1
|
Zhang G, He M, Xiao L, Jiao Y, Han J, Li C, Miller MJ, Zhang L. Milk fat globule membrane protects Bifidobacterium longum ssp. infantis ATCC 15697 against bile stress by modifying global transcriptional responses. J Dairy Sci 2024; 107:91-104. [PMID: 37678788 DOI: 10.3168/jds.2023-23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
The milk fat globule membrane (MFGM) can protect probiotic bacteria from bile stress. However, its potential mechanism has not been reported. In this study, the viability, morphology and gene transcriptional response of Bifidobacterium longum ssp. infantis ATCC 15697 (BI_15697) stressed by bile salts with or without MFGM were investigated. It was shown that MFGM alleviated the reduction in BI_15697 population induced by 0.2% porcine bile stress and restored the population to the control levels. MFGM ameliorated the shrunken, fragmented appearance and irregular morphology of BI_15697 and maintained cell integrity disrupted by bile stress. RNA-sequencing results showed that MFGM increased transport of glucose and raffinose and decreased that of branched-chain amino acids (BCAA) in the presence of bile salts. MFGM stimulated the expression of genes involved in the synthesis of raffinose in galactose metabolism and the metabolism of BCAA, suggesting that MFGM stimulated the accumulation of raffinose and BCAA in the presence of bile. In addition, MFGM stimulated the expression of 2 bile efflux transporters under bile stress. Together, the multifactorial response helps BI_15697 excrete bile salts and maintain cellular integrity in response to bile stress. This study proposes a mechanism for the protection of BI_15697 against bile salt stress by MFGM, thereby providing a molecular basis for its application in incorporation of probiotics.
Collapse
Affiliation(s)
- Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingxue He
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Xiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuehua Jiao
- Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jianchun Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150030, China.
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Niu X, Yin X, Wu X, Zhang Q, Jiang Y, He J, Zhao Y, Zhang C, Ren Y, Lai M, Sang Y, Wang R. Heat-Killed Bifidobacterium longum BBMN68 in Pasteurized Yogurt Alleviates Mugwort Pollen-Induced Allergic Airway Responses through Gut Microbiota Modulation in a Murine Model. Foods 2023; 12:2049. [PMID: 37238867 DOI: 10.3390/foods12102049if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 07/26/2024] Open
Abstract
Many probiotic bacteria have been proven to prevent allergic airway responses through immunomodulation. This study was conducted to evaluate the effects of heat-killed Bifidobacterium longum BBMN68 (BBMN68) in pasteurized yogurt on the alleviation of mugwort pollen (MP)-induced allergic inflammation. BALB/c mice aged 5-6 weeks were randomly assigned and fed pasteurized yogurt containing heat-killed BBMN68 for 27 days, followed by allergic sensitization and challenge with MP extract. The allergic mice that received pasteurized yogurt containing heat-killed BBMN68 had improved immune status, including a lower serum IgE level, decreased serum interleukin (IL)-4, IL-5, and IL-13 concentrations, and alleviated airway inflammation manifested by increased macrophage and decreased eosinophil and neutrophil counts in BALF, as well as airway remodeling and suppressed peribronchial cellular infiltration. Moreover, oral administration of pasteurized yogurt containing heat-killed BBMN68 significantly modulated gut microbiota composition by influencing the proportion of beneficial genera associated with inflammation and immunity, such as Lactobacillus, Candidatus_Saccharimonas, Odoribacter, and Parabacteroides, which also negatively correlated with serum IgE and Th2 cytokine levels. These results demonstrated that pasteurized yogurt containing heat-killed BBMN68 had mitigative effects on allergic airway inflammation, likely through maintaining the systemic Th1/Th2 immune balance by altering the structure and function of the gut microbiota.
Collapse
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xindi Yin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xiuying Wu
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yunyun Jiang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Jingjing He
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuyang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chao Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yimei Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengxuan Lai
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Yue Sang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
3
|
Niu X, Yin X, Wu X, Zhang Q, Jiang Y, He J, Zhao Y, Zhang C, Ren Y, Lai M, Sang Y, Wang R. Heat-Killed Bifidobacterium longum BBMN68 in Pasteurized Yogurt Alleviates Mugwort Pollen-Induced Allergic Airway Responses through Gut Microbiota Modulation in a Murine Model. Foods 2023; 12:2049. [PMID: 37238867 PMCID: PMC10217734 DOI: 10.3390/foods12102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Many probiotic bacteria have been proven to prevent allergic airway responses through immunomodulation. This study was conducted to evaluate the effects of heat-killed Bifidobacterium longum BBMN68 (BBMN68) in pasteurized yogurt on the alleviation of mugwort pollen (MP)-induced allergic inflammation. BALB/c mice aged 5-6 weeks were randomly assigned and fed pasteurized yogurt containing heat-killed BBMN68 for 27 days, followed by allergic sensitization and challenge with MP extract. The allergic mice that received pasteurized yogurt containing heat-killed BBMN68 had improved immune status, including a lower serum IgE level, decreased serum interleukin (IL)-4, IL-5, and IL-13 concentrations, and alleviated airway inflammation manifested by increased macrophage and decreased eosinophil and neutrophil counts in BALF, as well as airway remodeling and suppressed peribronchial cellular infiltration. Moreover, oral administration of pasteurized yogurt containing heat-killed BBMN68 significantly modulated gut microbiota composition by influencing the proportion of beneficial genera associated with inflammation and immunity, such as Lactobacillus, Candidatus_Saccharimonas, Odoribacter, and Parabacteroides, which also negatively correlated with serum IgE and Th2 cytokine levels. These results demonstrated that pasteurized yogurt containing heat-killed BBMN68 had mitigative effects on allergic airway inflammation, likely through maintaining the systemic Th1/Th2 immune balance by altering the structure and function of the gut microbiota.
