1
|
Liu S, Zheng N, Wang J, Zhao S. Nitrogen metabolism of the highly ureolytic bacterium Proteus penneri S99 isolated from the rumen. BMC Microbiol 2025; 25:104. [PMID: 40021987 PMCID: PMC11869435 DOI: 10.1186/s12866-025-03808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The model rumen-dominant ureolytic bacterium P. penneri S99 exhibits high urease activity. It was cultivated using ammonia, urea, amino acids, or their combination as nitrogen sources. To identify differences in gene expression, the transcript abundances of various genes involved in nitrogen metabolism were analyzed by harvesting mRNA from cells during the exponential growth phases on different nitrogen sources. RESULTS P. penneri S99 can utilize ammonia, urea, or amino acids as the sole nitrogen sources for growth and shows a preference for utilizing urea. It exhibits similar growth rates and maximum biomass on ammonia and urea, but showed higher growth rates and maximum biomass on amino acids. Transcriptome sequencing analysis revealed different transcription patterns in response to different nitrogen sources. The urease gene expression was detected in all three different nitrogen sources, and complete hydrolysis of urea was also observed when other nitrogen sources were added to the medium containing urea. The regulation of urease in P. penneri S99 was characterized by constitutive expression, not by urea. The growth of P. penneri S99 on ammonia, ammonium acid, and urea was similar, with the only observed difference being an increase in urease transcript abundance. CONCLUSIONS The transcription patterns of nitrogen metabolism genes offer insights into how nitrogen is utilized in the rumen.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| |
Collapse
|
2
|
Albrich W, Kahlert CR, Nigg S, Boesel LF, Giovannini G. Fluorescent Probe for the pH-Independent Rapid and Sensitive Direct Detection of Urease-Producing Bacteria. Anal Chem 2024; 96:20578-20586. [PMID: 39679657 PMCID: PMC11696831 DOI: 10.1021/acs.analchem.4c05182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Urease-producing bacteria are highly relevant in medicine due to their role in various pathogenic processes and their impact on human health, causing serious medical conditions such as peptic ulcer disease, gastric cancer, and respiratory and urinary tract infections. In this work, we designed fluorescent polymeric particles (PNP_FITC) to enable the detection of urease-producing bacteria by targeting the enzymatic activity of urease. In particular, the PNP_FITC matrix is degraded by urease, leading to a measurable increase in the intensity of the fluorescent signal. This approach is designed to directly sense urease activity and is therefore not affected by environmental parameters, unlike standard methods based on the quantification of enzymatic metabolites (i.e., NH3 and CO2). PNP_FITC exhibited a linear response in the urease range of 0-7.5 U/mL, with a calculated limit of detection of 0.4 U/mL. The direct detection of enzymatic activity makes PNP_FITC suitable for detecting urease-producing bacteria (Klebsiella pneumoniae and Enterobacter cloacae) with a detection limit of 10 ∧ 3 bacteria/mL, which were not detectable using the pH-based method employed as the reference in this work. Given the improvements achieved with PNP_FITC in terms of robustness, sensitivity, and selectivity of urease detection compared to the standard methods, this approach represents a step forward toward the development of advanced point-of-care, enabling the prompt diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Werner
C. Albrich
- Division
of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, Kantonsspital St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland
| | - Christian R. Kahlert
- Division
of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, Kantonsspital St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland
- Infectious
Diseases and Hospital Epidemiology, Children’s
Hospital St. Gallen, Claudiusstr. 6, St. Gallen 9006, Switzerland
| | - Susanne Nigg
- Division
of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, Kantonsspital St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland
| | - Luciano F. Boesel
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory
for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St.
Gallen 9014, Switzerland
| | - Giorgia Giovannini
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory
for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St.
