PQQ, which was 1·33 times that of wild type. To combine the above two strategies, we engineered a strain harbouring both CRISPRi vector and sGDH-overexpressing vector. In the shake-flask cultivation, this two-plasmid strain generated 287·01 nmol l-1 PQQ, which was 2·72 times that of wild type. In bioreactor cultivation, this two-plasmid strain produced 2206·1 nmol l-1 PQQ in 57 h, which was 7·69 times that in shake-flask cultivation. These results indicate that PQQ production can be enhanced by intensifying DOP, as the apo-enzyme GDH is intrinsically coupled with cofactor PQQ. This study provides a strategy for the production of cofactors whose biosynthesis mechanisms remain ambiguous. SIGNIFICANCE AND IMPACT OF THE STUDY: Pyrroloquinoline quinone (PQQ) is an economically important chemical, which typically serves as a cofactor of glucose dehydrogenase (GDH) and thus participates in glucose metabolism. Klebsiella pneumoniae can naturally synthesize PQQ, but current yield constrains its commercialization. In this study, the PQQ level was improved by stimulating metabolic demand for PQQ, instead of overexpressing PQQ synthetic genes, as the synthetic mechanism remains ambiguous.
Collapse
Affiliation(s)
- Z Mi
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Z Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Z Huang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - P Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Q Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - P Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
26
|
Sun Y, Wang Y, Li L, Sun L, He L, Sheng X. Distinct biotite-weathering activities of Arthrobacter pascens F74 under different contact conditions. J Basic Microbiol 2019; 60:362-371. [PMID: 31840843 DOI: 10.1002/jobm.201900518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/06/2022]
Abstract
Bacteria play important roles in mineral weathering and soil formation. However, little is known regarding the interactions between biotite and Arthrobacter strains. In this study, the mineral-mineral activities of the Arthrobacter pascens F74 isolated from a weathered rock surface were evaluated for its weathering behavior under direct contact and no contact with biotite. No contact was obtained by using dialysis bags. When directly in contact with biotite, Al and Fe concentrations increased by 9- to 47-fold compared with the controls in the presence of strain F74. Furthermore, strain F74 increased mobilized Al by 106% to 175% and Fe by 29% to 123% under direct contact than under no contact conditions. During biotite dissolution, significantly higher cell numbers and lower pH in the culture medium were observed in the presence of strain F74 under direct contact conditions than under no contact conditions. Significantly higher gluconic acid concentration and glucose dehydrogenase activity were found under direct contact conditions than under no contact and no biotite conditions. Scanning electron microscopy analysis showed cell adhesion on the biotite surface. These results demonstrated that strain F74 behaved differently with respect to biotite-weathering effectiveness and mechanisms under different contact conditions. The results also suggested that direct contact between biotite and strain F74 was important for the production of gluconic acid, cell adhesion on the mineral surface, and the mineral dissolution of the strain.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanli Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Li
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lijing Sun
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Linyan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiafang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Glutamate addition improves the activity of membrane-bound sorbitol dehydrogenase in a pyrroloquinoline quinone-dependent manner: A feasible strategy for the cost-effective fermentation of Gluconobacter oxydans. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Zhou P, Yao R, Zhang H, Bao J. Unique glucose oxidation catalysis of
Gluconobacter oxydans
constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Biotechnol Bioeng 2019; 116:2191-2199. [DOI: 10.1002/bit.27020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/14/2019] [Accepted: 05/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Pingping Zhou
- School of BioengineeringState Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai China
| | - Ruimiao Yao
- School of BioengineeringState Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai China
| | - Hongsen Zhang
- School of BioengineeringState Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai China
- Key Laboratory of Enzyme Engineering of Agricultural MicrobiologyMinistry of AgricultureCollege of Life ScienceHenan Agricultural UniversityZhengzhou China
| | - Jie Bao
- School of BioengineeringState Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai China
| |
Collapse
|
29
|
Current challenges facing one-step production of l-ascorbic acid. Biotechnol Adv 2018; 36:1882-1899. [DOI: 10.1016/j.biotechadv.2018.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
30
|
Zhu J, Xie J, Wei L, Lin J, Zhao L, Wei D. Identification of the enzymes responsible for 3-hydroxypropionic acid formation and their use in improving 3-hydroxypropionic acid production in Gluconobacter oxydans DSM 2003. BIORESOURCE TECHNOLOGY 2018; 265:328-333. [PMID: 29913287 DOI: 10.1016/j.biortech.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
Abstract
Gluconobacter oxydans can be efficiently used to produce 3-hydroxypropionic acid (3-HP) from 1,3-propanediol (1,3-PDO). However, the enzymes involved remain unclear. In this study, transcription analysis of two mutants of strain DSM 2003, obtained by UV-mutagenesis, revealed that membrane-bound alcohol dehydrogenase (mADH) and membrane-bound aldehyde dehydrogenase (mALDH) might be the main enzymes involved. Through deletion and complementation of the genes adhA and aldh, mADH and mALDH were verified as the main enzymes responsible for 3-HP production. Then mALDH was verified as the rate-limiting enzyme in 3-HP production. Since that overexpression of mADH had no effect on 3-HP production, whereas overexpression of mALDH increased 23.6% 3-HP production. Finally, the 3-HP titer of 45.8 g/L and the highest productivity 1.86 g/L/h were achieved when the two mutants DSM 2003/adhAB and DSM 2003/aldh were mixed at a ratio of 1:2 (cell density) and used as whole cell catalysts for 3-HP production.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liujing Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| |
Collapse
|
31
|
Huang CN, Liebl W, Ehrenreich A. Restriction-deficient mutants and marker-less genomic modification for metabolic engineering of the solvent producer Clostridium saccharobutylicum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:264. [PMID: 30275904 PMCID: PMC6158908 DOI: 10.1186/s13068-018-1260-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Clostridium saccharobutylicum NCP 262 is a solventogenic bacterium that has been used for the industrial production of acetone, butanol, and ethanol. The lack of a genetic manipulation system for C. saccharobutylicum currently limits (i) the use of metabolic pathway engineering to improve the yield, titer, and productivity of n-butanol production by this microorganism, and (ii) functional genomics studies to better understand its physiology. RESULTS In this study, a marker-less deletion system was developed for C. saccharobutylicum using the codBA operon genes from Clostridium ljungdahlii as a counterselection marker. The codB gene encodes a cytosine permease, while codA encodes a cytosine deaminase that converts 5-fluorocytosine to 5-fluorouracil, which is toxic to the cell. To introduce a marker-less genomic modification, we constructed a suicide vector containing: the catP gene for thiamphenicol resistance; the codBA operon genes for counterselection; fused DNA segments both upstream and downstream of the chromosomal deletion target. This vector was introduced into C. saccharobutylicum by tri-parental conjugation. Single crossover integrants are selected on plates supplemented with thiamphenicol and colistin, and, subsequently, double-crossover mutants whose targeted chromosomal sequence has been deleted were identified by counterselection on plates containing 5-fluorocytosine. Using this marker-less deletion system, we constructed the restriction-deficient mutant C. saccharobutylicum ΔhsdR1ΔhsdR2ΔhsdR3, which we named C. saccharobutylicum Ch2. This triple mutant exhibits high transformation efficiency with unmethylated DNA. To demonstrate its applicability to metabolic engineering, the method was first used to delete the xylB gene to study its role in xylose and arabinose metabolism. Furthermore, we also deleted the ptb and buk genes to create a butyrate metabolism-negative mutant of C. saccharobutylicum that produces n-butanol at high yield. CONCLUSIONS The plasmid vectors and the method introduced here, together with the restriction-deficient strains described in this work, for the first time, allow for efficient marker-less genomic modification of C. saccharobutylicum and, therefore, represent valuable tools for the genetic and metabolic engineering of this industrially important solvent-producing organism.
Collapse
Affiliation(s)
- Ching-Ning Huang
- Chair of Microbiology, Technical University of Munich, Freising, 85350 Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, 85350 Germany
| | - Armin Ehrenreich
- Chair of Microbiology, Technical University of Munich, Freising, 85350 Germany
| |
Collapse
|
32
|
Pyrroloquinoline quinone-dependent dehydrogenases of acetic acid bacteria. Appl Microbiol Biotechnol 2018; 102:9531-9540. [PMID: 30218379 DOI: 10.1007/s00253-018-9360-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Pyrroloquinoline quinone (PQQ)-dependent dehydrogenases (quinoproteins) of acetic acid bacteria (AAB), such as the membrane-bound alcohol dehydrogenase (ADH) and the membrane-bound glucose dehydrogenase, contain PQQ as the prosthetic group. Most of them are located on the periplasmic surface of the cytoplasmic membrane, and function as primary dehydrogenases in cognate substance-oxidizing respiratory chains. Here, we have provided an overview on the function and molecular architecture of AAB quinoproteins, which can be categorized into six groups according to the primary amino acid sequences. Based on the genomic data, we discuss the types of quinoproteins found in AAB genome and how they are distributed. Our analyses indicate that a significant number of uncharacterized orphan quinoproteins are present in AAB. By reviewing recent experimental developments, we discuss how to characterize the as-yet-unknown enzymes. Moreover, our bioinformatics studies also provide insights on how quinoproteins have developed into intricate enzymes. ADH comprises at least two subunits: the quinoprotein dehydrogenase subunit encoded by adhA and the cytochrome subunit encoded by adhB, and the genes are located in a polycistronic transcriptional unit. Findings on stand-alone derivatives of adhA encourage us to speculate on a possible route for ADH development in the evolutional history of AAB. A combination of bioinformatics studies on big genome sequencing data and wet studies assisted with genetic engineering would unravel biochemical functions and physiological role of uncharacterized quinoproteins in AAB, or even in unculturable metagenome.
Collapse
|
33
|
Zou X, Lin J, Mao X, Zhao S, Ren Y. Biosynthesis of L-Erythrose by Assembly of Two Key Enzymes in Gluconobacter oxydans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7721-7725. [PMID: 28707464 DOI: 10.1021/acs.jafc.7b02201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
L-erythrose, a rare aldotetrose, possesses various pharmacological activities. However, efficient L-erythrose production is challenging. Currently, L-erythrose is produced by a two-step fermentation process from erythritol. Here, we describe a novel strategy for the production of L-erythrose in Gluconobacter oxydans (G. oxydans) by localizing the assembly of L-ribose isomerase (L-RI) to membrane-bound sorbitol dehydrogenase (SDH) via the protein-peptide interactions of the PDZ domain and PDZ ligand. To demonstrate this self-assembly, green fluorescent protein (GFP) replaced L-RI and its movement to membrane-bound SDH was observed by fluorescence microscopy. The final L-erythrose production was improved to 23.5 g/L with the stepwise metabolic engineering of G. oxydans, which was 1.4-fold higher than that obtained using coexpression of SDH and L-RI in G. oxydans. This self-assembly strategy shows remarkable potential for further improvement of L-erythrose production.
Collapse
Affiliation(s)
- Xingxing Zou
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Xinlei Mao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Shengyun Zhao
- Fujian Key Laboratory of Eco-Industrial Green Technology, Wuyi University , Wuyishan, 354300, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
34
|
Ludueña LM, Anzuay MS, Magallanes-Noguera C, Tonelli ML, Ibañez FJ, Angelini JG, Fabra A, McIntosh M, Taurian T. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119. Res Microbiol 2017; 168:710-721. [PMID: 28709697 DOI: 10.1016/j.resmic.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/25/2017] [Accepted: 07/03/2017] [Indexed: 01/23/2023]
Abstract
The mineral phosphate-solubilizing phenotype in bacteria is attributed predominantly to secretion of gluconic acid produced by oxidation of glucose by the glucose dehydrogenase enzyme and its cofactor, pyrroloquinoline quinone. This study analyzes pqqE gene expression and pqq promoter activity in the native phosphate-solubilizing bacterium Serratia sp S119 growing under P-limitation, and in the presence of root exudates obtained from peanut plants, also growing under P-limitation. Results indicated that Serratia sp. S119 contains a pqq operon composed of six genes (pqqA,B,C,D,E,F) and two promoters, one upstream of pqqA and other between pqqA and pqqB. PqqE gene expression and pqq promoter activity increased under P-limiting growth conditions and not under N-deficient conditions. In the plant-bacteria interaction assay, the activity of the bacterial pqq promoter region varied depending on the concentration and type of root exudates and on the bacterial growth phase. Root exudates from peanut plants growing under P-available and P-limiting conditions showed differences in their composition. It is concluded from this study that the response of Serratia sp. S119 to phosphorus limitation involves an increase in expression of pqq genes, and that molecules exuded by peanut roots modify expression of these phosphate-solubilizing bacterial genes during plant-bacteria interactions.
Collapse
Affiliation(s)
- Liliana M Ludueña
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800 Rio Cuarto, Córdoba, Argentina.
| | - Maria S Anzuay
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800 Rio Cuarto, Córdoba, Argentina.
| | - Cynthia Magallanes-Noguera
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800 Rio Cuarto, Córdoba, Argentina.
| | - Maria L Tonelli
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800 Rio Cuarto, Córdoba, Argentina.
| | - Fernando J Ibañez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800 Rio Cuarto, Córdoba, Argentina.
| | - Jorge G Angelini
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800 Rio Cuarto, Córdoba, Argentina.
| | - Adriana Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800 Rio Cuarto, Córdoba, Argentina.
| | - Matthew McIntosh
- Loewe Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany.
| | - Tania Taurian
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800 Rio Cuarto, Córdoba, Argentina.
| |
Collapse
|
35
|
Hao H, Fang X, Han J, Foley SL, Wang Y, Cheng G, Wang X, Huang L, Dai M, Liu Z, Yuan Z. Cj0440c Affects Flagella Formation and In Vivo Colonization of Erythromycin-Susceptible and -Resistant Campylobacter jejuni. Front Microbiol 2017; 8:729. [PMID: 28487689 PMCID: PMC5403827 DOI: 10.3389/fmicb.2017.00729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is one of the most common foodborne pathogen worldwide. A putative transcriptional regulator, Cj0440c, was up-regulated in the erythromycin-resistant C. jejuni, however, the precise role of Cj0440c is yet to be determined. The aim of this study was to determine the biological functions of Cj0440c. The Cj0440c isogenic mutants were constructed from erythromycin-susceptible C. jejuni NCTC 11168 (S) and -resistant C. jejuni 68-ER (R), designating as SM and RM, respectively. The isogenic Cj0440c mutants (SM and RM) and parental strains (S and R) were subjected to microarray and qRT-PCR analysis to examine the transcriptional profile changes contributed by Cj0440c. The antimicrobial susceptibility, flagellar morphology, in vitro growth and in vivo colonization in chickens were carried out to analyze the biological function of Cj0440c. The results showed that 17 genes were down-regulated in SM compared to S, while 9 genes were down-regulated in RM compared to R. The genes with transcriptional change were mainly involved in flagella biosynthesis and assembly. Using transmission electron microscopy, we found that the filaments were impaired in SM and lost in RM. The chicken colonization experiments showed that Cj0440c mutants (SM and RM) had reduced colonization ability in chickens when compared with corresponding parental strains (S and R). In conclusion, Cj0440c regulates flagella biosynthesis and assembly, and consequently affect the in vivo colonization of erythromycin-susceptible and -resistant C. jejuni.
Collapse
Affiliation(s)
- Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Xia Fang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, JeffersonAR, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, JeffersonAR, USA
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Menghong Dai
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
36
|
Wan H, Xia Y, Li J, Kang Z, Zhou J. Identification of transporter proteins for PQQ-secretion pathways by transcriptomics and proteomics analysis in Gluconobacter oxydans WSH-003. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-016-1580-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Whole-Genome Sequence Analysis of Bombella intestini LMG 28161T, a Novel Acetic Acid Bacterium Isolated from the Crop of a Red-Tailed Bumble Bee, Bombus lapidarius. PLoS One 2016; 11:e0165611. [PMID: 27851750 PMCID: PMC5112900 DOI: 10.1371/journal.pone.0165611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/15/2016] [Indexed: 11/19/2022] Open
Abstract
The whole-genome sequence of Bombella intestini LMG 28161T, an endosymbiotic acetic acid bacterium (AAB) occurring in bumble bees, was determined to investigate the molecular mechanisms underlying its metabolic capabilities. The draft genome sequence of B. intestini LMG 28161T was 2.02 Mb. Metabolic carbohydrate pathways were in agreement with the metabolite analyses of fermentation experiments and revealed its oxidative capacity towards sucrose, D-glucose, D-fructose and D-mannitol, but not ethanol and glycerol. The results of the fermentation experiments also demonstrated that the lack of effective aeration in small-scale carbohydrate consumption experiments may be responsible for the lack of reproducibility of such results in taxonomic studies of AAB. Finally, compared to the genome sequences of its nearest phylogenetic neighbor and of three other insect associated AAB strains, the B. intestini LMG 28161T genome lost 69 orthologs and included 89 unique genes. Although many of the latter were hypothetical they also included several type IV secretion system proteins, amino acid transporter/permeases and membrane proteins which might play a role in the interaction with the bumble bee host.
Collapse
|
39
|
Overexpression of pyrroloquinoline quinone biosynthetic genes affects l -sorbose production in Gluconobacter oxydans WSH-003. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Novel and efficient screening of PQQ high-yielding strains and subsequent cultivation optimization. Appl Microbiol Biotechnol 2016; 100:10321-10330. [PMID: 27464830 DOI: 10.1007/s00253-016-7739-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
A novel and efficient screening method for pyrroloquinoline quinone (PQQ) high-yielding methylotrophic strains was developed by using glucose dehydrogenase apoenzyme (GDHA) which depended on PQQ as the cofactor. Using this high-throughput method, PQQ high-yielding strains were rapidly screened out from thousands of methylotrophic colonies at a time. The comprehensive phylogenetic analysis revealed that the highest PQQ-producing strain zju323 (CCTCC M 2016079) could be assigned to a novel species in the genus Methylobacillus of the Betaproteobacteria. After systematic optimization of different medium components and cultivation conditions, about 33.4 mg/L of PQQ was obtained after 48 h of cultivation with Methylobacillus sp. zju323 at the shake flask scale. Further cultivations of Methylobacillus sp. zju323 were carried out to investigate the biosynthesis of PQQ in 10-L bench-top fermenters. In the batch operation, the PQQ accumulation reached 78 mg/L in the broth after 53 h of cultivation. By adopting methanol feeding strategy, the highest PQQ concentration was improved up to 162.2 mg/L after 75 h of cultivation. This work developed a high-throughput strategy of screening PQQ-producing strains from soil samples and also demonstrated one potential bioprocess for large-scale PQQ production with the isolated PQQ strain.
Collapse
|
41
|
Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Microb Cell Fact 2016; 15:121. [PMID: 27392695 PMCID: PMC4939059 DOI: 10.1186/s12934-016-0521-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 11/23/2022] Open
Abstract
Background 2-keto-d-gluconic acid (2KGA) is widely used as a chemical intermediate in the cosmetic, pharmaceutical and environmental industries. Several microbial fermentation processes have been developed for production of 2KGA but these suffer from substrate/product inhibition, byproduct formation and low productivity. In previous work, we showed that 2KGA can be specifically produced from glucose (Glu) or gluconic acid (GA) by resting wild-type Gluconobacter oxydans DSM2003 cells, although substrate concentration was relatively low. In this study, we attempted to improve 2KGA productivity by G. oxydans DSM2003 by overexpressing the ga2dh gene, which encodes the membrane-bound gluconate-2-dehydrogenase enzyme (GA2DH). Results The ga2dh gene was overexpressed in G. oxydans DSM2003 under the control of three promoters, PtufB, Pga2dh or Pghp0169, respectively. Among the recombinant strains obtained, G. oxydans_tufB_ga2dh showed a similar growth rate to that of the control strain and displayed the highest specific productivity of 2KGA from GA, which was increased nearly twofold compared with that of the control strain during batch biotransformation. When biocatalysis conditions were optimized, with provision of sufficient oxygen during biotransformation, up to 480 g/L GA was completely utilized over 45 h by resting cells of G. oxydans_tufB_ga2dh and 453.3 g/L 2KGA was produced. A productivity of 10.07 g/L/h and a yield of 95.3 % were obtained. Overexpression of the ga2dh gene also significantly improved the conversion of Glu to 2KGA. Under optimized conditions, 270 g/L Glu was converted to 321 g/L 2KGA over 18 h, with a yield of 99.1 % and a productivity of 17.83 g/L/h. The glucose concentrations during the batch biotransformation and the 2KGA productivities achieved in this study were relatively high compared with the results of previous studies. Conclusions This study developed an efficient bacterial strain (G. oxydans_tufB_ga2dh) for the production of 2KGA by overexpressing the ga2dh gene in G. oxydans. Supply of sufficient oxygen enhanced the positive effect of gene overexpression on 2KGA production. Gluconobacter oxydans_tufB_ga2dh is thus a competitive species for use in 2KGA production.
Collapse
Affiliation(s)
- Kefei Li
- State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinlei Mao
- State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai, 200237, China
| | - Liu Liu
- State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ming Sun
- State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
42
|
Yuan J, Wu M, Lin J, Yang L. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. BMC Biotechnol 2016; 16:42. [PMID: 27189063 PMCID: PMC4869267 DOI: 10.1186/s12896-016-0272-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background L-(+)-tartaric acid (L-TA) is an important organic acid, which is produced from the cream of tartar or stereospecific hydrolysis of the cis-epoxysuccinate. The former method is limited by the availability of raw material and the latter is dependent on the petrochemical material. Thus, new processes for the economical preparation of L-TA from carbohydrate or renewable resource would be much more attractive. Production of 5-keto-D-gluconate (5-KGA) from glucose by Gluconobacter oxydans is the first step to produce L-TA. The aim of this work is to enhance 5-KGA accumulation using combinatorial metabolic engineering strategies in G. oxydans. The sldAB gene, encoding sorbitol dehydrogenase, was overexpressed in an industrial strain G. oxydans ZJU2 under a carefully selected promoter, P0169. To enhance the efficiency of the oxidation by sldAB, the coenzyme pyrroloquinoline quinone (PQQ) and respiratory chain were engineered. Besides, the role in sldAB overexpression, coenzyme and respiratory chain engineering and their subsequent effects on 5-KGA production were investigated. Results An efficient, stable recombinant strain was constructed, whereas the 5-KGA production could be enhanced. By self-overexpressing the sldAB gene in G. oxydans ZJU2 under the constitutive promoter P0169, the resulting strain, G. oxydans ZJU3, produced 122.48 ± 0.41 g/L of 5-KGA. Furthermore, through the coenzyme and respiratory chain engineering, the titer and productivity of 5-KGA reached 144.52 ± 2.94 g/L and 2.26 g/(L · h), respectively, in a 15 L fermenter. It could be further improved the 5-KGA titer by 12.10 % through the fed-batch fermentation under the pH shift and dissolved oxygen tension (DOT) control condition, obtained 162 ± 2.12 g/L with the productivity of 2.53 g/(L · h) within 64 h. Conclusions The 5-KGA production could be significantly enhanced with the combinatorial metabolic engineering strategy in Gluconobacter strain, including sldAB overexpression, coenzyme and respiratory chain engineering. Fed-batch fermentation could further enlarge the positive effect and increase the 5-KGA production. All of these demonstrated that the robust recombinant strain can efficiently produce 5-KGA in larger scale to fulfill the industrial production of L-TA from 5-KGA.
Collapse
Affiliation(s)
- Jianfeng Yuan
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
43
|
Saichana N, Tanizawa K, Pechoušek J, Novák P, Yakushi T, Toyama H, Frébortová J. PqqE from Methylobacterium extorquens AM1: a radical S-adenosyl-l-methionine enzyme with an unusual tolerance to oxygen. J Biochem 2016; 159:87-99. [PMID: 26188050 PMCID: PMC4882640 DOI: 10.1093/jb/mvv073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/01/2015] [Indexed: 11/12/2022] Open
Abstract
Methylobacterium extorquens AM1 is an aerobic facultative methylotroph known to secrete pyrroloquinoline quinone (PQQ), a cofactor of a number of bacterial dehydrogenases, into the culture medium. To elucidate the molecular mechanism of PQQ biosynthesis, we are focusing on PqqE which is believed to be the enzyme catalysing the first reaction of the pathway. PqqE belongs to the radical S-adenosyl-l-methionine (SAM) superfamily, in which most, if not all, enzymes are very sensitive to dissolved oxygen and rapidly inactivated under aerobic conditions. We here report that PqqE from M. extorquens AM1 is markedly oxygen-tolerant; it was efficiently expressed in Escherichia coli cells grown aerobically and affinity-purified to near homogeneity. The purified and reconstituted PqqE contained multiple (likely three) iron-sulphur clusters and showed the reductive SAM cleavage activity that was ascribed to the consensus [4Fe-4S](2+) cluster bound at the N-terminus region. Mössbauer spectrometric analyses of the as-purified and reconstituted enzymes revealed the presence of [4Fe-4S](2+) and [2Fe-2S](2+) clusters as the major forms with the former being predominant in the reconstituted enzyme. PqqE from M.extorquens AM1 may serve as a convenient tool for studying the molecular mechanism of PQQ biosynthesis, avoiding the necessity of establishing strictly anaerobic conditions.
Collapse
Affiliation(s)
- Natsaran Saichana
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research
| | - Katsuyuki Tanizawa
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research
| | - Jiří Pechoušek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Petr Novák
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515; and
| | - Hirohide Toyama
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Jitka Frébortová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research;
| |
Collapse
|
44
|
Yang XP, Li PP, Hu XM, Ye JB, Liu Y, Ma K, Mao DB. UPLC-DAD-MS/MS Method for Analysis of PQQ in Fermentation Broth. Chromatographia 2015. [DOI: 10.1007/s10337-015-2932-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Shi YY, Li KF, Lin JP, Yang SL, Wei DZ. Engineered Expression Vectors Significantly Enhanced the Production of 2-Keto-D-gluconic Acid by Gluconobacter oxidans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5492-8. [PMID: 26009934 DOI: 10.1021/acs.jafc.5b01652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
2-Keto-D-gluconic acid (2KGA), a precursor of the important food antioxidant erythorbic acid, can be produced by Gluconobacter oxidans. To genetically engineer G. oxidans for improved 2KGA production, six new expression vectors with increased copy numbers based on pBBR1MCS-5 were constructed via rational mutagenesis. The utility of the mutant vectors was demonstrated by the increased ga2dh mRNA abundance, enzyme activity, and 2KGA production when the ga2dh gene was overexpressed using these vectors. Among the obtained constructs, G. oxidans/pBBR-3510-ga2dh displayed the highest oxidative activity toward gluconic acid (GA). In a batch biotransformation process, the G. oxidans/pBBR-3510-ga2dh strain exhibited 2KGA productivity (0.63 g/g CWW/h) higher than that obtained using strain G. oxidans/pBBR-ga2dh (0.40 g/g CWW/h). When sufficient oxygen was supplied during the biotransformation, up to 480 g/L GA was exhausted in 45 h by the G. oxidans/pBBR-3510-ga2dh strain and approximately 486 g/L 2KGA was produced, generating the productivity of 0.54 g/g CWW/h.
Collapse
Affiliation(s)
- Yuan-yuan Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ke-fei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin-ping Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng-li Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dong-zhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
46
|
Wang G, Li Q, Xu D, Cui M, Sun X, Xu Y, Wang W. Construction of a host-independent T7 expression system with small RNA regulation. J Biotechnol 2014; 189:72-5. [DOI: 10.1016/j.jbiotec.2014.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 01/15/2023]
|
47
|
Xu S, Wang X, Du G, Zhou J, Chen J. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb Cell Fact 2014; 13:146. [PMID: 25323199 PMCID: PMC4205284 DOI: 10.1186/s12934-014-0146-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/08/2014] [Indexed: 11/12/2022] Open
Abstract
Background Production of L-sorbose from D-sorbitol by Gluconobacter oxydans is the first step to produce L-ascorbic acid on industrial scale. The sldhAB gene, which encodes the sorbitol dehydrogenase (SLDH), was overexpressed in an industrial strain G. oxydans WSH-003 with a strong promoter, PtufB. To enhance the mRNA abundance, a series of artificial poly(A/T) tails were added to the 3′-terminal of sldhAB gene. Besides, their role in sldhAB overexpression and their subsequent effects on L-sorbose production were investigated. Results The mRNA abundance of the sldhAB gene could be enhanced in G. oxydans by suitable poly(A/T) tails. By self-overexpressing the sldhAB gene in G. oxydans WSH-003 with an optimal poly(A/T) tail under the constitutive promoter PtufB, the titer and the productivity of L-sorbose were enhanced by 36.3% and 25.0%, respectively, in a 1-L fermenter. Immobilization of G. oxydans-sldhAB6 cells further improved the L-sorbose titer by 33.7% after 20 days of semi-continuous fed-batch fermentation. Conclusions The artificial poly(A/T) tails could significantly enhance the mRNA abundance of the sldhAB. Immobilized G. oxydans-sldhAB6 cells could further enlarge the positive effect caused by enhanced mRNA abundance of the sldhAB.
Collapse
Affiliation(s)
- Sha Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Xiaobei Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
48
|
Distinct Promoters Affect Pyrroloquinoline Quinone Production in Recombinant Escherichia coli and Klebsiella pneumoniae. Curr Microbiol 2014; 69:451-6. [DOI: 10.1007/s00284-014-0607-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/30/2014] [Indexed: 11/26/2022]
|
49
|
Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Appl Microbiol Biotechnol 2014; 98:5117-29. [DOI: 10.1007/s00253-014-5610-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 11/26/2022]
|
50
|
Importance of codB for new codA-based markerless gene deletion in Gluconobacter strains. Appl Microbiol Biotechnol 2013; 97:8341-9. [DOI: 10.1007/s00253-013-5164-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
|