Collapse
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xindi Yin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xiuying Wu
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yunyun Jiang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Jingjing He
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuyang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chao Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yimei Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengxuan Lai
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Yue Sang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
4
|
Genome of Bifidobacterium longum NCIM 5672 provides insights into its acid-tolerance mechanism and probiotic properties. Arch Microbiol 2021; 203:6109-6118. [PMID: 34553262 DOI: 10.1007/s00203-021-02573-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Bifidobacterium longum NCIM 5672 is a probiotic strain isolated from the Indian infant feces. The probiotic efficacy of Bifidobacteria is majorly affected by its acid tolerance. This study determined the probiotic properties and acid-tolerance mechanism of B. longum NCIM 5672 using whole-genome sequencing. The genome annotation is carried out using the RAST web server and NCBI PGAAP. The draft genome sequence of this strain, assembled in 63 contigs, consists of 22,46,978 base pairs, 1900 coding sequences and a GC content of 59.6%. The genome annotation revealed that seven candidate genes might be involved in regulating the acid tolerance of B. longum NCIM 5672. Furthermore, the presence of genes associated with immunomodulation and cell adhesion support the probiotic background of the strain. The analysis of candidate acid- tolerance-associated genes revealed three genes, argC, argH, and dapA, may play an essential role in high acid tolerance in B. longum NCIM 5672. The results of RT-qPCR supported this conclusion. Altogether, the results presented here supply an effective way to select acid-resistant strains for the food industry and provide new strategies to enhance this species' industrial applications and health-promoting properties.
Collapse
|
5
|
Xiao Y, Yang C, Yu L, Tian F, Wu Y, Zhao J, Zhang H, Yang R, Chen W, Hill C, Cui Y, Zhai Q. Human gut-derived B. longum subsp. longum strains protect against aging in a D-galactose-induced aging mouse model. MICROBIOME 2021; 9:180. [PMID: 34470652 PMCID: PMC8411540 DOI: 10.1186/s40168-021-01108-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/02/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Probiotics have been used to regulate the gut microbiota and physiology in various contexts, but their precise mechanisms of action remain unclear. RESULTS By population genomic analysis of 418 Bifidobacterium longum strains, including 143 newly sequenced in this study, three geographically distinct gene pools/populations, BLAsia1, BLAsia2, and BLothers, were identified. Genes involved in cell wall biosynthesis, particularly peptidoglycan biosynthesis, varied considerably among the core genomes of the different populations, but accessory genes that contributed to the carbohydrate metabolism were significantly distinct. Although active transmission was observed inter-host, inter-country, inter-city, intra-community, and intra-family, a single B. longum clone seemed to reside within each individual. A significant negative association was observed between host age and relative abundance of B. longum, while there was a strong positive association between host age and strain genotype [e.g., single nucleotide polymorphisms in the arginine biosynthesis pathway]. Further animal experiments performed with the B. longum isolates via using a D-galactose-induced aging mouse model supported these associations, in which B. longum strains with different genotypes in arginine biosynthesis pathway showed divergent abilities on protecting against host aging possibly via their different abilities to modify the metabolism of gut microbes. CONCLUSIONS This is the first known example of research on the evolutionary history and transmission of this probiotic species. Our results propose a new mechanistic insight for promoting host longevity via the informed use of specific probiotics or molecules. Video abstract.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- International Joint Research Laboratory for Probiotics At Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 Jiangsu China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004 China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 Jiangsu China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People’s Republic of China
| | - Colin Hill
- School of Microbiology & APC Microbiome Institute, University College Cork, Cork, T12 YN60 Ireland
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- International Joint Research Laboratory for Probiotics At Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
6
|
Kumar H, Collado MC, Wopereis H, Salminen S, Knol J, Roeselers G. The Bifidogenic Effect Revisited-Ecology and Health Perspectives of Bifidobacterial Colonization in Early Life. Microorganisms 2020; 8:E1855. [PMID: 33255636 PMCID: PMC7760687 DOI: 10.3390/microorganisms8121855] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Extensive microbial colonization of the infant gastrointestinal tract starts after parturition. There are several parallel mechanisms by which early life microbiome acquisition may proceed, including early exposure to maternal vaginal and fecal microbiota, transmission of skin associated microbes, and ingestion of microorganisms present in breast milk. The crucial role of vertical transmission from the maternal microbial reservoir during vaginal delivery is supported by the shared microbial strains observed among mothers and their babies and the distinctly different gut microbiome composition of caesarean-section born infants. The healthy infant colon is often dominated by members of the keystone genus Bifidobacterium that have evolved complex genetic pathways to metabolize different glycans present in human milk. In exchange for these host-derived nutrients, bifidobacteria's saccharolytic activity results in an anaerobic and acidic gut environment that is protective against enteropathogenic infection. Interference with early-life microbiota acquisition and development could result in adverse health outcomes. Compromised microbiota development, often characterized by decreased abundance of Bifidobacterium species has been reported in infants delivered prematurely, delivered by caesarean section, early life antibiotic exposure and in the case of early life allergies. Various microbiome modulation strategies such as probiotic, prebiotics, synbiotics and postbiotics have been developed that are able to generate a bifidogenic shift and help to restore the microbiota development. This review explores the evolutionary ecology of early-life type Bifidobacterium strains and their symbiotic relationship with humans and discusses examples of compromised microbiota development in which stimulating the abundance and activity of Bifidobacterium has demonstrated beneficial associations with health.
Collapse
Affiliation(s)
- Himanshu Kumar
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, 46980 Valencia, Spain;
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
| | - Harm Wopereis
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
- Laboratory for Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Guus Roeselers
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| |
Collapse
|
7
|
King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J, Crandall KA, Fochtman BC, Gasparyan L, Gulzar N, Howell P, Issa N, Krampis K, Mishra L, Morizono H, Pisegna JR, Rao S, Ren Y, Simonyan V, Smith K, VedBrat S, Yao MD, Mazumder R. Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One 2019; 14:e0206484. [PMID: 31509535 PMCID: PMC6738582 DOI: 10.1371/journal.pone.0206484] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
A comprehensive knowledge of the types and ratios of microbes that inhabit the healthy human gut is necessary before any kind of pre-clinical or clinical study can be performed that attempts to alter the microbiome to treat a condition or improve therapy outcome. To address this need we present an innovative scalable comprehensive analysis workflow, a healthy human reference microbiome list and abundance profile (GutFeelingKB), and a novel Fecal Biome Population Report (FecalBiome) with clinical applicability. GutFeelingKB provides a list of 157 organisms (8 phyla, 18 classes, 23 orders, 38 families, 59 genera and 109 species) that forms the baseline biome and therefore can be used as healthy controls for studies related to dysbiosis. This list can be expanded to 863 organisms if closely related proteomes are considered. The incorporation of microbiome science into routine clinical practice necessitates a standard report for comparison of an individual's microbiome to the growing knowledgebase of "normal" microbiome data. The FecalBiome and the underlying technology of GutFeelingKB address this need. The knowledgebase can be useful to regulatory agencies for the assessment of fecal transplant and other microbiome products, as it contains a list of organisms from healthy individuals. In addition to the list of organisms and their abundances, this study also generated a collection of assembled contiguous sequences (contigs) of metagenomics dark matter. In this study, metagenomic dark matter represents sequences that cannot be mapped to any known sequence but can be assembled into contigs of 10,000 nucleotides or higher. These sequences can be used to create primers to study potential novel organisms. All data is freely available from https://hive.biochemistry.gwu.edu/gfkb and NCBI's Short Read Archive.
Collapse
Affiliation(s)
- Charles H. King
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
- McCormick Genomic and Proteomic Center, George Washington University, Washington, DC, United States of America
| | - Hiral Desai
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Allison C. Sylvetsky
- The Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Jonathan LoTempio
- The Institute for Biomedical Science, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Shant Ayanyan
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Jill Carrie
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Keith A. Crandall
- Computational Biology Institute and The Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Brian C. Fochtman
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Lusine Gasparyan
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Naila Gulzar
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Paul Howell
- KamTek Inc, Frederick, Maryland, United States of America
| | - Najy Issa
- The Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Konstantinos Krampis
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, United States of America
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC, United States of America
| | - Hiroki Morizono
- Center for Genetic Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Joseph R. Pisegna
- Division of Gastroenterology and Hepatology VA Greater Los Angeles Healthcare System and Department of Medicine and Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shuyun Rao
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC, United States of America
| | - Yao Ren
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Vahan Simonyan
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | - Krista Smith
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
| | | | - Michael D. Yao
- Washington DC VA Medical Center, Gastroenterology & Hepatology Section, Washington, DC, United States of America
- Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| | - Raja Mazumder
- The Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University Medical Center, Washington, DC, United States of America
- Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| |
Collapse
|
8
|
Huang G, Pan H, Zhu Z, Li Q. The complete genome sequence of Bifidobacterium longum LTBL16, a potential probiotic strain from healthy centenarians with strong antioxidant activity. Genomics 2019; 112:769-773. [PMID: 31226482 DOI: 10.1016/j.ygeno.2019.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
B. longum LTBL16 is a potential probiotic strain that was isolated from healthy centenarians in Bama, China. In vitro experiments show that B. longum LTBL16 has a strong antioxidant activity and the complete genome of B. longum LTBL16 was sequenced in this work. The genome consists of one 2,430,682 bp circular chromosome that is plasmid free. The circular chromosome has a GC content of 61.23% and contains 2071 coding sequences (CDSs), 4 rRNA manipulators and 55 tRNA coding genes. Genetic analysis showed that at least five protein-coding genes were associated with antioxidant activity, and the abundance of these genes may be related to free radical scavenging rates and oxygen tolerance. In addition, the safety of B. longum LTBL16 was evaluated using a virulence factor database and antibiotic resistance gene database. The results indicate that B. longum LTBL16 has the good potential for the development and utilization as a probiotic.
Collapse
Affiliation(s)
- Guohong Huang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, People's Republic of China; College of Food and Biological Technology, Guangxi Vocational and Technical College, Ming Yang Industrial Park Jiangnan District, Nanning 530226, People's Republic of China
| | - Haibo Pan
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, People's Republic of China
| | - Zhenjun Zhu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, People's Republic of China
| | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, People's Republic of China.
| |
Collapse
|
9
|
Tauzin AS, Bruel L, Laville E, Nicoletti C, Navarro D, Henrissat B, Perrier J, Potocki-Veronese G, Giardina T, Lafond M. Sucrose 6 F-phosphate phosphorylase: a novel insight in the human gut microbiome. Microb Genom 2019; 5. [PMID: 30913025 PMCID: PMC6521584 DOI: 10.1099/mgen.0.000253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human gut microbiome plays an essential role in maintaining human health including in degradation of dietary fibres and carbohydrates further used as nutrients by both the host and the gut bacteria. Previously, we identified a polysaccharide utilization loci (PUL) involved in sucrose and raffinose family oligosaccharide (RFO) metabolism from one of the most common Firmicutes present in individuals, Ruminococcus gnavus E1. One of the enzymes encoded by this PUL was annotated as a putative sucrose phosphate phosphorylase (RgSPP). In the present study, we have in-depth characterized the heterologously expressed RgSPP as sucrose 6F-phosphate phosphorylase (SPP), expanding our knowledge of the glycoside hydrolase GH13_18 subfamily. Specifically, the enzymatic characterization showed a selective activity on sucrose 6F-phosphate (S6FP) acting both in phosphorolysis releasing alpha-d-glucose-1-phosphate (G1P) and alpha-d-fructose-6-phosphate (F6P), and in reverse phosphorolysis from G1P and F6P to S6FP. Interestingly, such a SPP activity had never been observed in gut bacteria before. In addition, a phylogenetic and synteny analysis showed a clustering and a strictly conserved PUL organization specific to gut bacteria. However, a wide prevalence and abundance study with a human metagenomic library showed a correlation between SPP activity and the geographical origin of the individuals and, thus, most likely linked to diet. Rgspp gene overexpression has been observed in mice fed with a high-fat diet suggesting, as observed for humans, that intestine lipid and carbohydrate microbial metabolisms are intertwined. Finally, based on the genomic environment analysis, in vitro and in vivo studies, results provide new insights into the gut microbiota catabolism of sucrose, RFOs and S6FP.
Collapse
Affiliation(s)
- Alexandra S Tauzin
- 1Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.,2LISBP, CNRS, INRA, INSAT, Université de Toulouse, F-31400 Toulouse, France.,‡Present address: LISBP, CNRS, INRA, INSAT, Université de Toulouse, F-31400 Toulouse, France
| | - Laetitia Bruel
- 1Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Elisabeth Laville
- 2LISBP, CNRS, INRA, INSAT, Université de Toulouse, F-31400 Toulouse, France
| | | | - David Navarro
- 3INRA, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, PolyTech, F-13009, Marseille, France
| | - Bernard Henrissat
- 4Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,5Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Josette Perrier
- 1Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Thierry Giardina
- 1Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Mickael Lafond
- 1Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
10
|
Xu Q, Zhai Z, An H, Yang Y, Yin J, Wang G, Ren F, Hao Y. The MarR Family Regulator BmrR Is Involved in Bile Tolerance of Bifidobacterium longum BBMN68 via Controlling the Expression of an ABC Transporter. Appl Environ Microbiol 2019; 85:e02453-18. [PMID: 30478236 PMCID: PMC6344635 DOI: 10.1128/aem.02453-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 11/20/2022] Open
Abstract
In order to colonize the human gastrointestinal tract and exert their beneficial effects, bifidobacteria must effectively cope with toxic bile salts in the intestine; however, the molecular mechanism underlying bile tolerance is poorly understood. In this study, heterologous expression of a MarR family transcriptional regulator, BmrR, significantly reduced the ox bile resistance of Lactococcus lactis NZ9000, suggesting that BmrR might play a role in the bile stress response. In silico analysis combined with reverse transcription-PCR assays demonstrated that bmrR was cotranscribed with bmrA and bmrB, which encoded multidrug resistance (MDR) ABC transporters. Promoter prediction and electrophoretic mobility shift assays revealed that BmrR could autoregulate the bmrRAB operon by binding to the bmr box (ATTGTTG-6nt-CAACAAT) in the promoter region. Moreover, heterologous expression of bmrA and bmrB in L. lactis yielded 20.77-fold higher tolerance to 0.10% ox bile, compared to the wild-type strain. In addition, ox bile could disrupt the DNA binding activity of BmrR as a ligand. Taken together, our findings indicate that the bmrRAB operon is autoregulated by the transcriptional regulator BmrR and ox bile serves as an inducer to activate the bile efflux transporter BmrAB in response to bile stress in Bifidobacterium longum BBMN68.IMPORTANCE Bifidobacteria are natural inhabitants of the human intestinal tract. Some bifidobacterial strains are used as probiotics in fermented dairy production because of their health-promoting effects. Following consumption, bifidobacteria colonize the lower intestinal tract, where the concentrations of bile salts remain nearly 0.05% to 2.0%. Bile salts, as detergent-like antimicrobial compounds, can cause cellular membrane disruption, protein misfolding, and DNA damage. Therefore, tolerance to physiological bile stress is indeed essential for bifidobacteria to survive and to exert probiotic effects in the gastrointestinal tract. In B. longum BBMN68, the MarR-type regulator BmrR was involved in the bile stress response by autoregulating the bmrRAB operon, and ox bile as an inducer could increase the expression of the BmrAB transporter to enhance the bile tolerance of BBMN68. Our study represents a functional analysis of the bmrRAB operon in the bile stress response, which will provide new insights into bile tolerance mechanisms in Bifidobacterium and other bacteria.
Collapse
Affiliation(s)
- Qi Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Haoran An
- Center for Infectious Disease Research, Tsinghua-Peking Joint Center for Life Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jia Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guohong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Beijing, China
| |
Collapse
|
11
|
Zuo F, Yu R, Xiao M, Khaskheli GB, Sun X, Ma H, Ren F, Zhang B, Chen S. Transcriptomic analysis of Bifidobacterium longum subsp. longum BBMN68 in response to oxidative shock. Sci Rep 2018; 8:17085. [PMID: 30459453 PMCID: PMC6244367 DOI: 10.1038/s41598-018-35286-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 10/18/2018] [Indexed: 02/08/2023] Open
Abstract
Bifidobacterium longum strain BBMN68 is sensitive to low concentrations of oxygen. A transcriptomic study was performed to identify candidate genes for B. longum BBMN68's response to oxygen treatment (3%, v/v). Expression of genes and pathways of B. longum BBMN68 involved in nucleotide metabolism, amino acid transport, protein turnover and chaperones increased, and that of carbohydrate metabolism, translation and biogenesis decreased to adapt to the oxidative stress. Notably, expression of two classes of ribonucleotide reductase (RNR), which are important for deoxyribonucleotide biosynthesis, was rapidly and persistently induced. First, the class Ib RNR NrdHIEF was immediately upregulated after 5 min oxygen exposure, followed by the class III RNR NrdDG, which was upregulated after 20 min of exposure. The upregulated expression of branched-chain amino acids and tetrahydrofolate biosynthesis-related genes occurred in bifidobacteria in response to oxidative stress. These change toward to compensate for DNA and protein damaged by reactive oxygen species (ROS). In addition, oxidative stress resulted in improved B. longum BBMN68 cell hydrophobicity and autoaggregation. These results provide a rich resource for our understanding of the response mechanisms to oxidative stress in bifidobacteria.
Collapse
Affiliation(s)
- Fanglei Zuo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Rui Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Man Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Gul Bahar Khaskheli
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xiaofei Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Shangwu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China. .,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| |
Collapse
|
12
|
A Transposon Mutagenesis System for Bifidobacterium longum subsp. longum Based on an IS 3 Family Insertion Sequence, IS Blo11. Appl Environ Microbiol 2018; 84:AEM.00824-18. [PMID: 29934330 DOI: 10.1128/aem.00824-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/16/2018] [Indexed: 12/29/2022] Open
Abstract
Bifidobacteria are a major component of the intestinal microbiota in humans, particularly breast-fed infants. Therefore, elucidation of the mechanisms by which these bacteria colonize the intestine is desired. One approach is transposon mutagenesis, a technique currently attracting much attention because, in combination with next-generation sequencing, it enables exhaustive identification of genes that contribute to microbial fitness. We now describe a transposon mutagenesis system for Bifidobacterium longum subsp. longum 105-A (JCM 31944) based on ISBlo11, a native IS3 family insertion sequence. To build this system, xylose-inducible or constitutive bifidobacterial promoters were tested to drive the expression of full-length or a truncated form at the N terminus of the ISBlo11 transposase. An artificial transposon plasmid, pBFS12, in which ISBlo11 terminal inverted repeats are separated by a 3-bp spacer, was also constructed to mimic the transposition intermediate of IS3 elements. The introduction of this plasmid into a strain expressing transposase resulted in the insertion of the plasmid with an efficiency of >103 CFU/μg DNA. The plasmid targets random 3- to 4-bp sequences, but with a preference for noncoding regions. This mutagenesis system also worked at least in B. longum NCC2705. Characterization of a transposon insertion mutant revealed that a putative α-glucosidase mediates palatinose and trehalose assimilation, demonstrating the suitability of transposon mutagenesis for loss-of-function analysis. We anticipate that this approach will accelerate functional genomic studies of B. longum subsp. longumIMPORTANCE Several hundred species of bacteria colonize the mammalian intestine. However, the genes that enable such bacteria to colonize and thrive in the intestine remain largely unexplored. Transposon mutagenesis, combined with next-generation sequencing, is a promising tool to comprehensively identify these genes but has so far been applied only to a small number of intestinal bacterial species. In this study, a transposon mutagenesis system was established for Bifidobacterium longum subsp. longum, a representative health-promoting Bifidobacterium species. The system enables the identification of genes that promote colonization and survival in the intestine and should help illuminate the physiology of this species.
Collapse
|
13
|
Hidalgo-Cantabrana C, Crawley AB, Sanchez B, Barrangou R. Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum. Front Microbiol 2017; 8:1851. [PMID: 29033911 PMCID: PMC5626976 DOI: 10.3389/fmicb.2017.01851] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022] Open
Abstract
Diverse CRISPR-Cas systems provide adaptive immunity in many bacteria and most archaea, via a DNA-encoded, RNA-mediated, nucleic-acid targeting mechanism. Over time, CRISPR loci expand via iterative uptake of invasive DNA sequences into the CRISPR array during the adaptation process. These genetic vaccination cards thus provide insights into the exposure of strains to phages and plasmids in space and time, revealing the historical predatory exposure of a strain. These genetic loci thus constitute a unique basis for genotyping of strains, with potential of resolution at the strain-level. Here, we investigate the occurrence and diversity of CRISPR-Cas systems in the genomes of various Bifidobacterium longum strains across three sub-species. Specifically, we analyzed the genomic content of 66 genomes belonging to B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis, and identified 25 strains that carry 29 total CRISPR-Cas systems. We identify various Type I and Type II CRISPR-Cas systems that are widespread in this species, notably I-C, I-E, and II-C. Noteworthy, Type I-C systems showed extended CRISPR arrays, with extensive spacer diversity. We show how these hypervariable loci can be used to gain insights into strain origin, evolution and phylogeny, and can provide discriminatory sequences to distinguish even clonal isolates. By investigating CRISPR spacer sequences, we reveal their origin and implicate phages and prophages as drivers of CRISPR immunity expansion in this species, with redundant targeting of select prophages. Analysis of CRISPR spacer origin also revealed novel PAM sequences. Our results suggest that CRISPR-Cas immune systems are instrumental in mounting diversified viral resistance in B. longum, and show that these sequences are useful for typing across three subspecies.
Collapse
Affiliation(s)
- Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, IPLA-CSIC, Villaviciosa, Spain
| | - Alexandra B. Crawley
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Borja Sanchez
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, IPLA-CSIC, Villaviciosa, Spain
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P. The gut microbiota of centenarians: Signatures of longevity in the gut microbiota profile. Mech Ageing Dev 2017; 165:180-184. [DOI: 10.1016/j.mad.2016.12.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022]
|
15
|
Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ, Osawa R. Age-Related Changes in the Composition of Gut Bifidobacterium Species. Curr Microbiol 2017; 74:987-995. [PMID: 28593350 PMCID: PMC5486783 DOI: 10.1007/s00284-017-1272-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/27/2017] [Indexed: 12/18/2022]
Abstract
Bifidobacteria are one of the major components in human microbiota that are suggested to function in maintaining human health. The colonization and cell number of Bifidobacterium species in human intestine vary with ageing. However, sequential changes of Bifidobacterium species ranging from newborns to centenarians remain unresolved. Here, we investigated the gut compositional changes of Bifidobacterium species over a wide range of ages. Faecal samples of 441 healthy Japanese subjects between the ages of 0 and 104 years were analysed using real-time PCR with species-specific primers. B. longum group was widely detected from newborns to centenarians, with the highest detection rate. B. breve was detected in approximately 70% of children under 3 years old. B. adolescentis and B. catenulatum groups were predominant after weaning. B. bifidum was detected at almost all ages. The detection rate of B. dentium was higher in the elderly than in other ages. B. animalis ssp. lactis was detected in 11.4% of the subjects and their ages were restricted. B. gallinarum goup was detected in only nine subjects, while B. minimum and B. mongoliense were undetected at any age. The presence of certain Bifidobacterium groups was associated with significantly higher numbers of other Bifidobacterium species/subspecies. Inter-species correlations were found among each species, exception for B. animalis ssp. lactis. These results revealed the patterns and transition points with respect to compositional changes of Bifidobacterium species that occur with ageing, and the findings indicate that there may be symbiotic associations between some of these species in the gut microbiota.
Collapse
Affiliation(s)
- Kumiko Kato
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan.
| | - Toshitaka Odamaki
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan
| | - Eri Mitsuyama
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan
| | - Hirosuke Sugahara
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
16
|
Kwak MJ, Kwon SK, Yoon JK, Song JY, Seo JG, Chung MJ, Kim JF. Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function. Syst Appl Microbiol 2016; 39:429-439. [PMID: 27524178 DOI: 10.1016/j.syapm.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 01/11/2023]
Abstract
Bifidobacteria, often associated with the gastrointestinal tract of animals, are well known for their roles as probiotics. Among the dozens of Bifidobacterium species, Bifidobacterium bifidum, B. breve, and B. longum are the ones most frequently isolated from the feces of infants and known to help the digestion of human milk oligosaccharides. To investigate the correlation between the metabolic properties of bifidobacteria and their phylogeny, we performed a phylogenomic analysis based on 452 core genes of forty-four completely sequenced Bifidobacterium species. Results show that a major evolutionary event leading to the clade of the infant-adapted species is linked to carbohydrate metabolism, but it is not the only factor responsible for the adaptation of bifidobacteria to the gut. The genome of B. longum subsp. infantis, a typical bifidobacterium in the gut of breast-fed infants, encodes proteins associated with several kinds of species-specific metabolic pathways, including urea metabolism and biosynthesis of riboflavin and lantibiotics. Our results demonstrate that these metabolic features, which are associated with the probiotic function of bifidobacteria, are species-specific and highly correlate with their phylogeny.
Collapse
Affiliation(s)
- Min-Jung Kwak
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Soon-Kyeong Kwon
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Kyung Yoon
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Song
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Cell Biotech Co., Ltd., 50, Aegibong-ro 409 beon-gil, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Republic of Korea
| | - Myung Jun Chung
- R&D Center, Cell Biotech Co., Ltd., 50, Aegibong-ro 409 beon-gil, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Strategic Initiative for Microbiomes in Agriculture and Food, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
17
|
Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infant feces. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1187-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Chaplin AV, Efimov BA, Smeianov VV, Kafarskaia LI, Pikina AP, Shkoporov AN. Intraspecies Genomic Diversity and Long-Term Persistence of Bifidobacterium longum. PLoS One 2015; 10:e0135658. [PMID: 26275230 PMCID: PMC4537262 DOI: 10.1371/journal.pone.0135658] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/23/2015] [Indexed: 12/28/2022] Open
Abstract
Members of genus Bifidobacterium are Gram-positive bacteria, representing a large part of the human infant microbiota and moderately common in adults. However, our knowledge about their diversity, intraspecific phylogeny and long-term persistence in humans is still limited. Bifidobacterium longum is generally considered to be the most common and prevalent species in the intestinal microbiota. In this work we studied whole genome sequences of 28 strains of B. longum, including 8 sequences described in this paper. Part of these strains were isolated from healthy children during a long observation period (up to 10 years between isolation from the same patient). The three known subspecies (longum, infantis and suis) could be clearly divided using sequence-based phylogenetic methods, gene content and the average nucleotide identity. The profiles of glycoside hydrolase genes reflected the different ecological specializations of these three subspecies. The high impact of horizontal gene transfer on genomic diversity was observed, which is possibly due to a large number of prophages and rapidly spreading plasmids. The pan-genome characteristics of the subspecies longum corresponded to the open pan-genome model. While the major part of the strain-specific genetic loci represented transposons and phage-derived regions, a large number of cell envelope synthesis genes were also observed within this category, representing high variability of cell surface molecules. We observed the cases of isolation of high genetically similar strains of B. longum from the same patients after long periods of time, however, we didn’t succeed in the isolation of genetically identical bacteria: a fact, reflecting the high plasticity of microbiota in children.
Collapse
Affiliation(s)
- Andrei V Chaplin
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris A Efimov
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir V Smeianov
- Department of Natural Sciences, Medical Institute, North Caucasus State Academy for Humanities and Technologies, Cherkessk, Russia
| | - Lyudmila I Kafarskaia
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alla P Pikina
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrei N Shkoporov
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
19
|
Yanokura E, Oki K, Makino H, Modesto M, Pot B, Mattarelli P, Biavati B, Watanabe K. Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: Description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets. Syst Appl Microbiol 2015; 38:305-14. [PMID: 26007614 DOI: 10.1016/j.syapm.2015.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 11/28/2022]
Abstract
The species Bifidobacterium longum is currently divided into three subspecies, B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis. This classification was based on an assessment of accumulated information on the species' phenotypic and genotypic features. The three subspecies of B. longum were investigated using genotypic identification [amplified-fragment length polymorphism (AFLP), multilocus sequence analysis (MLSA) and multilocus sequence typing (MLST)]. By using the AFLP and the MLSA methods, we allocated 25 strains of B. longum into three major clusters corresponding to the three subspecies; the cluster comprising the strains of B. longum subsp. suis was further divided into two subclusters differentiable by the ability to produce urease. By using the MLST method, the 25 strains of B. longum were divided into eight groups: four major groups corresponding to the results obtained by AFLP and MLSA, plus four minor disparate groups. The results of AFLP, MLSA and MLST analyses were consistent and revealed a novel subspeciation of B. longum, which comprised three known subspecies and a novel subspecies of urease-negative B. longum, for which the name B. longum subsp. suillum subsp. nov. is proposed, with type strain Su 851(T)=DSM 28597(T)=JCM 19995(T).
Collapse
Affiliation(s)
- Emiko Yanokura
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - Kaihei Oki
- Yakult Honsha European Research Center for Microbiology ESV, Technologiepark 4, 9052 Zwijnaarde, Belgium
| | - Hiroshi Makino
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Bruno Pot
- Lactic acid Bacteria and Mucosal Immunity Team, Institut Pasteur de Lille, Rue Prof. Calmette, F-59019 Lille Cedex, France; Center for Infection and Immunity of Lille, F-59019 Lille, France; Université Lille Nord de France, F-59019 Lille, France; CNRS, UMR 8204, F-59019 Lille, France
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Bruno Biavati
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Koichi Watanabe
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd., Taipei 10673, Taiwan, ROC.
| |
Collapse
|
20
|
Liu S, Ren F, Zhao L, Jiang L, Hao Y, Jin J, Zhang M, Guo H, Lei X, Sun E, Liu H. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut. BMC Microbiol 2015; 15:54. [PMID: 25887661 PMCID: PMC4349234 DOI: 10.1186/s12866-015-0362-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/23/2015] [Indexed: 12/16/2022] Open
Abstract
Background Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. Results In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian’s faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Conclusions Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these carbon sources in adult intestine was speculated to contribute to the low relative abundance of bifidobacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0362-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Songling Liu
- Key Laboratory of Functional Dairy, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Lu Jiang
- Key Laboratory of Functional Dairy, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,Higher Institution Engineering Research Center of Animal Product, Beijing, 10083, China.
| | - Yanling Hao
- Key Laboratory of Functional Dairy, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Junhua Jin
- Beijing Laboratory for Food Quality and Safety, Beijing, 10083, China.
| | - Ming Zhang
- Higher Institution Engineering Research Center of Animal Product, Beijing, 10083, China.
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,Beijing Laboratory for Food Quality and Safety, Beijing, 10083, China.
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Erna Sun
- Higher Institution Engineering Research Center of Animal Product, Beijing, 10083, China.
| | - Hongna Liu
- Higher Institution Engineering Research Center of Animal Product, Beijing, 10083, China.
| |
Collapse
|
21
|
An H, Douillard FP, Wang G, Zhai Z, Yang J, Song S, Cui J, Ren F, Luo Y, Zhang B, Hao Y. Integrated transcriptomic and proteomic analysis of the bile stress response in a centenarian-originated probiotic Bifidobacterium longum BBMN68. Mol Cell Proteomics 2014; 13:2558-72. [PMID: 24965555 DOI: 10.1074/mcp.m114.039156] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bifidobacteria are natural inhabitants of the human gastrointestinal tract and well known for their health-promoting effects. Tolerance to bile stress is crucial for bifidobacteria to survive in the colon and to exert their beneficial actions. In this work, RNA-Seq transcriptomic analysis complemented with proteomic analysis was used to investigate the cellular response to bile in Bifidobacterium longum BBMN68. The transcript levels of 236 genes were significantly changed (≥ threefold, p < 0.001) and 44 proteins were differentially abundant (≥1.6-fold, p < 0.01) in B. longum BBMN68 when exposed to 0.75 g l(-1) ox-bile. The hemolysin-like protein and bile efflux systems were significantly over produced, which might prevent bile adsorption and exclude bile, respectively. The cell membrane composition was modified probably by an increase of cyclopropane fatty acid and a decrease of transmembrane proteins, resulting in a cell membrane more impermeable to bile salts. Our hypothesis was later confirmed by surface hydrophobicity assay. The transcription of genes related to xylose utilization and bifid shunt were up-regulated, which increased the production of ATP and reducing equivalents to cope with bile-induced damages in a xylan-rich colon environment. Bile salts signal the B. longum BBMN68 to gut entrance and enhance the expression of esterase and sortase associated with adhesion and colonization in intestinal tract, which was supported by a fivefold increased adhesion ability to HT-29 cells by BBMN68 upon bile exposure. Notably, bacterial one-hybrid and EMSA assay revealed that the two-component system senX3-regX3 controlled the expression of pstS in bifidobacteria and the role of this target gene in bile resistance was further verified by heterologous expression in Lactococcus lactis. Taken altogether, this study established a model for global response mechanisms in B. longum to bile.
Collapse
Affiliation(s)
- Haoran An
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - François P Douillard
- §Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Guohong Wang
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengyuan Zhai
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jin Yang
- ¶Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Song
- ¶Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianyun Cui
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bing Zhang
- ¶Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanling Hao
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
22
|
Letzel AC, Pidot SJ, Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2012; 30:392-428. [PMID: 23263685 DOI: 10.1039/c2np20103h] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr. 11a, Jena, 07745, Germany
| | | | | |
Collapse
|
23
|
Jin J, Zhang B, Guo H, Cui J, Jiang L, Song S, Sun M, Ren F. Mechanism analysis of acid tolerance response of bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS One 2012; 7:e50777. [PMID: 23236393 PMCID: PMC3517610 DOI: 10.1371/journal.pone.0050777] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/24/2012] [Indexed: 12/17/2022] Open
Abstract
To analyze the mechanism of the acid tolerance response (ATR) in Bifidobacterium longum subsp. longum BBMN68, we optimized the acid-adaptation condition to stimulate ATR effectively and analyzed the change of gene expression profile after acid-adaptation using high-throughput RNA-Seq. After acid-adaptation at pH 4.5 for 2 hours, the survival rate of BBMN68 at lethal pH 3.5 for 120 min was increased by 70 fold and the expression of 293 genes were upregulated by more than 2 fold, and 245 genes were downregulated by more than 2 fold. Gene expression profiling of ATR in BBMN68 suggested that, when the bacteria faced acid stress, the cells strengthened the integrity of cell wall and changed the permeability of membrane to keep the H+ from entering. Once the H+ entered the cytoplasm, the cells showed four main responses: First, the F0F1-ATPase system was initiated to discharge H+. Second, the ability to produce NH3 by cysteine-cystathionine-cycle was strengthened to neutralize excess H+. Third, the cells started NER-UVR and NER-VSR systems to minimize the damage to DNA and upregulated HtpX, IbpA, and γ-glutamylcysteine production to protect proteins against damage. Fourth, the cells initiated global response signals ((p)ppGpp, polyP, and Sec-SRP) to bring the whole cell into a state of response to the stress. The cells also secreted the quorum sensing signal (AI-2) to communicate between intraspecies cells by the cellular signal system, such as two-component systems, to improve the overall survival rate. Besides, the cells varied the pathways of producing energy by shifting to BCAA metabolism and enhanced the ability to utilize sugar to supply sufficient energy for the operation of the mechanism mentioned above. Based on these reults, it was inferred that, during industrial applications, the acid resistance of bifidobacteria could be improved by adding BCAA, γ-glutamylcysteine, cysteine, and cystathionine into the acid-stress environment.
Collapse
Affiliation(s)
- Junhua Jin
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Higher Institution Engineering Research Center of Animal Product, Beijing, China
| | - Jianyun Cui
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lu Jiang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Nutrition, Health and Food Safety, Beijing, China
| | - