1
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Hosseini F, Lashani E, Moghimi H. Simultaneous bioremediation of phenol and tellurite by Lysinibacillus sp. EBL303 and characterization of biosynthesized Te nanoparticles. Sci Rep 2023; 13:1243. [PMID: 36690691 PMCID: PMC9870877 DOI: 10.1038/s41598-023-28468-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Aromatic compounds and metalloid oxyanions are abundant in the environment due to natural resources and industrial wastes. The high toxicity of phenol and tellurite poses a significant threat to all forms of life. A halotolerant bacterium was isolated and identified as Lysinibacillus sp. EBL303. The remediation analysis shows that 500 mg/L phenol and 0.5 mM tellurite can be remediated entirely in separate cultures within 74 and 56 h, respectively. In addition, co-remediation of pollutants resulted in the same phenol degradation and 27% less tellurite reduction within 98 h. Since phenol and tellurite exhibited inhibitory behavior, their removal kinetics fitted well with the first-order model. In the characterization of biosynthesized tellurium nanoparticles (TeNPs), transmission electron microscopy, dynamic light scattering, FE-SEM, and dispersive X-ray (EDX) showed that the separated intracellular TeNPs were spherical and consisted of only tellurium with 22-148 nm in size. Additionally, investigations using X-ray diffraction and Fourier-transform infrared spectroscopy revealed proteins and lipids covering the surface of these amorphous TeNPs. Remarkably, this study is the first report to demonstrate the simultaneous bioremediation of phenol and tellurite and the biosynthesis of TeNPs, indicating the potential of Lysinibacillus sp. EBL303 in this matter, which can be applied to environmental remediation and the nanotechnology industry.
Collapse
Affiliation(s)
- Firooz Hosseini
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, 1417864411, Iran
| | - Elham Lashani
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, 1417864411, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, 1417864411, Iran.
| |
Collapse
|
3
|
Guardia AE, Wagner A, Busalmen JP, Di Capua C, Cortéz N, Beligni MV. The draft genome of Andean Rhodopseudomonas sp. strain AZUL predicts genome plasticity and adaptation to chemical homeostasis. BMC Microbiol 2022; 22:297. [PMID: 36494611 PMCID: PMC9733117 DOI: 10.1186/s12866-022-02685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2022] [Indexed: 12/13/2022] Open
Abstract
The genus Rhodopseudomonas comprises purple non-sulfur bacteria with extremely versatile metabolisms. Characterization of several strains revealed that each is a distinct ecotype highly adapted to its specific micro-habitat. Here we present the sequencing, genomic comparison and functional annotation of AZUL, a Rhodopseudomonas strain isolated from a high altitude Andean lagoon dominated by extreme conditions and fluctuating levels of chemicals. Average nucleotide identity (ANI) analysis of 39 strains of this genus showed that the genome of AZUL is 96.2% identical to that of strain AAP120, which suggests that they belong to the same species. ANI values also show clear separation at the species level with the rest of the strains, being more closely related to R. palustris. Pangenomic analyses revealed that the genus Rhodopseudomonas has an open pangenome and that its core genome represents roughly 5 to 12% of the total gene repertoire of the genus. Functional annotation showed that AZUL has genes that participate in conferring genome plasticity and that, in addition to sharing the basal metabolic complexity of the genus, it is also specialized in metal and multidrug resistance and in responding to nutrient limitation. Our results also indicate that AZUL might have evolved to use some of the mechanisms involved in resistance as redox reactions for bioenergetic purposes. Most of those features are shared with strain AAP120, and mainly involve the presence of additional orthologs responsible for the mentioned processes. Altogether, our results suggest that AZUL, one of the few bacteria from its habitat with a sequenced genome, is highly adapted to the extreme and changing conditions that constitute its niche.
Collapse
Affiliation(s)
- Aisha E. Guardia
- grid.473319.b0000 0004 0461 9871Ingeniería de Interfases y Bioprocesos, Instituto de Tecnología de Materiales (INTEMA-CONICET-UNMdP), Mar del Plata, Argentina
| | - Agustín Wagner
- grid.10814.3c0000 0001 2097 3211Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Juan P. Busalmen
- grid.473319.b0000 0004 0461 9871Ingeniería de Interfases y Bioprocesos, Instituto de Tecnología de Materiales (INTEMA-CONICET-UNMdP), Mar del Plata, Argentina
| | - Cecilia Di Capua
- grid.501777.30000 0004 0638 1836Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Néstor Cortéz
- grid.501777.30000 0004 0638 1836Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - María V. Beligni
- grid.412221.60000 0000 9969 0902Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
4
|
Antibiofilm Activity of Biocide Metal Ions Containing Bioactive Glasses (BGs): A Mini Review. Bioengineering (Basel) 2022; 9:bioengineering9100489. [PMID: 36290457 PMCID: PMC9598244 DOI: 10.3390/bioengineering9100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major clinical issues during the implantation procedure is the bacterial infections linked to biofilms. Due to their tissue localization and the type of bacteria involved, bacterial infections at implant sites are usually difficult to treat, which increases patient morbidity and even mortality. The difficulty of treating biofilm-associated infections and the emergence of multidrug-resistant bacteria are further challenges for the scientific community to develop novel biomaterials with excellent biocompatibility and antibacterial properties. Given their ability to stimulate bone formation and have antibacterial properties, metal ion-doped bioactive glasses (BGs) have received considerable research. This mini review aims to be successful in presenting the developments made about the role of biocide metal ions incorporated into BGs against the development of bacterial biofilms and the spread of nosocomial diseases.
Collapse
|
5
|
Kessi J, Turner RJ, Zannoni D. Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria? Biol Res 2022; 55:17. [PMID: 35382884 PMCID: PMC8981825 DOI: 10.1186/s40659-022-00378-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
This opinion review explores the microbiology of tellurite, TeO32- and selenite, SeO32- oxyanions, two similar Group 16 chalcogen elements, but with slightly different physicochemical properties that lead to intriguing biological differences. Selenium, Se, is a required trace element compared to tellurium, Te, which is not. Here, the challenges around understanding the uptake transport mechanisms of these anions, as reflected in the model organisms used by different groups, are described. This leads to a discussion around how these oxyanions are subsequently reduced to nanomaterials, which mechanistically, has controversies between ideas around the molecule chemistry, chemical reactions involving reduced glutathione and reactive oxygen species (ROS) production along with the bioenergetics at the membrane versus the cytoplasm. Of particular interest is the linkage of glutathione and thioredoxin chemistry from the cytoplasm through the membrane electron transport chain (ETC) system/quinones to the periplasm. Throughout the opinion review we identify open and unanswered questions about the microbial physiology under selenite and tellurite exposure. Thus, demonstrating how far we have come, yet the exciting research directions that are still possible. The review is written in a conversational manner from three long-term researchers in the field, through which to play homage to the late Professor Claudio Vásquez.
Collapse
Affiliation(s)
- Janine Kessi
- Until 2018 - Dept of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Raymond J. Turner
- Dept of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Davide Zannoni
- Dept of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Fujita D, Tobe R, Tajima H, Anma Y, Nishida R, Mihara H. Genetic analysis of tellurate reduction reveals the selenate/tellurate reductase genes ynfEF and the transcriptional regulation of moeA by NsrR in Escherichia coli. J Biochem 2021; 169:477-484. [PMID: 33136147 DOI: 10.1093/jb/mvaa120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023] Open
Abstract
Several bacteria can reduce tellurate into the less toxic elemental tellurium, but the genes responsible for this process have not yet been identified. In this study, we screened the Keio collection of single-gene knockouts of Escherichia coli responsible for decreased tellurate reduction and found that deletions of 29 genes, including those for molybdenum cofactor (Moco) biosynthesis, iron-sulphur biosynthesis, and the twin-arginine translocation pathway resulted in decreased tellurate reduction. Among the gene knockouts, deletions of nsrR, moeA, yjbB, ynbA, ydaS and yidH affected tellurate reduction more severely than those of other genes. Based on our findings, we determined that the ynfEF genes, which code for the components of the selenate reductase YnfEFGH, are responsible for tellurate reduction. Assays of several molybdoenzymes in the knockouts suggested that nsrR, yjbB, ynbA, ydaS and yidH are essential for the activities of molybdoenzymes in E. coli. Furthermore, we found that the nitric oxide sensor NsrR positively regulated the transcription of the Moco biosynthesis gene moeA. These findings provided new insights into the complexity and regulation of Moco biosynthesis in E. coli.
Collapse
Affiliation(s)
- Daiki Fujita
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hirotaka Tajima
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukari Anma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ryo Nishida
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
7
|
Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. Int J Mol Sci 2021; 22:ijms22115924. [PMID: 34072929 PMCID: PMC8199023 DOI: 10.3390/ijms22115924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metalloid tellurium is characterized as a chemical element belonging to the chalcogen group without known biological function. However, its compounds, especially the oxyanions, exert numerous negative effects on both prokaryotic and eukaryotic organisms. Recent evidence suggests that increasing environmental pollution with tellurium has a causal link to autoimmune, neurodegenerative and oncological diseases. In this review, we provide an overview about the current knowledge on the mechanisms of tellurium compounds' toxicity in bacteria and humans and we summarise the various ways organisms cope and detoxify these compounds. Over the last decades, several gene clusters conferring resistance to tellurium compounds have been identified in a variety of bacterial species and strains. These genetic determinants exhibit great genetic and functional diversity. Besides the existence of specific resistance mechanisms, tellurium and its toxic compounds interact with molecular systems, mediating general detoxification and mitigation of oxidative stress. We also discuss the similarity of tellurium and selenium biochemistry and the impact of their compounds on humans.
Collapse
|
8
|
Montenegro R, Vieto S, Wicki-Emmenegger D, Vásquez-Castro F, Coronado-Ruiz C, Fuentes-Schweizer P, Calderón P, Pereira R, Chavarría M. The putative phosphate transporter PitB (PP1373) is involved in tellurite uptake in Pseudomonas putida KT2440. Microbiology (Reading) 2021; 167. [DOI: 10.1099/mic.0.001002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tellurium oxyanions are chemical species of great toxicity and their presence in the environment has increased because of mining industries and photovoltaic and electronic waste. Recovery strategies for this metalloid that are based on micro-organisms are of interest, but further studies of the transport systems and enzymes responsible for implementing tellurium transformations are required because many mechanisms remain unknown. Here, we investigated the involvement in tellurite uptake of the putative phosphate transporter PitB (PP1373) in soil bacterium
Pseudomonas putida
KT2440. For this purpose, through a method based on the CRISPR/Cas9 system, we generated a strain deficient in the pitB gene and characterized its phenotype on exposing it to varied concentrations of tellurite. Growth curves and transmission electronic microscopy experiments for the wild-type and ΔpitB strains showed that both were able to internalize tellurite into the cytoplasm and reduce the oxyanion to black nano-sized and rod-shaped tellurium particles, although the ΔpitB strain showed an increased resistance to the tellurite toxic effects. At a concentration of 100 μM tellurite, where the biomass formation of the wild-type strain decreased by half, we observed a greater ability of ΔpitB to reduce this oxyanion with respect to the wild-type strain (~38 vs ~16 %), which is related to the greater biomass production of ΔpitB and not to a greater consumption of tellurite per cell. The phenotype of the mutant was restored on over-expressing pitB in trans. In summary, our results indicate that PitB is one of several transporters responsible for tellurite uptake in
P. putida
KT2440.
Collapse
Affiliation(s)
- Rafael Montenegro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Daniela Wicki-Emmenegger
- Escuela de Química, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Felipe Vásquez-Castro
- Escuela de Química, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Carolina Coronado-Ruiz
- Escuela de Química, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Paula Calderón
- Centro de Investigaciones en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Reinaldo Pereira
- Laboratorio Nacional de Nanotecnología (LANOTEC), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| |
Collapse
|
9
|
Guardia AE, Beligni MV, Cortéz N, Busalmen J. Electrochemistry of R. palustris Azul during phototrophic growth. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Extreme Environments and High-Level Bacterial Tellurite Resistance. Microorganisms 2019; 7:microorganisms7120601. [PMID: 31766694 PMCID: PMC6955997 DOI: 10.3390/microorganisms7120601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments.
Collapse
|
11
|
Maltman C, Donald LJ, Yurkov V. Two distinct periplasmic enzymes are responsible for tellurite/tellurate and selenite reduction by strain ER-Te-48 associated with the deep sea hydrothermal vent tube worms at the Juan de Fuca Ridge black smokers. Arch Microbiol 2017; 199:1113-1120. [PMID: 28432382 DOI: 10.1007/s00203-017-1382-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 11/27/2022]
Abstract
Strain ER-Te-48 isolated from a deep-ocean hydrothermal vent tube worm is capable of resisting and reducing extremely high levels of tellurite, tellurate, and selenite, which are used for respiration anaerobically. Tellurite and tellurate reduction is accomplished by a periplasmic enzyme of 215 kDa comprised of 3 subunits (74, 42, and 25 kDa) in a 2:1:1 ratio. The optimum pH and temperature for activity is 8.0 and 35 °C, respectively. Tellurite reduction has a V max of 5.6 µmol/min/mg protein and a K m of 3.9 mM. In the case of the tellurate reaction, V max and K m were 2.6 µmol/min/mg protein and 2.6 mM, respectively. Selenite reduction is carried out by another periplasmic enzyme with a V max of 2.8 µmol/min/mg protein, K m of 12.1 mM, and maximal activity at pH 6.0 and 38 °C. This protein is 165 kDa and comprised of 3 subunits of 98, 44, and 23 kDa in a 1:1:1 ratio.
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Lynda J Donald
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
12
|
Tellurite and Tellurate Reduction by the Aerobic Anoxygenic Phototroph Erythromonas ursincola, Strain KR99 Is Carried out by a Novel Membrane Associated Enzyme. Microorganisms 2017; 5:microorganisms5020020. [PMID: 28422063 PMCID: PMC5488091 DOI: 10.3390/microorganisms5020020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 11/17/2022] Open
Abstract
Erythromonas ursincola, strain KR99 isolated from a freshwater thermal spring of Kamchatka Island in Russia, resists and reduces very high levels of toxic tellurite under aerobic conditions. Reduction is carried out by a constitutively expressed membrane associated enzyme, which was purified and characterized. The tellurite reductase has a molecular weight of 117 kDa, and is comprised of two subunits (62 and 55 kDa) in a 1:1 ratio. Optimal activity occurs at pH 7.0 and 28 °C. Tellurite reduction has a Vmax of 5.15 µmol/min/mg protein and a Km of 3.36 mM. The enzyme can also reduce tellurate with a Vmax and Km of 1.08 µmol/min/mg protein and 1.44 mM, respectively. This is the first purified membrane associated Te oxyanion reductase.
Collapse
|
13
|
Vrionis HA, Wang S, Haslam B, Turner RJ. Selenite Protection of Tellurite Toxicity Toward Escherichia coli. Front Mol Biosci 2015; 2:69. [PMID: 26732755 PMCID: PMC4683179 DOI: 10.3389/fmolb.2015.00069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023] Open
Abstract
In this work the influence of selenite on metal resistance in Escherichia coli was examined. Both synergistic and antagonistic resistance and toxicities were found upon co exposure with selenite. In wild type cells co-exposure to selenite had little effect on arsenic resistance, decreased resistance to cadmium and mercury but led to a dramatically increased resistance to tellurite of 32-fold. Due to the potential importance of thiol chemistry in metal biochemistry, deletion strains in γ-glutamylcysteine synthetase (key step in glutathione biosynthesis, encoded by gshA), thioredoxin (trxA), glutaredoxin (grxA), glutathione oxidoreductase (gor), and the periplasmic glutathione transporter (cydD) were also evaluated for resistance to various metals in the presence of selenite. The protective effect of selenite on tellurite toxicity was seen in several of the mutants and was pronounced in the gshA mutant were resistance to tellurite was increased up to 1000-fold relative to growth in the absence of selenite. Thiol oxidation studies revealed a faster rate of loss of reduced thiol content in the cell with selenite than with tellurite, indicating differential thiol reactivity. Selenite addition resulted in reactive oxygen species (ROS) production equivalent to levels associated with H2O2 addition. Tellurite addition resulted in considerably lower ROS generation while vanadate and chromate treatment did not increase ROS production above that of background. This work shows increased resistance toward most oxyanions in mutants of thiol redox suggesting that metalloid reaction with thiol components such as glutathione actually enhances toxicity of some metalloids.
Collapse
Affiliation(s)
- Helen A Vrionis
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Siyuan Wang
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Bronwyn Haslam
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
14
|
Maltman C, Yurkov V. The Effect of Tellurite on Highly Resistant Freshwater Aerobic Anoxygenic Phototrophs and Their Strategies for Reduction. Microorganisms 2015; 3:826-38. [PMID: 27682119 PMCID: PMC5023272 DOI: 10.3390/microorganisms3040826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Six fresh water aerobic anoxygenic phototrophs (Erythromicrobium ezovicum, strain E1; Erythromicrobium hydrolyticum, E4(1); Erythromicrobium ramosum, E5; Erythromonas ursincola, KR99; Sandaracinobacter sibiricus, RB 16-17; and Roseococcus thiosulfatophilus, RB3) possessing high level resistance to TeO32− and the ability to reduce it to elemental Te were studied to understand their interaction with this highly toxic oxyanion. Tested organic carbon sources, pH, and level of aeration all had an impact on reduction. Physiological and metabolic responses of cells to tellurite varied among strains. In its presence, versus absence, cellular biomass either increased (KR99, 66.6% and E5, 21.2%) or decreased (RB3, 66.1%, E1, 57.8%, RB 16-17, 41.5%, and E4(1), 21.3%). The increase suggests a possible benefit from tellurite. Cellular ATP production was similarly affected, resulting in an increase (KR99, 15.2% and E5, 38.9%) or decrease (E4(1), 31.9%; RB 16-17, 48.8%; RB3, 55.9%; E1, 35.9%). Two distinct strategies to tellurite reduction were identified. The first, found in E4(1), requires de novo protein preparations as well as an undisturbed whole cell. The second strategy, in which reduction depended on a membrane associated constitutive reductase, was used by the remaining strains.
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
15
|
Borghese R, Baccolini C, Francia F, Sabatino P, Turner RJ, Zannoni D. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:24-30. [PMID: 24462199 DOI: 10.1016/j.jhazmat.2013.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te(IV)) and selenite (Se(IV)) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te(0) in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se(0) precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te(0) and Se(0)nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te(0) and Se(0) nature of the nanoparticles.
Collapse
Affiliation(s)
- Roberto Borghese
- Department of Pharmacy and Biotechnology, University of Bologna, Italy.
| | - Chiara Baccolini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Piera Sabatino
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Italy.
| |
Collapse
|
16
|
α -Ketoglutarate accumulation is not dependent on isocitrate dehydrogenase activity during tellurite detoxification in Escherichia coli. BIOMED RESEARCH INTERNATIONAL 2013; 2013:784190. [PMID: 24371831 PMCID: PMC3859025 DOI: 10.1155/2013/784190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/26/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022]
Abstract
Tellurite is toxic to most microorganisms because of its ability to generate oxidative stress. However, the way in which tellurite interferes with cellular processes is not fully understood to date. In this line, it was previously shown that tellurite-exposed cells displayed reduced activity of the α-ketoglutarate dehydrogenase complex (α-KGDH), which resulted in α-ketoglutarate (α-KG) accumulation. In this work, we assessed if α-KG accumulation in tellurite-exposed E. coli could also result from increased isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) activities, both enzymes involved in α-KG synthesis. Unexpectedly both activities were found to decrease in the presence of the toxicant, an observation that seems to result from the decreased transcription of icdA and gdhA genes (encoding ICDH and GDH, resp.). Accordingly, isocitrate levels were found to increase in tellurite-exposed E. coli. In the presence of the toxicant, cells lacking icdA or gdhA exhibited decreased reactive oxygen species (ROS) levels and higher tellurite sensitivity as compared to the wild type strain. Finally, a novel branch activity of ICDH as tellurite reductase is presented.
Collapse
|
17
|
Turner RJ, Borghese R, Zannoni D. Microbial processing of tellurium as a tool in biotechnology. Biotechnol Adv 2011; 30:954-63. [PMID: 21907273 DOI: 10.1016/j.biotechadv.2011.08.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/22/2011] [Indexed: 01/22/2023]
Abstract
Here, we overview the most recent advances in understanding the bacterial mechanisms that stay behind the reduction of tellurium oxyanions in both planktonic cells and biofilms. This is a topic of interest for basic and applied research because microorganisms are deeply involved in the transformation of metals and metalloids in the environment. In particular, the recent observation that toxic tellurite can be precipitated either inside or outside the cells being used as electron sink to support bacterial growth, opens new perspectives for both microbial physiologists and biotechnologists. As promising nanomaterials, tellurium based nanoparticles show unique electronic and optical properties due to quantum confinement effects to be used in the area of chemistry, electronics, medicine and environmental biotechnologies.
Collapse
Affiliation(s)
- Raymond J Turner
- Dept of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
18
|
Ito K, Inaba K. The disulfide bond formation (Dsb) system. Curr Opin Struct Biol 2008; 18:450-8. [PMID: 18406599 DOI: 10.1016/j.sbi.2008.02.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/29/2008] [Indexed: 11/16/2022]
Abstract
In oxidative folding of proteins in the bacterial periplasmic space, disulfide bonds are introduced by the oxidation system and isomerized by the reduction system. These systems utilize the oxidizing and the reducing equivalents of quinone and NADPH, respectively, that are transmitted across the cytoplasmic membrane through integral membrane components DsbB and DsbD. In both pathways, alternating interactions between a Cys-XX-Cys-containing thioredoxin domain and other regulatory domain lead to the maintenance of oxidized and reduced states of the specific terminal enzymes, DsbA that oxidizes target cysteines and DsbC that reduces an incorrect disulfide to allow its isomerization into the physiological one. Molecular details of these remarkable biochemical cascades are being rapidly unraveled by genetic, biochemical, and structural analyses in recent years.
Collapse
Affiliation(s)
- Koreaki Ito
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
19
|
Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 2007; 5:928-38. [PMID: 17940533 DOI: 10.1038/nrmicro1774] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Geochemical cycling and industrial pollution have made toxic metal ions a pervasive environmental pressure throughout the world. Biofilm formation is a strategy that microorganisms might use to survive a toxic flux in these inorganic compounds. Evidence in the literature suggests that biofilm populations are protected from toxic metals by the combined action of chemical, physical and physiological phenomena that are, in some instances, linked to phenotypic variation among the constituent biofilm cells. Here, we propose a multifactorial model by which biofilm populations can withstand metal toxicity by a process of cellular diversification.
Collapse
Affiliation(s)
- Joe J Harrison
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
20
|
Workentine ML, Harrison JJ, Stenroos PU, Ceri H, Turner RJ. Pseudomonas fluorescens' view of the periodic table. Environ Microbiol 2007; 10:238-50. [PMID: 17894814 DOI: 10.1111/j.1462-2920.2007.01448.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.
Collapse
Affiliation(s)
- Matthew L Workentine
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|