1
|
Şalvarci HB, Gencer D, Eski A, Bozkurt V, Demir İ. Biocontrol potential of bacteria associated with Asian walnut moth Erschoviella musculana Erschoff (Lepidoptera: Nolidae) on walnut pests. Int Microbiol 2025:10.1007/s10123-025-00674-3. [PMID: 40377837 DOI: 10.1007/s10123-025-00674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
The aim of this study was to investigate the culturable bacterial flora of Erschoviella musculana, which causes damage to leaves, shoots, branches, trunk, and fruits of walnut trees, in order to find a possible microbial control agent against walnut pests. In this study, a total of 11 bacteria were isolated from live and dead larvae of E. musculana and identified based on their morphological, biochemical, and molecular characteristics. Based on these results, the isolates were identified as Bacillus toyonensis EMB1, Bacillus toyonensis EMB3, Stenotrophomonas rhizophila EMO6, Stenotrophomonas rhizophila EM8, Delftia tsuruhatensis EM14, Acinetobacter modestus EM20, Lelliottia amnigena EM21, Bacillus toyonensis EM22, Pantoea vagans EM37, Pseudomonas alloputida EM42, and Stenotrophomonas geniculata EM43. The biological control potential of these isolates on E. musculana, Hyphantria cunea (Lepidoptera: Arctiidae), and Panaphis juglandis (Hemiptera: Callaphididae), which are very important walnut pests, was determined. The results showed that B. toyonensis strain EMB1 had the highest virulence (82%) on the larvae of H. cunea and S. rhizophila strain EM8 had the highest virulence (83%) on the nymphs of P. juglandis. On the other hand, S. geniculata strain EM43 caused 100% mortality on the larvae of E. musculana. The results of this study show that bacteria associated with E. musculana appear to be promising microbial control agents for walnut pests.
Collapse
Affiliation(s)
- Hande Bayraktar Şalvarci
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Donus Gencer
- Department of Property Protection and Security, Şalpazarı Vocational School, Trabzon University, Trabzon, Turkey
| | - Ardahan Eski
- Biomedical Equipment Technology, Vocational School, Bilecik Seyh Edebali University, Bilecik, Turkey
- Central Research Laboratory Application and Research Center, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Vildan Bozkurt
- Republic of Türkiye Ministry of Agriculture and Forestry, Plant Protection Central Research Institute, Ankara, Turkey
| | - İsmail Demir
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, 61080, Turkey.
| |
Collapse
|
2
|
Duin IM, Baba VY, D'Amico-Willman KM, Paduan FN, Sugahara Rodrigues VH, Huguet-Tapia JC, Jones JB, Canteri MG, Leite Júnior RP, Balbi-Peña MI. Genome sequences of pathogenic and non-pathogenic Pantoea ananatis strains in maize (Zea mays L.). Access Microbiol 2025; 7:000709.v3. [PMID: 39959468 PMCID: PMC11829076 DOI: 10.1099/acmi.0.000709.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
We performed genome sequencing and comparative analysis of Pantoea ananatis strains isolated from corn leaves expressing typical bacterial leaf streak (BLS) and maize white spot (MWS) symptoms to confirm bacterial identity and to understand the relationship among these strains and P. ananatis strains isolated from different plant hosts in Brazil. In pathogenicity tests, strains 4.2 and 13.3 isolated from symptomatic BLS leaves were non-pathogenic on corn. In contrast, strain B13 isolated from MWS-diseased leaf tissue caused symptoms typical of MWS. Our comparative analysis revealed that all three strains are very genetically similar. The G+C (%) content of strains 4.2 and 13.3 was 53.5%, while the B13 content was 53.7%. Average nucleotide identity (ANI) analysis showed that strains B13 and 13.3, B13 and 4.2, and 4.2 and 13.3 shared ANIs of 99.17%, 99.15% and 99.99%, respectively. Strains 13.3, B13, and 4.2 shared ~99% ANI with P. ananatis type strain LMG 2665. To the best of our knowledge, these are the first genome sequences of P. ananatis strains isolated from corn in Brazil.
Collapse
Affiliation(s)
- Izabela Moura Duin
- Entomology and Plant Pathology Department, North Carolina State University, Raleigh, NC, USA
| | - Viviane Yumi Baba
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina – UEL, Londrina, PR, Brazil
| | | | - Fernanda Neves Paduan
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina – UEL, Londrina, PR, Brazil
| | | | - Jose C. Huguet-Tapia
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | - Marcelo G. Canteri
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina – UEL, Londrina, PR, Brazil
| | - Rui Pereira Leite Júnior
- Área de Proteção de Plantas, Instituto de Desenvolvimento Rural do Paraná/IAPAR-Emater, Londrina, PR, Brazil
| | - Maria Isabel Balbi-Peña
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina – UEL, Londrina, PR, Brazil
| |
Collapse
|
3
|
Kirk A, Davidson E, Stavrinides J. The expanding antimicrobial diversity of the genus Pantoea. Microbiol Res 2024; 289:127923. [PMID: 39368256 DOI: 10.1016/j.micres.2024.127923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
With the rise of antimicrobial resistance, there is high demand for novel antimicrobials to combat multi-drug resistant pathogens. The bacterial genus Pantoea produces a diversity of antimicrobial natural products effective against a wide range of bacterial and fungal targets. These antimicrobials are synthesized by specialized biosynthetic gene clusters that have unique distributions across Pantoea as well as several other genera outside of the Erwiniaceae. Phylogenetic and genomic evidence shows that these clusters can mobilize within and between species and potentially between genera. Pantoea antimicrobials belong to unique structural classes with diverse mechanisms of action, but despite their potential in antagonizing a wide variety of plant, human, and animal pathogens, little is known about many of these metabolites and how they function. This review will explore the known antimicrobials produced by Pantoea: agglomerins, andrimid, D-alanylgriseoluteic acid, dapdiamide, herbicolins, pantocins, and the various Pantoea Natural Products (PNPs). It will include information on the structure of each compound, their genetic basis, biosynthesis, mechanism of action, spectrum of activity, and distribution, highlighting the significance of Pantoea antimicrobials as potential therapeutics and for applications in biocontrol.
Collapse
Affiliation(s)
- Ashlyn Kirk
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Emma Davidson
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada.
| |
Collapse
|
4
|
Kirk A, Stavrinides J. Distribution and comparative genomic analysis of antimicrobial gene clusters found in Pantoea. Front Microbiol 2024; 15:1416674. [PMID: 39206372 PMCID: PMC11350110 DOI: 10.3389/fmicb.2024.1416674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Members of the bacterial genus Pantoea produce a variety of antimicrobial products that are effective against plant, animal, and human pathogens. To date, little is known about the distribution and evolutionary history of these clusters. We surveyed the public databases for the 12 currently known antibiotic biosynthetic gene clusters found across Pantoea strains to determine their distribution. We show that some clusters, namely pantocin B, PNP-3, and PNP-4 are found strictly in Pantoea, while agglomerin, andrimid, AGA, dapdiamide, herbicolin, PNP-1, PNP-2, PNP-5, and pantocin A, are more broadly distributed in distantly related genera within Vibrionaceae, Pectobacteriaceae, Yersiniaceae, Morganellaceae, and Hafniaceae. We evaluated the evolutionary history of these gene clusters relative to a cpn60-based species tree, considering the flanking regions of each cluster, %GC, and presence of mobile genetic elements, and identified potential occurrences of horizontal gene transfer. Lastly, we also describe the biosynthetic gene cluster of pantocin B in the strain Pantoea agglomerans Eh318 more than 20 years after this antibiotic was first described.
Collapse
|
5
|
Vale ADS, Pereira CMT, De Dea Lindner J, Rodrigues LRS, Kadri NKE, Pagnoncelli MGB, Kaur Brar S, Soccol CR, Pereira GVDM. Exploring Microbial Influence on Flavor Development during Coffee Processing in Humid Subtropical Climate through Metagenetic-Metabolomics Analysis. Foods 2024; 13:1871. [PMID: 38928813 PMCID: PMC11203001 DOI: 10.3390/foods13121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Research into microbial interactions during coffee processing is essential for developing new methods that adapt to climate change and improve flavor, thus enhancing the resilience and quality of global coffee production. This study aimed to investigate how microbial communities interact and contribute to flavor development in coffee processing within humid subtropical climates. Employing Illumina sequencing for microbial dynamics analysis, and high-performance liquid chromatography (HPLC) integrated with gas chromatography-mass spectrometry (GC-MS) for metabolite assessment, the study revealed intricate microbial diversity and associated metabolic activities. Throughout the fermentation process, dominant microbial species included Enterobacter, Erwinia, Kluyvera, and Pantoea from the prokaryotic group, and Fusarium, Cladosporium, Kurtzmaniella, Leptosphaerulina, Neonectria, and Penicillium from the eukaryotic group. The key metabolites identified were ethanol, and lactic, acetic, and citric acids. Notably, the bacterial community plays a crucial role in flavor development by utilizing metabolic versatility to produce esters and alcohols, while plant-derived metabolites such as caffeine and linalool remain stable throughout the fermentation process. The undirected network analysis revealed 321 interactions among microbial species and key substances during the fermentation process, with Enterobacter, Kluyvera, and Serratia showing strong connections with sugar and various volatile compounds, such as hexanal, benzaldehyde, 3-methylbenzaldehyde, 2-butenal, and 4-heptenal. These interactions, including inhibitory effects by Fusarium and Cladosporium, suggest microbial adaptability to subtropical conditions, potentially influencing fermentation and coffee quality. The sensory analysis showed that the final beverage obtained a score of 80.83 ± 0.39, being classified as a specialty coffee by the Specialty Coffee Association (SCA) metrics. Nonetheless, further enhancements in acidity, body, and aftertaste could lead to a more balanced flavor profile. The findings of this research hold substantial implications for the coffee industry in humid subtropical regions, offering potential strategies to enhance flavor quality and consistency through controlled fermentation practices. Furthermore, this study contributes to the broader understanding of how microbial ecology interplays with environmental factors to influence food and beverage fermentation, a topic of growing interest in the context of climate change and sustainable agriculture.
Collapse
Affiliation(s)
- Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Cecília Marques Tenório Pereira
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, SC, Brazil; (C.M.T.P.); (J.D.D.L.)
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, SC, Brazil; (C.M.T.P.); (J.D.D.L.)
| | - Luiz Roberto Saldanha Rodrigues
- Graduate Program in Biotechnology, Federal Technological University of Paraná (UTFPR), Dois Vizinhos 85660-000, PR, Brazil; (L.R.S.R.); (M.G.B.P.)
| | - Nájua Kêmil El Kadri
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Maria Giovana Binder Pagnoncelli
- Graduate Program in Biotechnology, Federal Technological University of Paraná (UTFPR), Dois Vizinhos 85660-000, PR, Brazil; (L.R.S.R.); (M.G.B.P.)
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3, Canada;
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Gilberto Vinícius de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| |
Collapse
|
6
|
Yue C, Du C, Wang X, Tan Y, Liu X, Fan H. Powdery mildew-induced changes in phyllosphere microbial community dynamics of cucumber. FEMS Microbiol Ecol 2024; 100:fiae050. [PMID: 38599637 PMCID: PMC11062426 DOI: 10.1093/femsec/fiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024] Open
Abstract
As an important habitat for microorganisms, the phyllosphere has a great impact on plant growth and health, and changes in phyllosphere microorganisms are closely related to the occurrence of leaf diseases. However, there remains a limited understanding regarding alterations to the microbial community in the phyllosphere resulting from pathogen infections. Here, we analyzed and compared the differences in phyllosphere microorganisms of powdery mildew cucumber from three disease severity levels (0% < L1 < 30%, 30% ≤ L2 < 50%, L3 ≥ 50%, the number represents the lesion coverage rate of powdery mildew on leaves). There were significant differences in α diversity and community structure of phyllosphere communities under different disease levels. Disease severity altered the community structure of phyllosphere microorganisms, Rosenbergiella, Rickettsia, and Cladosporium accounted for the largest proportion in the L1 disease grade, while Bacillus, Pantoea, Kocuria, and Podosphaera had the highest relative abundance in the L3 disease grade. The co-occurrence network analysis of the phyllosphere microbial community indicated that the phyllosphere bacterial community was most affected by the severity of disease. Our results suggested that with the development of cucumber powdery mildew, the symbiotic relationship between species was broken, and the entire bacterial community tended to compete.
Collapse
Affiliation(s)
- Cong Yue
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Xiaodan Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Yinqing Tan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Xingchen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
7
|
Giermasińska-Buczek K, Gawor J, Stefańczyk E, Gągała U, Żuchniewicz K, Rekosz-Burlaga H, Gromadka R, Łobocka M. Interaction of bacteriophage P1 with an epiphytic Pantoea agglomerans strain-the role of the interplay between various mobilome elements. Front Microbiol 2024; 15:1356206. [PMID: 38591037 PMCID: PMC10999674 DOI: 10.3389/fmicb.2024.1356206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
P1 is a model, temperate bacteriophage of the 94 kb genome. It can lysogenize representatives of the Enterobacterales order. In lysogens, it is maintained as a plasmid. We tested P1 interactions with the biocontrol P. agglomerans L15 strain to explore the utility of P1 in P. agglomerans genome engineering. A P1 derivative carrying the Tn9 (cmR) transposon could transfer a plasmid from Escherichia coli to the L15 cells. The L15 cells infected with this derivative formed chloramphenicol-resistant colonies. They could grow in a liquid medium with chloramphenicol after adaptation and did not contain prophage P1 but the chromosomally inserted cmR marker of P1 Tn9 (cat). The insertions were accompanied by various rearrangements upstream of the Tn9 cat gene promoter and the loss of IS1 (IS1L) from the corresponding region. Sequence analysis of the L15 strain genome revealed a chromosome and three plasmids of 0.58, 0.18, and 0.07 Mb. The largest and the smallest plasmid appeared to encode partition and replication incompatibility determinants similar to those of prophage P1, respectively. In the L15 derivatives cured of the largest plasmid, P1 with Tn9 could not replace the smallest plasmid even if selected. However, it could replace the smallest and the largest plasmid of L15 if its Tn9 IS1L sequence driving the Tn9 mobility was inactivated or if it was enriched with an immobile kanamycin resistance marker. Moreover, it could develop lytically in the L15 derivatives cured of both these plasmids. Clearly, under conditions of selection for P1, the mobility of the P1 selective marker determines whether or not the incoming P1 can outcompete the incompatible L15 resident plasmids. Our results demonstrate that P. agglomerans can serve as a host for bacteriophage P1 and can be engineered with the help of this phage. They also provide an example of how antibiotics can modify the outcome of horizontal gene transfer in natural environments. Numerous plasmids of Pantoea strains appear to contain determinants of replication or partition incompatibility with P1. Therefore, P1 with an immobile selective marker may be a tool of choice in curing these strains from the respective plasmids to facilitate their functional analysis.
Collapse
Affiliation(s)
- Katarzyna Giermasińska-Buczek
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Emil Stefańczyk
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Gągała
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
| | - Karolina Żuchniewicz
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Rekosz-Burlaga
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Khalaf EM, Shrestha A, Reid M, McFadyen BJ, Raizada MN. Conservation and diversity of the pollen microbiome of Pan-American maize using PacBio and MiSeq. Front Microbiol 2023; 14:1276241. [PMID: 38179444 PMCID: PMC10764481 DOI: 10.3389/fmicb.2023.1276241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
Pollen is a vector for diversification, fitness-selection, and transmission of plant genetic material. The extent to which the pollen microbiome may contribute to host diversification is largely unknown, because pollen microbiome diversity within a plant species has not been reported, and studies have been limited to conventional short-read 16S rRNA gene sequencing (e.g., V4-MiSeq) which suffers from poor taxonomic resolution. Here we report the pollen microbiomes of 16 primitive and traditional accessions of maize (corn) selected by indigenous peoples across the Americas, along with the modern U.S. inbred B73. The maize pollen microbiome has not previously been reported. The pollen microbiomes were identified using full-length (FL) 16S rRNA gene PacBio SMRT sequencing compared to V4-MiSeq. The Pan-American maize pollen microbiome encompasses 765 taxa spanning 39 genera and 46 species, including known plant growth promoters, insect-obligates, plant pathogens, nitrogen-fixers and biocontrol agents. Eleven genera and 13 species composed the core microbiome. Of 765 taxa, 63% belonged to only four genera: 28% were Pantoea, 15% were Lactococcus, 11% were Pseudomonas, and 10% were Erwinia. Interestingly, of the 215 Pantoea taxa, 180 belonged to a single species, P. ananatis. Surprisingly, the diversity within P. ananatis ranged nearly 10-fold amongst the maize accessions analyzed (those with ≥3 replicates), despite being grown in a common field. The highest diversity within P. ananatis occurred in accessions that originated near the center of diversity of domesticated maize, with reduced diversity associated with the north-south migration of maize. This sub-species diversity was revealed by FL-PacBio but missed by V4-MiSeq. V4-MiSeq also mis-identified some dominant genera captured by FL-PacBio. The study, though limited to a single season and common field, provides initial evidence that pollen microbiomes reflect evolutionary and migratory relationships of their host plants.
Collapse
Affiliation(s)
- Eman M. Khalaf
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Michelle Reid
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
10
|
Crosby KC, Rojas M, Sharma P, Johnson MA, Mazloom R, Kvitko BH, Smits THM, Venter SN, Coutinho TA, Heath LS, Palmer M, Vinatzer BA. Genomic delineation and description of species and within-species lineages in the genus Pantoea. Front Microbiol 2023; 14:1254999. [PMID: 38029109 PMCID: PMC10665919 DOI: 10.3389/fmicb.2023.1254999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
As the name of the genus Pantoea ("of all sorts and sources") suggests, this genus includes bacteria with a wide range of provenances, including plants, animals, soils, components of the water cycle, and humans. Some members of the genus are pathogenic to plants, and some are suspected to be opportunistic human pathogens; while others are used as microbial pesticides or show promise in biotechnological applications. During its taxonomic history, the genus and its species have seen many revisions. However, evolutionary and comparative genomics studies have started to provide a solid foundation for a more stable taxonomy. To move further toward this goal, we have built a 2,509-gene core genome tree of 437 public genome sequences representing the currently known diversity of the genus Pantoea. Clades were evaluated for being evolutionarily and ecologically significant by determining bootstrap support, gene content differences, and recent recombination events. These results were then integrated with genome metadata, published literature, descriptions of named species with standing in nomenclature, and circumscriptions of yet-unnamed species clusters, 15 of which we assigned names under the nascent SeqCode. Finally, genome-based circumscriptions and descriptions of each species and each significant genetic lineage within species were uploaded to the LINbase Web server so that newly sequenced genomes of isolates belonging to any of these groups could be precisely and accurately identified.
Collapse
Affiliation(s)
- Katherine C. Crosby
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mariah Rojas
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Parul Sharma
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Marcela A. Johnson
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Reza Mazloom
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Theo H. M. Smits
- Environmental Genomics and System Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Teresa A. Coutinho
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Boris A. Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
11
|
Huang S, Zhang X, Song Z, Rahman MU, Fan B. Transcriptional Profiling and Transposon Mutagenesis Study of the Endophyte Pantoea eucalypti FBS135 Adapting to Nitrogen Starvation. Int J Mol Sci 2023; 24:14282. [PMID: 37762583 PMCID: PMC10532344 DOI: 10.3390/ijms241814282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The research on plant endophytes has been drawing a lot of attention in recent years. Pantoea belongs to a group of endophytes with plant growth-promoting activity and has been widely used in agricultural fields. In our earlier studies, Pantoea eucalypti FBS135 was isolated from healthy-growing Pinus massoniana and was able to promote pine growth. P. eucalypti FBS135 can grow under extremely low nitrogen conditions. To understand the mechanism of the low-nitrogen tolerance of this bacterium, the transcriptome of FBS135 in the absence of nitrogen was examined in this study. We found that FBS135 actively regulates its gene expression in response to nitrogen deficiency. Nearly half of the number (4475) of genes in FBS135 were differentially expressed under this condition, mostly downregulated, while it significantly upregulated many transportation-associated genes and some nitrogen metabolism-related genes. In the downregulated genes, the ribosome pathway-related ones were significantly enriched. Meanwhile, we constructed a Tn5 transposon library of FBS135, from which four genes involved in low-nitrogen tolerance were screened out, including the gene for the host-specific protein J, RNA polymerase σ factor RpoS, phosphoribosamine-glycine ligase, and serine acetyltransferase. Functional analysis of the genes revealed their potential roles in the adaptation to nitrogen limitation. The results obtained in this work shed light on the mechanism of endophytes represented by P. eucalypti FBS135, at the overall transcriptional level, to an environmentally limited nitrogen supply and provided a basis for further investigation on this topic.
Collapse
Affiliation(s)
- Shengquan Huang
- Department of Forestry, Nanjing Forestry University, Nanjing 210037, China (M.U.R.)
| | - Xiuyu Zhang
- Department of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zongwen Song
- Department of Forestry, Nanjing Forestry University, Nanjing 210037, China (M.U.R.)
| | - Mati Ur Rahman
- Department of Forestry, Nanjing Forestry University, Nanjing 210037, China (M.U.R.)
| | - Ben Fan
- Department of Forestry, Nanjing Forestry University, Nanjing 210037, China (M.U.R.)
| |
Collapse
|
12
|
Cui Z, Hu L, Zeng L, Meng W, Guo D, Sun L. Isolation and characterization of Priestia megaterium KD7 for the biological control of pear fire blight. Front Microbiol 2023; 14:1099664. [PMID: 36970697 PMCID: PMC10033528 DOI: 10.3389/fmicb.2023.1099664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Erwinia amylovora is a plant pathogen that causes fire blight disease in Rosaceous plants, such as pear and apple. To develop an effective biocontrol method to suppress E. amylovora, a total of 16 bacteria were isolated from pear orchard soil in China and screened for antagonistic activity in vitro. Among them, 9 isolates that exhibited antagonistic activity against E. amylovora were identified, including Bacillus atrophaeus, Priestia megaterium (previously known as Bacillus megaterium) and Serratia marcescens based on the partial 16S rDNA sequence analysis and similarity search. The plate confrontation experiments showed that strain 8 (P. megaterium strain KD7) had strong antagonistic activity against E. amylovora. The methanolic extract from cell-free supernatant of strain KD7 displayed high antibacterial activities against E. amylovora. Furthermore, the active compounds of strain KD7 were separated by thin layer chromatography (TLC) and the amino acids were detected by the presence of a spot with retention factor (Rf) of 0.71. Next, three lipopeptides were identified with high-resolution mass spectrometry (HRMS), including C13-surfactin [M+H]+ at m/z 1008.14, C15-surfactin [M+H]+ at m/z 1036.50, and C14-iturin A [M+H]+ at m/z 1043.17. Strain KD7 showed multiple antibiotic resistance, such as ampicillin, erythromycin, penicillin and tetracycline. The detached pear leaves, twigs and fruits assay showed that both protective and curative action with strain KD7 had the ability to decrease the development of fire blight. Taken together, P. megaterium strain KD7 is a potential effective biocontrol agent against fire blight.
Collapse
|
13
|
Seeds of Stevia rebaudiana Bertoni as a Source of Plant Growth-Promoting Endophytic Bacteria with the Potential to Synthesize Rebaudioside A. Int J Mol Sci 2023; 24:ijms24032174. [PMID: 36768498 PMCID: PMC9917351 DOI: 10.3390/ijms24032174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
In this study, a new strain of Pantoea vagans, SRS89, was isolated from surface-sterilized stevia seeds. The isolate was evaluated using morphological, molecular, and biochemical methods. The bacterium was 1.5 μm long, yellowish in color, and classified as Gram-negative. Whole genome sequencing of our strain revealed the presence of a 4,610,019 bp chromosome, and genome annotation resulted in the detection of 4283 genes encoding 4204 putative coding sequences. Phylogenic analysis classified the genome of our strain close to the MP7 and LMG 24199 strains of P. vagans. Functional analysis showed that the highest number of genes within the analyzed bacterium genome were involved in transcription, amino acid transport and metabolism, and carbohydrate transport and metabolism. We also identified genes for enzymes involved in the biosynthesis of carotenoids and terpenoids. Furthermore, we showed the presence of growth regulators, with the highest amount noted for gibberellic acid A3, indole-3-acetic acid, and benzoic acid. However, the most promising property of this strain is its ability to synthesize rebaudioside A; the estimated amount quantified using reversed-phase (RP)-HPLC was 4.39 mg/g of the dry weight of the bacteria culture. The isolated endophytic bacterium may be an interesting new approach to the production of this valuable metabolite.
Collapse
|
14
|
Sulja A, Pothier JF, Blom J, Moretti C, Buonaurio R, Rezzonico F, Smits THM. Comparative genomics to examine the endophytic potential of Pantoea agglomerans DAPP-PG 734. BMC Genomics 2022; 23:742. [DOI: 10.1186/s12864-022-08966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPantoea agglomerans DAPP-PG 734 was isolated as endophyte from knots (tumors) caused by Pseudomonas savastanoi pv. savastanoi DAPP-PG 722 in olive trees. To understand the plant pathogen-endophyte interaction on a genomic level, the whole genome of P. agglomerans DAPP-PG 734 was sequenced and annotated. The complete genome had a total size of 5′396′424 bp, containing one circular chromosome and four large circular plasmids. The aim of this study was to identify genomic features that could play a potential role in the interaction between P. agglomerans DAPP-PG 734 and P. savastanoi pv. savastanoi DAPP-PG 722. For this purpose, a comparative genomic analysis between the genome of P. agglomerans DAPP-PG 734 and those of related Pantoea spp. was carried out. In P. agglomerans DAPP-PG 734, gene clusters for the synthesis of the Hrp-1 type III secretion system (T3SS), type VI secretion systems (T6SS) and autoinducer, which could play an important role in a plant-pathogenic community enhancing knot formation in olive trees, were identified. Additional gene clusters for the biosynthesis of two different antibiotics, namely dapdiamide E and antibiotic B025670, which were found in regions between integrative conjugative elements (ICE), were observed. The in-depth analysis of the whole genome suggested a characterization of the P. agglomerans DAPP-PG 734 isolate as endophytic bacterium with biocontrol activity rather than as a plant pathogen.
Collapse
|
15
|
Lv L, Luo J, Ahmed T, Zaki HEM, Tian Y, Shahid MS, Chen J, Li B. Beneficial Effect and Potential Risk of Pantoea on Rice Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:2608. [PMID: 36235474 PMCID: PMC9570785 DOI: 10.3390/plants11192608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Bacteria from the genus Pantoea have been reported to be widely distributed in rice paddy environments with contradictory roles. Some strains promoted rice growth and protected rice from pathogen infection or abiotic stress, but other strain exhibited virulence to rice, even causing severe rice disease. In order to effectively utilize Pantoea in rice production, this paper analyzed the mechanisms underlying beneficial and harmful effects of Pantoea on rice growth. The beneficial effect of Pantoea on rice plants includes growth promotion, abiotic alleviation and disease inhibition. The growth promotion may be mainly attributed to nitrogen-fixation, phosphate solubilization, plant physiological change, the biosynthesis of siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylic acid deaminase and phytohormones, including cytokinin, indole-3-acetic acid (IAA), auxins, abscisic acid and gibberellic acid, while the disease inhibition may be mainly due to the induced resistance, nutrient and spatial competition, as well as the production of a variety of antibiotics. The pathogenic mechanism of Pantoea can be mainly attributed to bacterial motility, production of phytohormones such as IAA, quorum sensing-related signal molecules and a series of cell wall-degrading enzymes, while the pathogenicity-related genes of Pantoea include genes encoding plasmids, such as the pPATH plasmid, the hypersensitive response and pathogenicity system, as well as various types of secretion systems, such as T3SS and T6SS. In addition, the existing scientific problems in this field were discussed and future research prospects were proposed.
Collapse
Affiliation(s)
- Luqiong Lv
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Yuan X, McGhee GC, Slack SM, Sundin GW. A Novel Signaling Pathway Connects Thiamine Biosynthesis, Bacterial Respiration, and Production of the Exopolysaccharide Amylovoran in Erwinia amylovora. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1193-1208. [PMID: 34081536 DOI: 10.1094/mpmi-04-21-0095-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is a plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. This bacterium colonizes host vascular tissues via the production of exopolysaccharides (EPSs) including amylovoran. It is well-established that the nearly ubiquitous plasmid pEA29 of E. amylovora is an essential virulence factor, but the underlying mechanism remains uncharacterized. Here, we demonstrated that pEA29 was required for E. amylovora to produce amylovoran and to form a biofilm, and this regulation was dependent on the thiamine biosynthesis operon thiOSGF. We then conducted carbohydrate and genetic analyses demonstrating that the thiamine-mediated effect on amylovoran production was indirect, as cells lacking thiOSGF produced an EPS that did not contain glucuronic acid, one of the key components of amylovoran, whereas the transcriptional activity and RNA levels of the amylovoran biosynthesis genes were not altered. Alternatively, addition of exogenous thiamine restored amylovoran production in the pEA29-cured strain of E. amylovora and positively impacted amylovoran production in a dose-dependent manner. Individual deletion of several chromosomal thiamine biosynthesis genes also affected amylovoran production, implying that a complete thiamine biosynthesis pathway is required for the thiamine-mediated effect on amylovoran production in E. amylovora. Finally, we determined that an imbalanced tricarboxylic acid cycle negatively affected amylovoran production, which was restored by addition of exogenous thiamine or overexpression of the thiOSGF operon. In summary, our report revealed a novel signaling pathway that impacts E. amylovora virulence in which thiamine biosynthesis enhances bacterial respiration that provides energetic requirements for the biosynthesis of EPS amylovoran.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Gayle C McGhee
- United States Department of Agriculture, Agriculture Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330, U.S.A
| | - Suzanne M Slack
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
17
|
Thissera B, Hallyburton I, Ngwa CJ, Cherif-Silini H, Hassane ASI, Anderson M, Campbell LA, Mutter N, Eshelli M, Abdelmohsen UR, Yaseen M, Pradel G, Belbahri L, Elgendy B, Hegazy L, Rateb ME. Potent antiplasmodial alkaloids from the rhizobacterium Pantoea agglomerans as hemozoin modulators. Bioorg Chem 2021; 115:105215. [PMID: 34358799 DOI: 10.1016/j.bioorg.2021.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022]
Abstract
Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.
Collapse
Affiliation(s)
- Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Irene Hallyburton
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Ahmed S I Hassane
- Aberdeen Royal Infirmary, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZN, Scotland, UK
| | - Mark Anderson
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lorna A Campbell
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nicole Mutter
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manal Eshelli
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK; Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli 13275, Libya
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt
| | - Mohammed Yaseen
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA.
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK.
| |
Collapse
|
18
|
Tamilmaran N, Sankaranarayanan R, Selvakumar A S P, Munavar MH. Horizontal transfer of domains in ssrA gene among Enterobacteriaceae. Genes Cells 2021; 26:541-550. [PMID: 33971069 DOI: 10.1111/gtc.12869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022]
Abstract
The tmRNA (transfer messenger RNA), encoded by ssrA gene, is involved in rescuing of stalled ribosomes by a process called trans-translation. Additionally, regions of the ssrA gene (coding for tmRNA) were reported to serve as integration sites for various bacteriophages. Though variations in ssrA genes were reported, their functional relevance is less studied. In this study, we investigated the horizontal gene transfer (HGT) of ssrA among the members of Enterobacteriaceae. This was done by predicting recombination signals in ssrA gene (belonging to Enterobacteriaceae) using RDP5 (Recombination Detection Program 5). Our results revealed 7 recombination signals in ssrA gene belonging to different species. We further showed that the recombination signals were more in the domains present in the 3' end than 5' end of tmRNA. Of note, the mRNA region was reported in many recombination signals. Further, members belonging to genera Yersinia, Erwinia, Dickeya and Enterobacter were highly represented in the recombination signals. Sequence analysis revealed the presence of integration sites for different class of bacteriophages in ssrA gene. The locations of phage recognition sites are comparable with recombination signals. Taken together, our results revealed a diverse nature of HGT and recombination which possibly due to transduction mediated by phages.
Collapse
Affiliation(s)
- Nagarajan Tamilmaran
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | | | - M Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
19
|
Weiß CL, Gansauge MT, Aximu-Petri A, Meyer M, Burbano HA. Mining ancient microbiomes using selective enrichment of damaged DNA molecules. BMC Genomics 2020; 21:432. [PMID: 32586278 PMCID: PMC7318760 DOI: 10.1186/s12864-020-06820-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background The identification of bona fide microbial taxa in microbiomes derived from ancient and historical samples is complicated by the unavoidable mixture between DNA from ante- and post-mortem microbial colonizers. One possibility to distinguish between these sources of microbial DNA is querying for the presence of age-associated degradation patterns typical of ancient DNA (aDNA). The presence of uracils, resulting from cytosine deamination, has been detected ubiquitously in aDNA retrieved from diverse sources, and used as an authentication criterion. Here, we employ a library preparation method that separates molecules that carry uracils from those that do not for a set of samples that includes Neandertal remains, herbarium specimens and archaeological plant remains. Results We show that sequencing DNA libraries enriched in molecules carrying uracils effectively amplifies age associated degradation patterns in microbial mixtures of ancient and historical origin. This facilitates the discovery of authentic ancient microbial taxa in cases where degradation patterns are difficult to detect due to large sequence divergence in microbial mixtures. Additionally, the relative enrichment of taxa in the uracil enriched fraction can help to identify bona fide ancient microbial taxa that could be missed using a more targeted approach. Conclusions Our experiments show, that in addition to its use in enriching authentic endogenous DNA of organisms of interest, the selective enrichment of damaged DNA molecules can be a valuable tool in the discovery of ancient microbial taxa.
Collapse
Affiliation(s)
- Clemens L Weiß
- Department of Molecular Biology, Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.,Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Ayinuer Aximu-Petri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Hernán A Burbano
- Department of Molecular Biology, Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany. .,Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
20
|
Song Z, Lu Y, Liu X, Wei C, Oladipo A, Fan B. Evaluation of Pantoea eucalypti FBS135 for pine (Pinus massoniana) growth promotion and its genome analysis. J Appl Microbiol 2020; 129:958-970. [PMID: 32329126 DOI: 10.1111/jam.14673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
AIMS Pinus massoniana is one of the most widely distributed forest plants in China. In this study, we isolated a bacterial endophyte (designated FBS135) from apical buds and needles of P. massoniana. Investigations were performed to understand the effects of the strain on pine growth, its genomic features and the functions of the plasmids it carries. METHODS AND RESULTS Based on its morphological features and 16S rRNA sequence, strain FBS135 was primarily identified as Pantoea eucalypti. We found that FBS135 not only promoted the growth of P. massoniana seedlings, but also significantly increased the survival rate of pine seedlings. The whole genome of FBS135 was sequenced, which revealed that the bacterium carries one chromosome and four plasmids. Its chromosome is 4 023 751 bp in size and contains dozens of genes involved in plant symbiosis. Curing one of the four plasmids, pPant1, resulted in a decrease in the size of the FBS135 colonies and the loss of the ability to synthesize yellow pigment, indicating that this plasmid may be very important for FBS135. CONCLUSIONS Pantoea eucalypti FBS135 has a genomic basis to be implicated in plant-associated lifestyle and was established to have the capability to promote pine growth. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report that such a bacterial species, P. eucalypti, was isolated from pine trees and evidenced to have pine beneficial activities. Our results elucidate the ecological effects of endophytes on forest plants as well as endophyte-plant interaction mechanisms.
Collapse
Affiliation(s)
- Z Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Y Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - X Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - C Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - A Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - B Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
21
|
Nawrath MM, Ottenheim C, Wu JC, Zimmermann W. Pantoea sp. P37 as a novel nonpathogenic host for the heterologous production of rhamnolipids. Microbiologyopen 2020; 9:e1019. [PMID: 32113194 PMCID: PMC7221421 DOI: 10.1002/mbo3.1019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
Microbially derived surfactants, so‐called biosurfactants, have attracted significant attention as an environmentally friendly alternative to their chemically synthesized counterparts. Particularly, rhamnolipids offer a large potential with their outstanding surfactant properties such as complete biodegradability, low toxicity, and stability. Rhamnolipids are naturally synthesized by the opportunistic human pathogen Pseudomonas aeruginosa under the tight regulation of a highly complex quorum‐sensing system. The heterologous production of mono‐rhamnolipids by a newly isolated nonpathogenic strain of the genus Pantoea was investigated. Analysis of the genome obtained by a chimeric assembly of Nanopore long reads and high‐quality Illumina reads suggested that the strain has evolved to an epiphytic rather than a pathogenic lifestyle. Functional heterologous expression of the mono‐rhamnolipid operon rhlAB derived from a P. aeruginosa strain was established and confirmed by HPLC analysis. Transcriptome analysis indicated destabilizing effects of the produced rhamnolipids on the cell envelope of the host resulting in the induction of molecular stress responses. After integration of the rmlBCDA operon, extracellular rhamnolipids in amounts up to 0.4 g/L could be detected and were identified as a mono‐rhamnolipid Rha‐C10‐C10 by MALDI‐TOF mass spectrometry.
Collapse
Affiliation(s)
- Margarete Monika Nawrath
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Leipzig, Germany.,Institute of Chemical and Engineering Sciences, Agency for Sciences, Technology and Research (A*STAR), Singapore City, Singapore
| | - Christoph Ottenheim
- Institute of Chemical and Engineering Sciences, Agency for Sciences, Technology and Research (A*STAR), Singapore City, Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences, Agency for Sciences, Technology and Research (A*STAR), Singapore City, Singapore
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
22
|
Rahimi-Khameneh S, Hsieh S, Xu R, Avis TJ, Li S, Smith D, Dutta B, Gitaitis RD, Tambong JT. Pathogenicity and a TaqMan Real-Time PCR for Specific Detection of Pantoea allii, a Bacterial Pathogen of Onions. PLANT DISEASE 2019; 103:3031-3040. [PMID: 31638863 DOI: 10.1094/pdis-03-19-0563-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial diseases of onion are reported to cause significant economic losses. Pantoea allii Brady, one of the pathogens causing the center rot on onions, has not yet been reported in Canada. We report the pathogenicity of P. allii on commercially available Canadian green onions (scallions). All P. allii-inoculated plants, irrespective of the inoculum concentration, exhibited typical leaf chlorotic discoloration on green onion leaves, which can reduce their marketability. Reisolation of P. allii from infected scallion tissues and reidentification by sequencing and phylogenetic analyses of the leuS gene suggest that the pathogen can survive in infected tissues 21 days after inoculation. This is the first report of P. allii as a potential pathogen of green onions. This study also reports the development and validation of a TaqMan real-time PCR assay targeting the leuS gene for reliable detection of P. allii in pure cultures and in planta. A 642-bp leuS gene fragment was targeted because it showed high nucleotide diversity and positively correlated with genome-based average nucleotide identity with respect to percent similarity index and identity of Pantoea species. The assay specificity was validated using 61 bacterial and fungal strains. Under optimal conditions, the selected primers and FAM-labeled TaqMan probe were specific for the detection of nine reference P. allii strains by real-time PCR. The 52 strains of other Pantoea spp. (n = 25), non-Pantoea spp. (n = 20), and fungi/oomycetes (n = 7) tested negative (no detectable fluorescence). Onion tissues spiked with P. allii, naturally infested onion bulbs, greenhouse infected green onion leaf samples, as well as an interlaboratory blind test were used to validate the assay specificity. The sensitivities of a 1-pg DNA concentration and 30 CFU are comparable to previously reported real-time PCR assays of other bacterial pathogens. The TaqMan real-time PCR assay developed in this study will facilitate reliable detection of P. allii and could be a useful tool for screening onion imports or exports for the presence of this pathogen.
Collapse
Affiliation(s)
| | - Sanni Hsieh
- Ottawa Research and Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Renlin Xu
- Ottawa Research and Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Tyler J Avis
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Sean Li
- Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
| | - Donna Smith
- Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
| | - Bhabesh Dutta
- Department of Plant Pathology, College of Agricultural and Environmental Sciences Campus, University of Georgia, Tifton, GA 31793, U.S.A
| | - Ronald D Gitaitis
- Department of Plant Pathology, College of Agricultural and Environmental Sciences Campus, University of Georgia, Tifton, GA 31793, U.S.A
| | - James T Tambong
- Ottawa Research and Development Centre, Ottawa, Ontario K1A 0C6, Canada
| |
Collapse
|
23
|
Complete Genome Sequence of Pantoea sp. Strain CCBC3-3-1, an Antagonistic Endophytic Bacterium Isolated from a Cotinus coggygria Branch. Microbiol Resour Announc 2019; 8:8/38/e01004-19. [PMID: 31537676 PMCID: PMC6753280 DOI: 10.1128/mra.01004-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantoea sp. strain CCBC3-3-1, having antagonistic activity against Verticillium dahlia, was isolated from Cotinus coggygria. We report the complete genome sequence of this strain determined by PacBio single-molecule real-time (SMRT) technology. The total genome size of CCBC3-3-1 is 5,159,767 bp, with a G+C content of 48.08%. Pantoea sp. strain CCBC3-3-1, having antagonistic activity against Verticillium dahlia, was isolated from Cotinus coggygria. We report the complete genome sequence of this strain determined by PacBio single-molecule real-time (SMRT) technology. The total genome size of CCBC3-3-1 is 5,159,767 bp, with a G+C content of 48.08%.
Collapse
|
24
|
Cherif-Silini H, Thissera B, Bouket AC, Saadaoui N, Silini A, Eshelli M, Alenezi FN, Vallat A, Luptakova L, Yahiaoui B, Cherrad S, Vacher S, Rateb ME, Belbahri L. Durum Wheat Stress Tolerance Induced by Endophyte Pantoea agglomerans with Genes Contributing to Plant Functions and Secondary Metabolite Arsenal. Int J Mol Sci 2019; 20:ijms20163989. [PMID: 31426312 PMCID: PMC6720286 DOI: 10.3390/ijms20163989] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023] Open
Abstract
In the arid region Bou-Saâda at the South of Algeria, durum wheat Triticum durum L. cv Waha production is severely threatened by abiotic stresses, mainly drought and salinity. Plant growth-promoting rhizobacteria (PGPR) hold promising prospects towards sustainable and environmentally-friendly agriculture. Using habitat-adapted symbiosis strategy, the PGPR Pantoea agglomerans strain Pa was recovered from wheat roots sampled in Bou-Saâda, conferred alleviation of salt stress in durum wheat plants and allowed considerable growth in this unhostile environment. Strain Pa showed growth up to 35 °C temperature, 5-10 pH range, and up to 30% polyethylene glycol (PEG), as well as 1 M salt concentration tolerance. Pa strain displayed pertinent plant growth promotion (PGP) features (direct and indirect) such as hormone auxin biosynthesis, production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia and phosphate solubilization. PGPR features were stable over wide salt concentrations (0-400 mM). Pa strain was also able to survive in seeds, in the non-sterile and sterile wheat rhizosphere, and was shown to have an endophytic life style. Phylogenomic analysis of strain Pa indicated that Pantoea genus suffers taxonomic imprecision which blurs species delimitation and may have impacted their practical use as biofertilizers. When applied to plants, strain Pa promoted considerable growth of wheat seedlings, high chlorophyll content, lower accumulation of proline, and favored K+ accumulation in the inoculated plants when compared to Na+ in control non-inoculated plants. Metabolomic profiling of strain Pa under one strain many compounds (OSMAC) conditions revealed a wide diversity of secondary metabolites (SM) with interesting salt stress alleviation and PGP activities. All these findings strongly promote the implementation of Pantoea agglomerans strain Pa as an efficient biofertilizer in wheat plants culture in arid and salinity-impacted regions.
Collapse
Affiliation(s)
- Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz 5355179854, Iran
| | - Nora Saadaoui
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Manal Eshelli
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
- Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli 13275, Libya
| | | | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Lenka Luptakova
- Department of Biology and Genetics, Institute of Biology, University of Veterinary Medicine and Pharmacy, Zoology and Radiobiology, Komenského, 04181 Kosice, Slovakia
| | - Bilal Yahiaoui
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Semcheddine Cherrad
- CONIPHY, Parc d'activitésen Chuel, Route de Chasselay, 69650 Quincieux, France
| | - Sebastien Vacher
- CONIPHY, Parc d'activitésen Chuel, Route de Chasselay, 69650 Quincieux, France
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|
25
|
Sharma R, Pielstick BA, Bell KA, Nieman TB, Stubbs OA, Yeates EL, Baltrus DA, Grose JH. A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolated Against Erwinia. Front Microbiol 2019; 10:1533. [PMID: 31428059 PMCID: PMC6690015 DOI: 10.3389/fmicb.2019.01533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023] Open
Abstract
Erwinia amylovora is a plant pathogen from the Erwiniaceae family and a causative agent of the devastating agricultural disease fire blight. Here we characterize eight lytic bacteriophages of E. amylovora that we isolated from the Wasatch front (Utah, United States) that are highly similar to vB_EamM_Ea35-70 which was isolated in Ontario, Canada. With the genome size ranging from 271 to 275 kb, this is a novel jumbo family of bacteriophages. These jumbo bacteriophages were further characterized through genomic and proteomic comparison, mass spectrometry, host range and burst size. Their proteomes are highly unstudied, with over 200 putative proteins with no known homologs. The production of 27 of these putative proteins was confirmed by mass spectrometry analysis. These bacteriophages appear to be most similar to bacteriophages that infect Pseudomonas and Ralstonia rather than Enterobacteriales bacteria by protein similarity, however, we were only able to detect infection of Erwinia and the closely related strains of Pantoea.
Collapse
Affiliation(s)
- Ruchira Sharma
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Brittany A. Pielstick
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Kimberly A. Bell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Tanner B. Nieman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Olivia A. Stubbs
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Edward L. Yeates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - David A. Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
26
|
Palmer M, Venter SN, McTaggart AR, Coetzee MPA, Van Wyk S, Avontuur JR, Beukes CW, Fourie G, Santana QC, Van Der Nest MA, Blom J, Steenkamp ET. The synergistic effect of concatenation in phylogenomics: the case in Pantoea. PeerJ 2019; 7:e6698. [PMID: 31024760 PMCID: PMC6474361 DOI: 10.7717/peerj.6698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
With the increased availability of genome sequences for bacteria, it has become routine practice to construct genome-based phylogenies. These phylogenies have formed the basis for various taxonomic decisions, especially for resolving problematic relationships between taxa. Despite the popularity of concatenating shared genes to obtain well-supported phylogenies, various issues regarding this combined-evidence approach have been raised. These include the introduction of phylogenetic error into datasets, as well as incongruence due to organism-level evolutionary processes, particularly horizontal gene transfer and incomplete lineage sorting. Because of the huge effect that this could have on phylogenies, we evaluated the impact of phylogenetic conflict caused by organism-level evolutionary processes on the established species phylogeny for Pantoea, a member of the Enterobacterales. We explored the presence and distribution of phylogenetic conflict at the gene partition and nucleotide levels, by identifying putative inter-lineage recombination events that might have contributed to such conflict. Furthermore, we determined whether smaller, randomly constructed datasets had sufficient signal to reconstruct the current species tree hypothesis or if they would be overshadowed by phylogenetic incongruence. We found that no individual gene tree was fully congruent with the species phylogeny of Pantoea, although many of the expected nodes were supported by various individual genes across the genome. Evidence of recombination was found across all lineages within Pantoea, and provides support for organism-level evolutionary processes as a potential source of phylogenetic conflict. The phylogenetic signal from at least 70 random genes recovered robust, well-supported phylogenies for the backbone and most species relationships of Pantoea, and was unaffected by phylogenetic conflict within the dataset. Furthermore, despite providing limited resolution among taxa at the level of single gene trees, concatenated analyses of genes that were identified as having no signal resulted in a phylogeny that resembled the species phylogeny of Pantoea. This distribution of signal and noise across the genome presents the ideal situation for phylogenetic inference, as the topology from a ≥70-gene concatenated species phylogeny is not driven by single genes, and our data suggests that this finding may also hold true for smaller datasets. We thus argue that, by using a concatenation-based approach in phylogenomics, one can obtain robust phylogenies due to the synergistic effect of the combined signal obtained from multiple genes.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Alistair R McTaggart
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa.,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Stephanie Van Wyk
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Magriet A Van Der Nest
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig Universität Gießen, Giessen, Germany
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
27
|
Kuranishi T, Sekiguchi JI, Yanagisawa I, Akiwa M, Tokuno Y. Development of a New Semi-Selective Lysine-Ornithine-Mannitol-Arginine-Charcoal Medium for the Isolation of Pantoea Species from Environmental Sources in Japan. Microbes Environ 2019; 34:136-145. [PMID: 30918162 PMCID: PMC6594737 DOI: 10.1264/jsme2.me18128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although Pantoea species are widely distributed among plants, water, soils, humans, and animals, due to a lack of efficient isolation methods, the clonality of Pantoea species is poorly characterized. Therefore, we developed a new semi-selective medium designated ‘lysine-ornithine-mannitol-arginine-charcoal’ (LOMAC) to isolate these species. In an inclusive and exclusive study examining 94 bacterial strains, all Pantoea strains exhibited yellow colonies on LOMAC medium. The performance of the medium was assessed using Pantoea-spiked soils. Percent average agreement relative to the Api20E biochemical test was 97%. A total of 24 soil spot samples and 19 plant types were subjected to practical trials. Of the 91 yellow colonies selected on LOMAC medium, 81 were correctly identified as Pantoea species using the biochemical test. The sequencing of 16S rRNA (rrs) and gyrB from these isolates confirmed that Pantoea agglomerans, P. vagans, P. ananatis, and P. deleyi were present in Japanese fields. A phylogenetic analysis using rrs enabled only the limited separation of strains within each Pantoea spp., whereas an analysis using gyrB revealed higher variability and enabled the finer resolution of distinct branches. P. agglomerans isolates were divided into 3 groups, 2 of which were new clades, with the other comprising a large group including biocontrol strains. P. vagans was also in one of the new clades. The present results indicate that LOMAC medium is useful for screening Pantoea species. The use of LOMAC medium will provide new opportunities for identifying the beneficial properties of Japanese Pantoea isolates.
Collapse
Affiliation(s)
| | | | | | - Makoto Akiwa
- Microbiology Research Division, Kohjin Bio Co., Ltd
| | - Yuko Tokuno
- Department of Health and Nutrition, Faculty of Human Life, Jumonji University
| |
Collapse
|
28
|
Pantocin A, a peptide-derived antibiotic involved in biological control by plant-associated Pantoea species. Arch Microbiol 2019; 201:713-722. [PMID: 30868174 DOI: 10.1007/s00203-019-01647-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
The genus Pantoea contains a broad range of plant-associated bacteria, including some economically important plant pathogens as well as some beneficial members effective as biological control agents of plant pathogens. The most well-characterized representatives of biological control agents from this genus generally produce one or more antimicrobial compounds adding to biocontrol efficacy. Some Pantoea species evaluated as biocontrol agents for fire blight disease of apple and pear produce a histidine-reversible antibiotic. Three commonly studied histidine-reversible antibiotics produced by Pantoea spp. are herbicolin O, MccEh252, and pantocin A. Pantocin A is a novel ribosomally encoded and post-translationally modified peptide natural product. Here, we review the current knowledge on the chemistry, genetics, biosynthesis, and incidence and environmental relevance of pantocin A and related histidine-reversible antibiotics produced by Pantoea.
Collapse
|
29
|
de Almeida Lopes KB, Carpentieri-Pipolo V, Fira D, Balatti PA, López SMY, Oro TH, Stefani Pagliosa E, Degrassi G. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J Appl Microbiol 2018; 125:1466-1481. [PMID: 29978936 DOI: 10.1111/jam.14041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
AIMS This research was aimed at identifying and characterizing endophytic micro-organisms associated with soybean that have antimicrobial activity towards soybean pathogens. METHODS AND RESULTS Soybean plants were collected from field trials in four locations of southern Brazil that were cultivated with conventional (C) and transgenic glyphosate-resistant (GR) soybeans. Endophytic bacteria isolated from roots, stems and leaves of soybeans were evaluated for their capacity to inhibit fungal and bacterial plant pathogens and 13 micro-organisms were identified with antagonistic activity. Approximately 230 bacteria were isolated and identified based on the 16S rRNA and rpoN gene sequences. Bacteria isolated from conventional and transgenic soybeans were significantly different not only in population diversity but also in their antagonistic capacity. Thirteen isolates showed in vitro antagonism against Sclerotinia sclerotiorum, Phomopsis sojae and Rhizoctonia solani. Bacillus sp. and Burkholderia sp. were the most effective isolates in controlling bacterial and fungal pathogens in vitro. Extracts and precipitates from culture supernatants of isolates showed different patterns of inhibitory activity on growth of fungal and bacterial pathogens. CONCLUSIONS Bacillus sp. and Burkholderia sp. were the most effective isolates in controlling fungal pathogens in vitro, and the activity is mainly due to peptides. However, most of the studied bacteria showed the presence of antimicrobial compounds in the culture supernatant, either peptides, bacteriocins or secondary metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY These results could be significant to develop tools for the biological control of soybean diseases. The work brought to the identification of micro-organisms such as Bacillus sp. and Burkholderia sp. that have the potential to protect crops in order to enhance a sustainable management system of crops. Furthermore, the study provides the first evidences of the influence of management as well as the genetics of glyphosate-resistant soybean on the diversity of bacterial endophytes of soybean phytobiome.
Collapse
Affiliation(s)
| | | | - Djordje Fira
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Fac. de Ciencias Agrarias y Forestales - UNLP, La Plata, Argentina
| | | | | | | | - Giuliano Degrassi
- International Center for Genetic Engineering and Biotechnology, Polo Cientifico Tecnologico, Buenos Aires, Argentina
| |
Collapse
|
30
|
Lumactud R, Fulthorpe RR. Endophytic Bacterial Community Structure and Function of Herbaceous Plants From Petroleum Hydrocarbon Contaminated and Non-contaminated Sites. Front Microbiol 2018; 9:1926. [PMID: 30190710 PMCID: PMC6115521 DOI: 10.3389/fmicb.2018.01926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/30/2018] [Indexed: 02/01/2023] Open
Abstract
Bacterial endophytes (BEs) are non-pathogenic residents of healthy plant tissues that can confer benefits to plants. Many Bacterial endophytes have been shown to contribute to plant growth and health, alleviation of plant stress and to in-planta contaminant-degradation. This study examined the endophytic bacterial communities of plants growing abundantly in a heavily hydrocarbon contaminated site, and compared them to those found in the same species at a non-contaminated. We used culture- dependent and independent methods to characterize the community structure, hydrocarbon degrading capabilities, and plant growth promoting traits of cultivable endophytes isolated from Achillea millefolium, Solidago Canadensis, and Daucus carota plants from these two sites. Culture- dependent and independent analyses revealed class Gammaproteobacteria predominated in all the plants regardless of the presence of petroleum hydrocarbon, with Pantoea spp. as largely dominant. It was interesting to note a >50% taxonomic overlap (genus level) of 16s rRNA high throughput amplicon sequences with cultivable endophytes. PERMANOVA analysis of TRFLP fragments revealed significant structural differences between endophytic bacterial communities from hydrocarbon-contaminated and non-contaminated soils-however, there was no marked difference in their functional capabilities. Pantoea spp. demonstrated plant beneficial characteristics, such as P solubilization, indole-3-acetic acid production and presence of 1-aminocyclopropane-1-carboxylate deaminase. Our findings reveal that functional capabilities of bacterial isolates being examined were not influenced by the presence of contamination; and that the stem endosphere supports ubiquitous BEs that were consistent throughout plant hosts and sites.
Collapse
Affiliation(s)
- Rhea Lumactud
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Roberta R Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
31
|
Comparative Genomics Analysis of Plasmid pPV989-94 from a Clinical Isolate of Pantoea vagans PV989. Int J Genomics 2018; 2018:1242819. [PMID: 29862249 PMCID: PMC5971314 DOI: 10.1155/2018/1242819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/25/2018] [Indexed: 11/18/2022] Open
Abstract
Pantoea vagans, a gram-negative bacterium from the genus Pantoea and family Enterobacteriaceae, is present in various natural environments and considered to be plant endophytes. We isolated the Pantoea vagans PV989 strain from the clinic and sequenced its whole genome. Besides a chromosome DNA molecule, it also harboured three large plasmids. A comparative genomics analysis was performed for the smallest plasmid, pPV989-94. It can be divided into four regions, including three conservative regions related to replication (R1), transfer conjugation (R2), and transfer leading (R3), and one variable region (R4). Further analysis showed that pPV989-94 is most similar to plasmids LA637P2 and pEA68 of Erwinia amylovora strains isolated from fruit trees. These three plasmids share three conservative regions (R1, R2, and R3). Interestingly, a fragment (R4′) in R4, mediated by phage integrase and phage integrase family site-specific recombinase and encoding 9 genes related to glycometabolism, resistance, and DNA repair, was unique in pPV989-94. Homologues of R4′ were found in other plasmids or chromosomes, suggesting that horizontal gene transfer (HGT) occurred among different bacteria of various species or genera. The acquired functional genes may play important roles in the adaptation of bacteria to different hosts or environmental conditions.
Collapse
|
32
|
Mosa WFAE, Sas-Paszt L, Frąc M, Trzciński P. Microbial Products and Biofertilizers in Improving Growth and Productivity of Apple - a Review. Pol J Microbiol 2018; 65:243-251. [PMID: 29334068 DOI: 10.5604/17331331.1215599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The excessive use of mineral fertilizers causes many negative consequences for the environment as well as potentially dangerous effects of chemical residues in plant tissues on the health of human and animal consumers. Bio-fertilizers are formulations of beneficial microorganisms, which upon application can increase the availability of nutrients by their biological activity and help to improve soil health. Microbes involved in the formulation of bio-fertilizers not only mobilize N and P but mediate the process of producing crops and foods naturally. This method avoids the use of synthetic chemical fertilizers and genetically modified organisms to influence the growth of crops. In addition to their role in enhancing the growth of the plants, biofertilizers can act as biocontrol agents in the rhizosphere at the same time. Biofertilizers are very safe for human, animal and environment. The use of Azotobacter, Azospirillum, Pseudomonas, Acetobacter, Burkholderia, Bacillus, Paenibacillus and some members of the Enterobacteriaceae is gaining worldwide importance and acceptance and appears to be the trend for the future.
Collapse
Affiliation(s)
- Walid F A E Mosa
- Research Institute of Horticulture, Skierniewice, Poland; Plant Production Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | | | - Mateusz Frąc
- Research Institute of Horticulture, Skierniewice, Poland
| | | |
Collapse
|
33
|
Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan WY, van Zyl E, Blom J, Venter SN. Mixta gen. nov., a new genus in the Erwiniaceae. Int J Syst Evol Microbiol 2018; 68:1396-1407. [DOI: 10.1099/ijsem.0.002540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Juanita R. Avontuur
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Biotechnology Platform (BTP), Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Elritha van Zyl
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N. Venter
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2018; 40:855-874. [PMID: 28204477 PMCID: PMC5091035 DOI: 10.1093/femsre/fuw028] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect–bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts. Notable cases representing various types and stages of host associations, including those from multiple genera in the family Enterobacteriaceae (class Gammaproteobacteria), Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), are discussed. Although several general patterns of genome reduction associated with the adoption of symbiotic relationships could be identified, extensive variation was found among these facultative symbionts. These findings are incorporated into the established conceptual frameworks to develop a more detailed evolutionary model for the discussion of possible trajectories. In summary, transitions from facultative to obligate symbiosis do not appear to be a universal one-way street; switches between hosts and lifestyles (e.g. commensalism, parasitism or mutualism) occur frequently and could be facilitated by horizontal gene transfer. This review synthesizes the recent progress in genome characterization of insect-symbiotic bacteria, the emphases include (i) patterns of genome organization, (ii) evolutionary models and trajectories, and (iii) comparisons between facultative and obligate symbionts.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
35
|
Draft Genome Sequence of Pantoea agglomerans JM1, a Strain Isolated from Soil Polluted by Industrial Production of Beta-Lactam Antibiotics That Exhibits Valacyclovir-Like Hydrolase Activity. GENOME ANNOUNCEMENTS 2017; 5:5/38/e00921-17. [PMID: 28935728 PMCID: PMC5609407 DOI: 10.1128/genomea.00921-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Strain
Pantoea agglomerans
JM1 was isolated from the soil of a microbiome that had been exposed to polluting pharmaceuticals. The bacterium exhibited enzymatic activities useful for the biotransformation of beta-lactams. The genome of the strain was assembled and described, and the gene encoding valacyclovir-like hydrolase was identified.
Collapse
|
36
|
Palmer M, Steenkamp ET, Coetzee MPA, Chan WY, van Zyl E, De Maayer P, Coutinho TA, Blom J, Smits THM, Duffy B, Venter SN. Phylogenomic resolution of the bacterial genus Pantoea and its relationship with Erwinia and Tatumella. Antonie van Leeuwenhoek 2017; 110:1287-1309. [PMID: 28255640 DOI: 10.1007/s10482-017-0852-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/23/2017] [Indexed: 11/29/2022]
Abstract
Investigation of the evolutionary relationships between related bacterial species and genera with a variety of lifestyles have gained popularity in recent years. For analysing the evolution of specific traits, however, a robust phylogeny is essential. In this study we examined the evolutionary relationships among the closely related genera Erwinia, Tatumella and Pantoea, and also attempted to resolve the species relationships within Pantoea. To accomplish this, we used the whole genome sequence data for 35 different strains belonging to these three genera, as well as nine outgroup taxa. Multigene datasets consisting of the 1039 genes shared by these 44 strains were then generated and subjected to maximum likelihood phylogenetic analyses, after which the results were compared to those using conventional multi-locus sequence analysis (MLSA) and ribosomal MLSA (rMLSA) approaches. The robustness of the respective phylogenies was then explored by considering the factors typically responsible for destabilizing phylogenetic trees. We found that the nucleotide datasets employed in the MLSA, rMLSA and 1039-gene datasets contained significant levels of homoplasy, substitution saturation and differential codon usage, all of which likely gave rise to the observed lineage specific rate heterogeneity. The effects of these factors were much less pronounced in the amino acid dataset for the 1039 genes, which allowed reconstruction of a fully supported and resolved phylogeny. The robustness of this amino acid tree was also supported by different subsets of the 1039 genes. In contrast to the smaller datasets (MLSA and rMLSA), the 1039 amino acid tree was also not as sensitive to long-branch attraction. The robust and well-supported evolutionary hypothesis for the three genera, which confidently resolved their various inter- and intrageneric relationships, represents a valuable resource for future studies. It will form the basis for studies aiming to understand the forces driving the divergence and maintenance of lineages, species and biological traits in this important group of bacteria.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI),, University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Elritha van Zyl
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Pieter De Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Teresa A Coutinho
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zürich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Brion Duffy
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zürich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Stephanus N Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
37
|
Tecon R, Leveau JHJ. Symplasmata are a clonal, conditional, and reversible type of bacterial multicellularity. Sci Rep 2016; 6:31914. [PMID: 27534795 PMCID: PMC4989142 DOI: 10.1038/srep31914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/29/2016] [Indexed: 01/29/2023] Open
Abstract
Microorganisms are capable of remarkable social behaviours, such as forming transient multicellular assemblages with properties and adaptive abilities exceeding those of individual cells. Here, we report on the formation and structure of genets known as symplasmata produced by Pantoea eucalypti bacteria. Each symplasmatum develops clonally and stochastically from a single bacterium into a membrane-delimited, capsule-embedded cluster of progeny cells and with a frequency that depends on temperature, pH, and nutrient availability. Transposon mutagenesis identified several gene products required for symplasmata formation, including master regulator LrhA, replication inhibitor CspD, polysaccharide transporter RfbX3, and autoinducer synthase PhzI. We also show that bacteria inside symplasmata are shaped irregularly with punctuated cell-to-cell contacts, metabolically responsive to environmental stimuli, dispersal-ready, and transcriptionally reprogrammed to anticipate multiple alternative futures in terms of carbon source availability. The structured and conditionable nature of symplasmata offers exciting prospects towards a mechanistic understanding of multicellular behaviours and their ecological significance.
Collapse
Affiliation(s)
- Robin Tecon
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA 95616, USA.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
38
|
Salvetti E, Campanaro S, Campedelli I, Fracchetti F, Gobbi A, Tornielli GB, Torriani S, Felis GE. Whole-Metagenome-Sequencing-Based Community Profiles of Vitis vinifera L. cv. Corvina Berries Withered in Two Post-harvest Conditions. Front Microbiol 2016; 7:937. [PMID: 27445999 PMCID: PMC4917526 DOI: 10.3389/fmicb.2016.00937] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
Vitis vinifera L. cv. Corvina grape forms the basis for the production of unique wines, such as Amarone, whose distinctive sensory features are strongly linked to the post-harvest grape withering process. Indeed, this process increases sugar concentration and changes must characteristics. While microorganisms involved in must fermentation have been widely investigated, few data are available on the microbiota of withered grapes. Thus, in this paper, a whole metagenome sequencing (WMS) approach was used to analyse the microbial consortium associated with Corvina berries at the end of the withering process performed in two different conditions ("traditional withering," TW or "accelerated withering," AW), and to unveil whether changes of drying parameters could have an impact on microbial diversity. Samples of healthy undamaged berries were collected and washed, to recover microorganisms from the surface and avoid contamination with grapevine genetic material. Isolated DNA was sequenced and the data obtained were analyzed with several bioinformatics methods. The eukaryotic community was mainly composed by members of the phylum Ascomycota, including Eurotiomycetes, Sordariomycetes, and Dothideomycetes. Moreover, the distribution of the genera Aspergillus and Penicillium (class Eurotiomycetes) varied between the withered berry samples. Instead, Botryotinia, Saccharomyces, and other wine technologically useful microorganisms were relatively scarce in both samples. For prokaryotes, 25 phyla were identified, nine of which were common to both conditions. Environmental bacteria belonging to the class Gammaproteobacteria were dominant and, in particular, the TW sample was characterized by members of the family Pseudomonadaceae, while members of the family Enterobacteriaceae dominated the AW sample, in addition to Sphyngobacteria and Clostridia. Finally, the binning procedure discovered 15 putative genomes which dominated the microbial community of the two samples, and included representatives of genera Erwinia, Pantoea, Pseudomonas, Clostridium, Paenibacillus, and of orders Lactobacillales and Actinomycetales. These results provide insights into the microbial consortium of Corvina withered berries and reveal relevant variations attributable to post-harvest withering conditions, underling how WMS could open novel perspectives in the knowledge and management of the withering process of Corvina, with an impact on the winemaking of important Italian wines.
Collapse
Affiliation(s)
- Elisa Salvetti
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | | | | | - Alex Gobbi
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Sandra Torriani
- Department of Biotechnology, University of VeronaVerona, Italy
| | | |
Collapse
|
39
|
Comby M, Lacoste S, Baillieul F, Profizi C, Dupont J. Spatial and Temporal Variation of Cultivable Communities of Co-occurring Endophytes and Pathogens in Wheat. Front Microbiol 2016; 7:403. [PMID: 27065969 PMCID: PMC4814462 DOI: 10.3389/fmicb.2016.00403] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/14/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this work was to investigate the diversity of endogenous microbes from wheat (Triticum aestivum) and to study the structure of its microbial communities, with the ultimate goal to provide candidate strains for future evaluation as potential biological control agents against wheat diseases. We sampled plants from two wheat cultivars, Apache and Caphorn, showing different levels of susceptibility to Fusarium head blight, a major disease of wheat, and tested for variation in microbial diversity and assemblages depending on the host cultivar, host organ (aerial organs vs. roots) or host maturity. Fungi and bacteria were isolated using a culture dependent method. Isolates were identified using ribosomal DNA sequencing and we used diversity analysis to study the community composition of microorganisms over space and time. Results indicate great species diversity in wheat, with endophytes and pathogens co-occurring inside plant tissues. Significant differences in microbial communities were observed according to host maturity and host organs but we did not find clear differences between host cultivars. Some species isolated have not yet been reported as wheat endophytes and among all species recovered some might be good candidates as biological control agents, given their known effects toward plant pathogens.
Collapse
Affiliation(s)
- Morgane Comby
- Institut de Systématique, Evolution et Biodiversité-UMR 7205-Centre National de la Recherche Scientifique, MNHN, UPMC, EPHE, Muséum National D'histoire Naturelle, Sorbonne UniversitésParis, France; UFR Sciences Exactes et Naturelles-Laboratoire de Stress Défenses et Reproduction des Plantes, Moulin de la HousseReims, France
| | - Sandrine Lacoste
- Institut de Systématique, Evolution et Biodiversité-UMR 7205-Centre National de la Recherche Scientifique, MNHN, UPMC, EPHE, Muséum National D'histoire Naturelle, Sorbonne Universités Paris, France
| | - Fabienne Baillieul
- UFR Sciences Exactes et Naturelles-Laboratoire de Stress Défenses et Reproduction des Plantes, Moulin de la Housse Reims, France
| | | | - Joëlle Dupont
- Institut de Systématique, Evolution et Biodiversité-UMR 7205-Centre National de la Recherche Scientifique, MNHN, UPMC, EPHE, Muséum National D'histoire Naturelle, Sorbonne Universités Paris, France
| |
Collapse
|
40
|
Wu L, Liu R, Niu Y, Lin H, Ye W, Guo L, Hu X. Whole genome sequence of Pantoea ananatis R100, an antagonistic bacterium isolated from rice seed. J Biotechnol 2016; 225:1-2. [PMID: 26965742 DOI: 10.1016/j.jbiotec.2016.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/17/2022]
Abstract
Pantoea ananatis is a group of bacteria, which was first reported as plant pathogen. Recently, several papers also described its biocontrol ability. In 2003, P. ananatis R100, which showed strong antagonism against several plant pathogens, was isolated from rice seeds. In this study, whole genome sequence of this strain was determined by SMRT Cell technology. The total genome size of R100 is 4,857,861bp with 4659 coding genes (CDS), 82 tRNAs and 22 rRNAs. The genome sequence of R100 may shed a light on the research of antagonism P. ananatis.
Collapse
Affiliation(s)
- Liwen Wu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ruifang Liu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China; Agricultural Genomes Institute at Shenzhen, Chiese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Yaofang Niu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Haiyan Lin
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China; Agricultural Genomes Institute at Shenzhen, Chiese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Weijun Ye
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| | - Xingming Hu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
41
|
Palmer M, de Maayer P, Poulsen M, Steenkamp ET, van Zyl E, Coutinho TA, Venter SN. Draft genome sequences of Pantoea agglomerans and Pantoea vagans isolates associated with termites. Stand Genomic Sci 2016; 11:23. [PMID: 26937267 PMCID: PMC4774006 DOI: 10.1186/s40793-016-0144-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/20/2016] [Indexed: 02/02/2023] Open
Abstract
The genus Pantoea incorporates many economically and clinically important species. The plant-associated species, Pantoea agglomerans and Pantoea vagans, are closely related and are often isolated from similar environments. Plasmids conferring certain metabolic capabilities are also shared amongst these two species. The genomes of two isolates obtained from fungus-growing termites in South Africa were sequenced, assembled and annotated. A high number of orthologous genes are conserved within and between these species. The difference in genome size between P. agglomerans MP2 (4,733,829 bp) and P. vagans MP7 (4,598,703 bp) can largely be attributed to the differences in plasmid content. The genome sequences of these isolates may shed light on the common traits that enable P. agglomerans and P. vagans to co-occur in plant- and insect-associated niches.
Collapse
Affiliation(s)
- Marike Palmer
- />Department of Microbiology and Plant Pathology and the Genome Research Institute, University of Pretoria, Pretoria, 0002 South Africa
- />DST-NRF Centre of Excellence in Tree Health Biotechnology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | - Pieter de Maayer
- />Department of Microbiology and Plant Pathology and the Genome Research Institute, University of Pretoria, Pretoria, 0002 South Africa
- />Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002 South Africa
| | - Michael Poulsen
- />Department of Biology, Centre for Social Evolution, Section for Ecology and Evolution, University of Copenhagen, Univeritetsparken 15, 2100 Copenhagen East, Denmark
| | - Emma T. Steenkamp
- />Department of Microbiology and Plant Pathology and the Genome Research Institute, University of Pretoria, Pretoria, 0002 South Africa
- />DST-NRF Centre of Excellence in Tree Health Biotechnology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | - Elritha van Zyl
- />Department of Microbiology and Plant Pathology and the Genome Research Institute, University of Pretoria, Pretoria, 0002 South Africa
- />DST-NRF Centre of Excellence in Tree Health Biotechnology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | - Teresa A. Coutinho
- />Department of Microbiology and Plant Pathology and the Genome Research Institute, University of Pretoria, Pretoria, 0002 South Africa
- />DST-NRF Centre of Excellence in Tree Health Biotechnology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | - Stephanus N. Venter
- />Department of Microbiology and Plant Pathology and the Genome Research Institute, University of Pretoria, Pretoria, 0002 South Africa
- />DST-NRF Centre of Excellence in Tree Health Biotechnology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| |
Collapse
|
42
|
Llop P. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids. Front Microbiol 2015; 6:874. [PMID: 26379649 PMCID: PMC4551865 DOI: 10.3389/fmicb.2015.00874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 08/10/2015] [Indexed: 12/23/2022] Open
Abstract
New pathogenic bacteria belonging to the genus Erwinia associated with pome fruit trees (Erwinia, E. piriflorinigrans, E. uzenensis) have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc.) show a high intraspecies homogeneity (i.e., among E. amylovora strains) and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes) from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with non-pathogenic species present in the same niche, and the role of the genes that are conserved in all of them.
Collapse
Affiliation(s)
- Pablo Llop
- Department of Evolutionary Genetics, Cavanilles Institute, University of Valencia , Paterna, Valencia, Spain
| |
Collapse
|
43
|
Zhang Y, Qiu S. Examining phylogenetic relationships of Erwinia and Pantoea species using whole genome sequence data. Antonie van Leeuwenhoek 2015; 108:1037-46. [PMID: 26296376 DOI: 10.1007/s10482-015-0556-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
The genera Erwinia and Pantoea contain species that are devastating plant pathogens, non-pathogen epiphytes, and opportunistic human pathogens. However, some controversies persist in the taxonomic classification of these two closely related genera. The phylogenomic analysis of these two genera was investigated via a comprehensive analysis of 25 Erwinia genomes and 23 Pantoea genomes. Single-copy orthologs could be extracted from the Erwinia/Pantoea core-genome to reconstruct the Erwinia/Pantoea phylogeny. This tree has strong bootstrap support for almost all branches. We also estimated the in silico DNA-DNA hybridization (isDDH) and the average nucleotide identity (ANI) values between each genome; strains from the same species showed ANI values ≥96% and isDDH values >70%. These data confirm that whole genome sequence data provides a powerful tool to resolve the complex taxonomic questions of Erwinia/Pantoea, e.g. Pantoea agglomerans 299R was not clustered into a single group with other P. agglomerans strains, and the ANI values and isDDH values between them were <91% and around 43.8%, respectively. These data indicate P. agglomerans 299R should not be classified into the P. agglomerans species. In addition, another strain (Pantoea sp. At_9b) was identified that may represent a novel Pantoea species. We also evaluated the performance of six commonly used housekeeping genes (atpD, carA, gyrB, infB, recA, and rpoB) in phylogenetic inference. A single gene was not enough to obtain a reliable species tree, and it was necessary to use the multilocus sequence analysis of the six marker genes to recover the Erwinia/Pantoea phylogeny.
Collapse
Affiliation(s)
- Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA.
| | - Sai Qiu
- Department of Nematology and Entomology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
44
|
Facey PD, Méric G, Hitchings MD, Pachebat JA, Hegarty MJ, Chen X, Morgan LVA, Hoeppner JE, Whitten MMA, Kirk WDJ, Dyson PJ, Sheppard SK, Del Sol R. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis. Genome Biol Evol 2015; 7:2188-202. [PMID: 26185096 PMCID: PMC4558854 DOI: 10.1093/gbe/evv136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea.
Collapse
Affiliation(s)
- Paul D Facey
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Guillaume Méric
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Matthew D Hitchings
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Justin A Pachebat
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, United Kingdom
| | - Matt J Hegarty
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, United Kingdom
| | - Xiaorui Chen
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Laura V A Morgan
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - James E Hoeppner
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Miranda M A Whitten
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - William D J Kirk
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Paul J Dyson
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Sam K Sheppard
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom MRC CLIMB Consortium, Institute of Life Science, Swansea University, United Kingdom Department of Zoology, University of Oxford, United Kingdom
| | - Ricardo Del Sol
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| |
Collapse
|
45
|
Walterson AM, Stavrinides J. Pantoea:insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev 2015; 39:968-84. [DOI: 10.1093/femsre/fuv027] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
|
46
|
Lòpez-Fernàndez S, Sonego P, Moretto M, Pancher M, Engelen K, Pertot I, Campisano A. Whole-genome comparative analysis of virulence genes unveils similarities and differences between endophytes and other symbiotic bacteria. Front Microbiol 2015; 6:419. [PMID: 26074885 PMCID: PMC4443252 DOI: 10.3389/fmicb.2015.00419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 11/14/2022] Open
Abstract
Plant pathogens and endophytes co-exist and often interact with the host plant and within its microbial community. The outcome of these interactions may lead to healthy plants through beneficial interactions, or to disease through the inducible production of molecules known as virulence factors. Unravelling the role of virulence in endophytes may crucially improve our understanding of host-associated microbial communities and their correlation with host health. Virulence is the outcome of a complex network of interactions, and drawing the line between pathogens and endophytes has proven to be conflictive, as strain-level differences in niche overlapping, ecological interactions, state of the host's immune system and environmental factors are seldom taken into account. Defining genomic differences between endophytes and plant pathogens is decisive for understanding the boundaries between these two groups. Here we describe the major differences at the genomic level between seven grapevine endophytic test bacteria, and 12 reference strains. We describe the virulence factors detected in the genomes of the test group, as compared to endophytic and non-endophytic references, to better understand the distribution of these traits in endophytic genomes. To do this, we adopted a comparative whole-genome approach, encompassing BLAST-based searches through the GUI-based tools Mauve and BRIG as well as calculating the core and accessory genomes of three genera of enterobacteria. We outline divergences in metabolic pathways of these endophytes and reference strains, with the aid of the online platform RAST. We present a summary of the major differences that help in the drawing of the boundaries between harmless and harmful bacteria, in the spirit of contributing to a microbiological definition of endophyte.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Campisano
- Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| |
Collapse
|
47
|
Sheibani-Tezerji R, Naveed M, Jehl MA, Sessitsch A, Rattei T, Mitter B. The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol 2015; 6:440. [PMID: 26029184 PMCID: PMC4428218 DOI: 10.3389/fmicb.2015.00440] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/23/2015] [Indexed: 11/13/2022] Open
Abstract
The seed as a habitat for microorganisms is as yet under-explored and has quite distinct characteristics as compared to other vegetative plant tissues. In this study, we investigated three closely related P. ananatis strains (named S6, S7, and S8), which were isolated from maize seeds of healthy plants. Plant inoculation experiments revealed that each of these strains exhibited a different phenotype ranging from weak pathogenic (S7), commensal (S8), to a beneficial, growth-promoting effect (S6) in maize. We performed a comparative genomics analysis in order to find genetic determinants responsible for the differences observed. Recent studies provided exciting insight into the genetic drivers of niche adaption and functional diversification of the genus Pantoea. However, we report here for the first time on the analysis of P. ananatis strains colonizing the same ecological niche but showing distinct interaction strategies with the host plant. Our comparative analysis revealed that genomes of these three strains are highly similar. However, genomic differences in genes encoding protein secretion systems and putative effectors, and transposase/integrases/phage related genes could be observed.
Collapse
Affiliation(s)
- Raheleh Sheibani-Tezerji
- Bioresources Unit, Health and Environment Department, AIT Austrian Institute of Technology GmbHTulln, Austria
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Muhammad Naveed
- Bioresources Unit, Health and Environment Department, AIT Austrian Institute of Technology GmbHTulln, Austria
| | - Marc-André Jehl
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Angela Sessitsch
- Bioresources Unit, Health and Environment Department, AIT Austrian Institute of Technology GmbHTulln, Austria
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Birgit Mitter
- Bioresources Unit, Health and Environment Department, AIT Austrian Institute of Technology GmbHTulln, Austria
| |
Collapse
|
48
|
Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. J Microbiol Methods 2015; 113:50-6. [PMID: 25863142 DOI: 10.1016/j.mimet.2015.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
Universal primers targeting the bacterial 16S-rRNA-gene allow quantification of the total bacterial load in variable sample types by qPCR. However, many universal primer pairs also amplify DNA of plants or even of archaea and other eukaryotic cells. By using these primers, the total bacterial load might be misevaluated, whenever samples contain high amounts of non-target DNA. Thus, this study aimed to provide primer pairs which are suitable for quantification and identification of bacterial DNA in samples such as feed, spices and sample material from digesters. For 42 primers, mismatches to the sequence of chloroplasts and mitochondria of plants were evaluated. Six primer pairs were further analyzed with regard to the question whether they anneal to DNA of archaea, animal tissue and fungi. Subsequently they were tested with sample matrix such as plants, feed, feces, soil and environmental samples. To this purpose, the target DNA in the samples was quantified by qPCR. The PCR products of plant and feed samples were further processed for the Single Strand Conformation Polymorphism method followed by sequence analysis. The sequencing results revealed that primer pair 335F/769R amplified only bacterial DNA in samples such as plants and animal feed, in which the DNA of plants prevailed.
Collapse
|
49
|
Illeghems K, Weckx S, De Vuyst L. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample. Food Microbiol 2015; 50:54-63. [PMID: 25998815 DOI: 10.1016/j.fm.2015.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/01/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
A high-resolution functional metagenomic analysis of a representative single sample of a Brazilian spontaneous cocoa bean fermentation process was carried out to gain insight into its bacterial community functioning. By reconstruction of microbial meta-pathways based on metagenomic data, the current knowledge about the metabolic capabilities of bacterial members involved in the cocoa bean fermentation ecosystem was extended. Functional meta-pathway analysis revealed the distribution of the metabolic pathways between the bacterial members involved. The metabolic capabilities of the lactic acid bacteria present were most associated with the heterolactic fermentation and citrate assimilation pathways. The role of Enterobacteriaceae in the conversion of substrates was shown through the use of the mixed-acid fermentation and methylglyoxal detoxification pathways. Furthermore, several other potential functional roles for Enterobacteriaceae were indicated, such as pectinolysis and citrate assimilation. Concerning acetic acid bacteria, metabolic pathways were partially reconstructed, in particular those related to responses toward stress, explaining their metabolic activities during cocoa bean fermentation processes. Further, the in-depth metagenomic analysis unveiled functionalities involved in bacterial competitiveness, such as the occurrence of CRISPRs and potential bacteriocin production. Finally, comparative analysis of the metagenomic data with bacterial genomes of cocoa bean fermentation isolates revealed the applicability of the selected strains as functional starter cultures.
Collapse
Affiliation(s)
- Koen Illeghems
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
50
|
Draft Genome Sequence of Pantoea sp. Strain MBLJ3, Isolated in a Laboratory Environmental Control Study. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01595-14. [PMID: 25720687 PMCID: PMC4342428 DOI: 10.1128/genomea.01595-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This report describes the draft genome sequence of a newly isolated strain, Pantoea sp. MBLJ3. The genome is 4.8 Mb in size, with a G+C content of 54.27%, and it contains 4,522 protein-coding sequences, 69 tRNA genes, and 5 rRNA genes.
Collapse
|