Gallen 9014, Switzerland
| |
Collapse
|
3
|
Debnath A, Mitra S, Ghosh S, Sen R. Understanding microbial biomineralization at the molecular level: recent advances. World J Microbiol Biotechnol 2024; 40:320. [PMID: 39279013 DOI: 10.1007/s11274-024-04132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Microbial biomineralization is a phenomenon involving deposition of inorganic minerals inside or around microbial cells as a direct consequence of biogeochemical cycling. The microbial metabolic processes often create environmental conditions conducive for the precipitation of silicate, carbonate or phosphate, ferrate forms of ubiquitous inorganic ions. Till date the fundamental mechanisms underpinning two of the major types of microbial biomineralization such as, microbially controlled and microbially induced remains poorly understood. While microbially-controlled mineralization (MCM) depends entirely on the genetic makeup of the cell, microbially-induced mineralization (MIM) is dependent on factors such as cell morphology, cell surface structures and extracellular polymeric substances (EPS). In recent years, the organic template-mediated nucleation of inorganic minerals has been considered as an underlying mechanism based on the principles of solid-state bioinorganic chemistry. The present review thus attempts to provide a comprehensive and critical overview on the recent progress in holistic understanding of both MCM and MIM, which involves, organic-inorganic biomolecular interactions that lead to template formation, biomineral nucleation and crystallization. Also, the operation of specific metabolic pathways and molecular operons in directing microbial biomineralization have been discussed. Unravelling these molecular mechanisms of biomineralization can help in the biomimetic synthesis of minerals for potential therapeutic applications, and facilitating the engineering of microorganisms for commercial production of biominerals.
Collapse
Affiliation(s)
- Ankita Debnath
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sayak Mitra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supratit Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ramkrishna Sen
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
4
|
Carter MS, Tuttle MJ, Mancini JA, Martineau R, Hung CS, Gupta MK. Microbially Induced Calcium Carbonate Precipitation by Sporosarcina pasteurii: a Case Study in Optimizing Biological CaCO 3 Precipitation. Appl Environ Microbiol 2023; 89:e0179422. [PMID: 37439668 PMCID: PMC10467343 DOI: 10.1128/aem.01794-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.
Collapse
Affiliation(s)
- Michael S. Carter
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Matthew J. Tuttle
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Joshua A. Mancini
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Rhett Martineau
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| |
Collapse
|
5
|
Celik C, Demir NY, Duman M, Ildiz N, Ocsoy I. Red cabbage extract-mediated colorimetric sensor for swift, sensitive and economic detection of urease-positive bacteria by naked eye and Smartphone platform. Sci Rep 2023; 13:2056. [PMID: 36739311 PMCID: PMC9899230 DOI: 10.1038/s41598-023-28604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
The bacterial pathogens have caused various serious infectious diseases in the human body, and even some threats to human life by leading to deaths. Enterobacteriaceae species especially urease positive ones, Proteus mirabilis (P. mirabilis) and Klebsiella pneumoniae (K. pneumoniae), show resistance to antibiotics and cause respiratory and urinary tract infections. We have developed natural indicator-incorporated colorimetric urease tests with a naked eye and smartphone readout to rapidly, sensitively and economically detect P. mirabilis and K. pneumoniae. We utilized anthocyanin found as a predominant component in red cabbage (Brassica oleracea) extract as a natural pH indicator instead of toxic and synthetic indicators. As a mechanistic explanation for the detection of P. mirabilis and K. pneumoniae, urease enzymes secreted from the P. mirabilis and K. pneumoniae hydrolyze urea to produce ammonia (NH3), which increases the pH value of the reaction environment and leads to deprotonation from anthocyanins. The changes in the molecular structure and electronic structure of anthocyanins are responsible for revealing many different colors. We demonstrated how some reaction parameters including the concentration of the bacteria (colony-forming unit, CFU), the concentration of anthocyanin in the tests, initial color and pH values (pHs) of the tests influence their detection performance. We further developed a 3D-printed smartphone platform with smartphone based digital image processing software to improve the detection limit and shorten the detection time. We claim that natural indicator-incorporated rapid urease tests providing colorimetric readout evaluated by the human eye and smartphone imaging processing has great potential in practical use and they can be implemented in clinics.
Collapse
Affiliation(s)
- Cagla Celik
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Corum, 19000, Turkey
| | - Naim Yagiz Demir
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, 06800, Turkey
| | - Memed Duman
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, 06800, Turkey
| | - Nilay Ildiz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey.
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
6
|
Juarez GE, Mateyca C, Galvan EM. Proteus mirabilis outcompetes Klebsiella pneumoniae in artificial urine medium through secretion of ammonia and other volatile compounds. Heliyon 2020; 6:e03361. [PMID: 32055744 PMCID: PMC7005574 DOI: 10.1016/j.heliyon.2020.e03361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/18/2019] [Accepted: 01/28/2020] [Indexed: 11/28/2022] Open
Abstract
Klebsiella pneumoniae and Proteus mirabilis form mixed biofilms in catheter-associated urinary tract infections. However, co-inoculation of P. mirabilis with K. pneumoniae in artificial urine medium (AUM) resulted in a drastic reduction of K. pneumoniae cells in both biofilm and planktonic growth. Here, the mechanism behind this competitive interaction was studied. Both pH and aqueous ammonia (NH3aq) increased in mixed cultures (to 9.3 and 150 mM, respectively), while K. pneumoniae viable cells dramatically diminished over time (>6-log reduction, p < 0.05). Mixed cultures developed in either 2-(N-morpholino) ethanesulfonic acid (MES)-buffered AUM (pH 6.5) or AUM without urea did not show bacterial competition, evidencing that the increase in pH and/or NH3aq concentration play a role in the competitive interaction. Viability of K. pneumoniae single-species cultures decreased 1.5-log in alkaline AUM containing 150 mM NH3aq after 24 h inoculation, suggesting that ammonia is involved in this inter-species competition. Besides NH3aq, additional antimicrobials should be present to get the whole competitive effect. Supernatants from P. mirabilis-containing cultures significantly diminished K. pneumoniae viability in planktonic cultures and affected biofilm biomass (p < 0.05). When subjected to evaporation, these supernatants lost their antimicrobial activity suggesting the volatile nature of the antimicrobial compounds. Exposure of K. pneumoniae to volatile compounds released by P. mirabilis significantly decreased cell viability in both planktonic and biofilm cultures (p < 0.05). The current investigation also evidenced a similar bactericidal effect of P. mirabilis volatiles over Escherichia coli and Morganella morganii. Altogether, these results evidence the secretion of ammonia and other volatile compounds by P. mirabilis, with antimicrobial activity against gram-negative uropathogens including K. pneumoniae. This investigation provides novel insight into competitive inter-species interactions that are mediated by production of volatile molecules.
Collapse
Affiliation(s)
- Guillermo E Juarez
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquimicas y Farmaceuticas, Centro de Estudios Biomédicos, Basicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Celeste Mateyca
- Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina.,Laboratory of Bacterial Genetics, Fundacion Instituto Leloir-IIBBA (CONICET), Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Estela M Galvan
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquimicas y Farmaceuticas, Centro de Estudios Biomédicos, Basicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
7
|
Bishai WR, Timmins GS. Potential for breath test diagnosis of urease positive pathogens in lung infections. J Breath Res 2019; 13:032002. [DOI: 10.1088/1752-7163/ab2225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Yang QE, Tansawai U, Andrey DO, Wang S, Wang Y, Sands K, Kiddee A, Assawatheptawee K, Bunchu N, Hassan B, Walsh TR, Niumsup PR. Environmental dissemination of mcr-1 positive Enterobacteriaceae by Chrysomya spp. (common blowfly): An increasing public health risk. ENVIRONMENT INTERNATIONAL 2019; 122:281-290. [PMID: 30455105 DOI: 10.1016/j.envint.2018.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Until recently, the role of insects, and particularly flies, in disseminating antimicrobial resistance (AMR) has been poorly studied. In this study, we screened blowflies (Chrysomya spp.) from different areas near the city of Phitsanulok, Northern Thailand, for the presence of AMR genes and in particular, mcr-1, using whole genome sequencing (WGS). In total, 48 mcr-1-positive isolates were recovered, consisting of 17 mcr-1-positive Klebsiella pneumoniae (MCRPKP) and 31 mcr-1-positive Escherichia coli (MCRPEC) strains. The 17 MCRPKP were shown to be clonal (ST43) with few single poly nucleomorphs (SNPs) by WGS analysis. In in-vitro models, the MCRPKP were shown to be highly virulent. In contrast, 31 recovered MCRPEC isolates are varied, belonging to 12 different sequence types shared with those causing human infections. The majority of mcr-1 gene are located on IncX4 plasmids (29/48, 60.42%), sharing an identical plasmid backbone. These findings highlight the contribution of flies to the AMR contagion picture in low- and middle-income countries and the challenges of tackling global AMR.
Collapse
Affiliation(s)
- Qiu E Yang
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.
| | - Uttapoln Tansawai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Diego O Andrey
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK; Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Shaolin Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kirsty Sands
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Anong Kiddee
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kanit Assawatheptawee
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nophawan Bunchu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Brekhna Hassan
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Timothy Rutland Walsh
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.
| | - Pannika R Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
9
|
Ullrich SR, Poehlein A, Levicán G, Mühling M, Schlömann M. Iron targeted transcriptome study draws attention to novel redox protein candidates involved in ferrous iron oxidation in “Ferrovum” sp. JA12. Res Microbiol 2018; 169:618-627. [DOI: 10.1016/j.resmic.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
|
10
|
Robinson AE, Lowe JE, Koh EI, Henderson JP. Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel. J Biol Chem 2018; 293:14953-14961. [PMID: 30108176 DOI: 10.1074/jbc.ra118.004483] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Invasive Gram-negative bacteria often express multiple virulence-associated metal ion chelators to combat host-mediated metal deficiencies. Escherichia coli, Klebsiella, and Yersinia pestis isolates encoding the Yersinia high pathogenicity island (HPI) secrete yersiniabactin (Ybt), a metallophore originally shown to chelate iron ions during infection. However, our recent demonstration that Ybt also scavenges copper ions during infection led us to question whether it might be capable of retrieving other metals as well. Here, we find that uropathogenic E. coli also use Ybt to bind extracellular nickel ions. Using quantitative MS, we show that the canonical metal-Ybt import pathway internalizes the resulting Ni-Ybt complexes, extracts the nickel, and releases metal-free Ybt back to the extracellular space. We find that E. coli and Klebsiella direct the nickel liberated from this pathway to intracellular nickel enzymes. Thus, Ybt may provide access to nickel that is inaccessible to the conserved NikABCDE permease system. Nickel should be considered alongside iron and copper as a plausible substrate for Ybt-mediated metal import by enterobacteria during human infections.
Collapse
Affiliation(s)
- Anne E Robinson
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Jessica E Lowe
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Eun-Ik Koh
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Jeffrey P Henderson
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| |
Collapse
|
11
|
Abstract
The model rumen Firmicutes organism Ruminococcus albus 8 was grown using ammonia, urea, or peptides as the sole nitrogen source; growth was not observed with amino acids as the sole nitrogen source. Growth of R. albus 8 on ammonia and urea showed the same growth rate (0.08 h(-1)) and similar maximum cell densities (for ammonia, the optical density at 600 nm [OD600] was 1.01; and for urea, the OD600 was 0.99); however, growth on peptides resulted in a nearly identical growth rate (0.09 h(-1)) and a lower maximum cell density (OD600 = 0.58). To identify differences in gene expression and enzyme activities, the transcript abundances of 10 different genes involved in nitrogen metabolism and specific enzyme activities were analyzed by harvesting mRNA and crude protein from cells at the mid- and late exponential phases of growth on the different N sources. Transcript abundances and enzyme activities varied according to nitrogen source, ammonia concentration, and growth phase. Growth of R. albus 8 on ammonia and urea was similar, with the only observed difference being an increase in urease transcript abundance and enzyme activity in urea-grown cultures. Growth of R. albus 8 on peptides showed a different nitrogen metabolism pattern, with higher gene transcript abundance levels of gdhA, glnA, gltB, amtB, glnK, and ureC, as well as higher activities of glutamate dehydrogenase and urease. These results demonstrate that ammonia, urea, and peptides can all serve as nitrogen sources for R. albus and that nitrogen metabolism genes and enzyme activities of R. albus 8 are regulated by nitrogen source and the level of ammonia in the growth medium.
Collapse
|
12
|
Kim D, Hong JSJ, Qiu Y, Nagarajan H, Seo JH, Cho BK, Tsai SF, Palsson BØ. Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling. PLoS Genet 2012; 8:e1002867. [PMID: 22912590 PMCID: PMC3415461 DOI: 10.1371/journal.pgen.1002867] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 06/14/2012] [Indexed: 01/08/2023] Open
Abstract
Genome-wide transcription start site (TSS) profiles of the enterobacteria Escherichia coli and Klebsiella pneumoniae were experimentally determined through modified 5′ RACE followed by deep sequencing of intact primary mRNA. This identified 3,746 and 3,143 TSSs for E. coli and K. pneumoniae, respectively. Experimentally determined TSSs were then used to define promoter regions and 5′ UTRs upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence, reflecting conserved gene expression apparatuses between the two species. In both species, over 70% of primary transcripts were expressed from operons having orthologous genes during exponential growth. However, expressed orthologous genes in E. coli and K. pneumoniae showed a strikingly different organization of upstream regulatory regions with only 20% identical promoters with TSSs in both species. Over 40% of promoters had TSSs identified in only one species, despite conserved promoter sequences existing in the other species. 662 conserved promoters having TSSs in both species resulted in the same number of comparable 5′ UTR pairs, and that regulatory element was found to be the most variant region in sequence among promoter, 5′ UTR, and ORF. In K. pneumoniae, 48 sRNAs were predicted and 36 of them were expressed during exponential growth. Among them, 34 orthologous sRNAs between two species were analyzed in depth, and the analysis showed that many sRNAs of K. pneumoniae, including pleiotropic sRNAs such as rprA, arcZ, and sgrS, may work in the same way as in E. coli. These results reveal a new dimension of comparative genomics such that a comparison of two genomes needs to be comprehensive over all levels of genome organization. In order to investigate similarities and differences of closely related species, most of the comparative genomics studies focus on comparing the gene contents either shared or specific for each genome. However, it is also important to investigate the differences in non-coding regulatory elements because they influence the transcriptional and post-transcriptional processes. Thus, we performed a genome-wide profiling of transcription start sites (TSSs) in two species, E. coli K-12 MG1655 and K. pneumoniae MGH78578. Experimental identification of TSSs is important for precise definition of promoter regions and 5′ untranslated regions upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence. However, we observed that the upstream regulatory regions of the majority of operons having orthologous genes were organized with different usage of promoters and TSSs, resulting in diverse and complex gene regulation. We also found that the 5′ UTR is the least conserved regulatory element in sequence between the two species. Moreover, 34 orthologous sRNAs between E. coli and K. pneumoniae were analyzed in depth. The analysis suggested many of K. pneumoniae sRNAs might regulate the target genes as in E. coli.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jay Sung-Joong Hong
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Yu Qiu
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Harish Nagarajan
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Joo-Hyun Seo
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Byung-Kwan Cho
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Shih-Feng Tsai
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Bernhard Ø. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Contribution of urease to colonization by Shiga toxin-producing Escherichia coli. Infect Immun 2012; 80:2589-600. [PMID: 22665380 DOI: 10.1128/iai.00210-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen with a low infectious dose that colonizes the colon in humans and can cause severe clinical manifestations such as hemolytic-uremic syndrome. The urease enzyme, encoded in the STEC chromosome, has been demonstrated to act as a virulence factor in other bacterial pathogens. The NH(3) produced as urease hydrolyzes urea can aid in buffering bacteria in acidic environments as well as provide an easily assimilated source of nitrogen that bacteria can use to gain a metabolic advantage over intact microflora. Here, we explore the role of urease in STEC pathogenicity. The STEC urease enzyme exhibited maximum activity near neutral pH and during the stationary-growth phase. Experiments altering growth conditions performed with three phylogenetically distinct urease-positive strains demonstrated that the STEC ure gene cluster is inducible by neither urea nor pH but does respond to nitrogen availability. Quantitative reverse transcription-PCR (qRT-PCR) data indicate that nitrogen inhibits the transcriptional response. The deletion of the ure gene locus was constructed in STEC strain 88-0643, and the ure mutant was used with the wild-type strain in competition experiments in mouse models to examine the contribution of urease. The wild-type strain was twice as likely to survive passage through the acidic stomach and demonstrated an enhanced ability to colonize the intestinal tract compared to the ure mutant strain. These in vivo experiments reveal that, although the benefit STEC gains from urease expression is modest and not absolutely required for colonization, urease can contribute to the pathogenicity of STEC.
Collapse
|
14
|
Carter EL, Flugga N, Boer JL, Mulrooney SB, Hausinger RP. Interplay of metal ions and urease. Metallomics 2011; 1:207-21. [PMID: 20046957 DOI: 10.1039/b903311d] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Urease, the first enzyme to be crystallized, contains a dinuclear nickel metallocenter that catalyzes the decomposition of urea to produce ammonia, a reaction of great agricultural and medical importance. Several mechanisms of urease catalysis have been proposed on the basis of enzyme crystal structures, model complexes, and computational efforts, but the precise steps in catalysis and the requirement of nickel versus other metals remain unclear. Purified bacterial urease is partially activated via incubation with carbon dioxide plus nickel ions; however, in vitro activation also has been achieved with manganese and cobalt. In vivo activation of most ureases requires accessory proteins that function as nickel metallochaperones and GTP-dependent molecular chaperones or play other roles in the maturation process. In addition, some microorganisms control their levels of urease by metal ion-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Eric L Carter
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | | | | | | | |
Collapse
|
15
|
Transcriptional regulation of the gene cluster encoding allantoinase and guanine deaminase in Klebsiella pneumoniae. J Bacteriol 2011; 193:2197-207. [PMID: 21357483 DOI: 10.1128/jb.01450-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purines can be used as the sole source of nitrogen by several strains of K. pneumoniae under aerobic conditions. The genes responsible for the assimilation of purine nitrogens are distributed in three separated clusters in the K. pneumoniae genome. Here, we characterize the cluster encompassing genes KPN_01787 to KPN_01791, which is involved in the conversion of allantoin into allantoate and in the deamination of guanine to xanthine. These genes are organized in three transcriptional units, hpxSAB, hpxC, and guaD. Gene hpxS encodes a regulatory protein of the GntR family that mediates regulation of this system by growth on allantoin. Proteins encoded by hpxB and guaD display allantoinase and guanine deaminase activity, respectively. In this cluster, hpxSAB is the most tightly regulated unit. This operon was activated by growth on allantoin as a nitrogen source; however, addition of allantoin to nitrogen excess cultures did not result in hpxSAB induction. Neither guaD nor hpxC was induced by allantoin. Expression of guaD is mainly regulated by nitrogen availability through the action of NtrC. Full induction of hpxSAB by allantoin requires both HpxS and NAC. HpxS may have a dual role, acting as a repressor in the absence of allantoin and as an activator in its presence. HpxS binds to tandem sites, S1 and S2, overlapping the -10 and -35 sequences of the hpxSAB promoter, respectively. The NAC binding site is located between S1 and S2 and partially overlaps S2. In the presence of allantoin, interplay between NAC and HpxS is proposed.
Collapse
|
16
|
Genetic analysis of the nitrogen assimilation control protein from Klebsiella pneumoniae. J Bacteriol 2010; 192:4834-46. [PMID: 20693327 DOI: 10.1128/jb.01114-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a typical LysR-type transcriptional regulator (LTTR) in many ways. However, the lack of a physiologically relevant coeffector for NAC and the fact that NAC can carry out many of its functions as a dimer make NAC unusual among the LTTRs. In the absence of a crystal structure for NAC, we analyzed the effects of amino acid substitutions with a variety of phenotypes in an attempt to identify functionally important features of NAC. A substitution that changed the glutamine at amino acid 29 to alanine (Q29A) resulted in a NAC that was seriously defective in binding to DNA. The H26D substitution resulted in a NAC that could bind and repress transcription but not activate transcription. The I71A substitution resulted in a NAC polypeptide that remained monomeric. NAC tetramers can bind to both long and shorter binding sites (like other LTTRs). However, the absence of a coeffector to induce the conformational change needed for the switch from the former to the latter raised a question. Are there two conformations of NAC, analogous to the other LTTRs? The G217R substitution resulted in a NAC that could bind to the longer sites but had difficulty in binding to the shorter sites, and the I222R and A230R substitutions resulted in a NAC that could bind to the shorter sites but had difficulty in binding properly to the longer sites. Thus, there appear to be two conformations of NAC that can freely interconvert in the absence of a coeffector.
Collapse
|
17
|
A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. J Bacteriol 2010; 192:4801-11. [PMID: 20675498 DOI: 10.1128/jb.00266-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) is a LysR-type transcriptional regulator (LTTR) that is made under conditions of nitrogen-limited growth. NAC's synthesis is entirely dependent on phosphorylated NtrC from the two-component Ntr system and requires the unusual sigma factor σ54 for transcription of the nac gene. NAC activates the transcription of σ70-dependent genes whose products provide the cell with ammonia or glutamate. NAC represses genes whose products use ammonia and also represses its own transcription. In addition, NAC also subtly adjusts other cellular functions to keep pace with the supply of biosynthetically available nitrogen.
Collapse
|
18
|
Properties of the NAC (nitrogen assimilation control protein)-binding site within the ureD promoter of Klebsiella pneumoniae. J Bacteriol 2010; 192:4821-6. [PMID: 20622063 DOI: 10.1128/jb.00883-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) of Klebsiella pneumoniae is a LysR-type transcriptional regulator that activates transcription when bound to a DNA site (ATAA-N5-TnGTAT) centered at a variety of distances from the start of transcription. The NAC-binding site from the hutU promoter (NBShutU) is centered at -64 relative to the start of transcription but can activate the lacZ promoter from sites at -64, -54, -52, and -42 but not from sites at -47 or -59. However, the NBSs from the ureD promoter (ureDp) and codB promoter (codBp) are centered at -47 and -59, respectively, and NAC is fully functional at these promoters. Therefore, we compared the activities of the NBShutU and NBSureD within the context of ureDp as well as within codBp. The NBShutU functioned at both of these sites. The NBSureD has the same asymmetric core as the NBShutU. Inverting the NBSureD abolished more than 99% of NAC's ability to activate ureDp. The key to the activation lies in the TnG segment of the TnGTAT half of the NBSureD. Changing TnG to GnT, TnT, or GnG drastically reduced ureDp activation (to 0.5%, 6%, or 15% of wild-type activation, respectively). The function of the NBSureD, like that of the NBShutU, requires that the TnGTAT half of the NBS be on the promoter-proximal (downstream) side of the NBS. Taken together, our data suggest that the positional specificity of an NBS is dependent on the promoter in question and is more flexible than previously thought, allowing considerable latitude both in distance and on the face of the DNA helix for the NBS relative to that of RNA polymerase.
Collapse
|
19
|
Expanded role for the nitrogen assimilation control protein in the response of Klebsiella pneumoniae to nitrogen stress. J Bacteriol 2010; 192:4812-20. [PMID: 20348267 DOI: 10.1128/jb.00931-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is able to utilize many nitrogen sources, and the utilization of some of these nitrogen sources is dependent on the nitrogen assimilation control (NAC) protein. Seven NAC-regulated promoters have been characterized in K. pneumoniae, and nine NAC-regulated promoters have been found by microarray analysis in Escherichia coli. So far, all characterized NAC-regulated promoters have been directly related to nitrogen metabolism. We have used a genome-wide analysis of NAC binding under nitrogen limitation to identify the regions of the chromosome associated with NAC in K. pneumoniae. We found NAC associated with 99 unique regions of the chromosome under nitrogen limitation. In vitro, 84 of the 99 regions associate strongly enough with purified NAC to produce a shifted band by electrophoretic mobility shift assay. Primer extension analysis of the mRNA from genes associated with 17 of the fragments demonstrated that at least one gene associated with each fragment was NAC regulated under nitrogen limitation. The large size of the NAC regulon in K. pneumoniae indicates that NAC plays a larger role in the nitrogen stress response than it does in E. coli. Although a majority of the genes with identifiable functions that associated with NAC under nitrogen limitation are involved in nitrogen metabolism, smaller subsets are associated with carbon and energy acquisition (18 genes), and growth rate control (10 genes). This suggests an expanded role for NAC regulation during the nitrogen stress response, where NAC not only regulates genes involved in nitrogen metabolism but also regulates genes involved in balancing carbon and nitrogen pools and growth rate.
Collapse
|
20
|
Hervás AB, Canosa I, Little R, Dixon R, Santero E. NtrC-dependent regulatory network for nitrogen assimilation in Pseudomonas putida. J Bacteriol 2009; 191:6123-35. [PMID: 19648236 PMCID: PMC2747892 DOI: 10.1128/jb.00744-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/24/2009] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 is a model strain for studying bacterial biodegradation processes. However, very little is known about nitrogen regulation in this strain. Here, we show that the nitrogen regulatory NtrC proteins from P. putida and Escherichia coli are functionally equivalent and that substitutions leading to partially active forms of enterobacterial NtrC provoke the same phenotypes in P. putida NtrC. P. putida has only a single P(II)-like protein, encoded by glnK, whose expression is nitrogen regulated. Two contiguous NtrC binding sites located upstream of the sigma(N)-dependent glnK promoter have been identified by footprinting analysis. In vitro experiments with purified proteins demonstrated that glnK transcription was directly activated by NtrC and that open complex formation at this promoter required integration host factor. Transcription of genes orthologous to enterobacterial codB, dppA, and ureD genes, whose transcription is dependent on sigma(70) and which are activated by Nac in E. coli, has also been analyzed for P. putida. Whereas dppA does not appear to be regulated by nitrogen via NtrC, the codB and ureD genes have sigma(N)-dependent promoters and their nitrogen regulation was exerted directly by NtrC, thus avoiding the need for Nac, which is missing in this bacterial species. Based upon these results, we propose a simplified nitrogen regulatory network in P. putida (compared to that in enterobacteria), which involves an indirect-feedback autoregulation of glnK using NtrC as an intermediary.
Collapse
Affiliation(s)
- Ana B Hervás
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, Seville, Spain
| | | | | | | | | |
Collapse
|
21
|
The hpx genetic system for hypoxanthine assimilation as a nitrogen source in Klebsiella pneumoniae: gene organization and transcriptional regulation. J Bacteriol 2008; 190:7892-903. [PMID: 18849434 DOI: 10.1128/jb.01022-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth experiments showed that adenine and hypoxanthine can be used as nitrogen sources by several strains of K. pneumoniae under aerobic conditions. The assimilation of all nitrogens from these purines indicates that the catabolic pathway is complete and proceeds past allantoin. Here we identify the genetic system responsible for the oxidation of hypoxanthine to allantoin in K. pneumoniae. The hpx cluster consists of seven genes, for which an organization in four transcriptional units, hpxDE, hpxR, hpxO, and hpxPQT, is proposed. The proteins involved in the oxidation of hypoxanthine (HpxDE) or uric acid (HpxO) did not display any similarity to other reported enzymes known to catalyze these reactions but instead are similar to oxygenases acting on aromatic compounds. Expression of the hpx system is activated by nitrogen limitation and by the presence of specific substrates, with hpxDE and hpxPQT controlled by both signals. Nitrogen control of hpxPQT transcription, which depends on sigma(54), is mediated by the Ntr system. In contrast, neither NtrC nor the nitrogen assimilation control protein is involved in the nitrogen control of hpxDE, which is dependent on sigma(70) for transcription. Activation of these operons by the specific substrates is also mediated by different effectors and regulatory proteins. Induction of hpxPQT requires uric acid formation, whereas expression of hpxDE is induced by the presence of hypoxanthine through the regulatory protein HpxR. This LysR-type regulator binds to a TCTGC-N(4)-GCAAA site in the intergenic hpxD-hpxR region. When bound to this site for hpxDE activation, HpxR negatively controls its own transcription.
Collapse
|
22
|
The yiaKLX1X2PQRS and ulaABCDEFG gene systems are required for the aerobic utilization of L-ascorbate in Klebsiella pneumoniae strain 13882 with L-ascorbate-6-phosphate as the inducer. J Bacteriol 2008; 190:6615-24. [PMID: 18708499 DOI: 10.1128/jb.00815-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity to both ferment and oxidize L-ascorbate has been widely documented for a number of enteric bacteria. Here we present evidence that all the strains of Klebsiella pneumoniae tested in this study ferment L-ascorbate using the ula regulon-encoded proteins. Under aerobic conditions, several phenotypes were observed for the strains. Our results showed that the yiaK-S system is required for this aerobic metabolic process. Gel shift experiments performed with UlaR and YiaJ and probes corresponding to the specific promoters indicated that L-ascorbate-6-phosphate is the effector molecule recognized by both regulators, since binding of the repressors to their recognition sites was impaired by the presence of this compound. We demonstrated that in K. pneumoniae cells L-ascorbate-6-phosphate is formed only by the action of the UlaABC phosphotransferase system. This finding explains why strains that lack the ula genetic system and therefore are unable to form the inducer intracellularly cannot efficiently use this vitamin as a carbon source under either anaerobic or aerobic conditions. Thus, efficient aerobic metabolism of L-ascorbate in K. pneumoniae is dependent on the presence of both the yiaK-S and ula systems. The expression of the yiaK-S operon, but not the expression of the ula regulon, is controlled by oxygen availability. Both systems are regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and by IHF.
Collapse
|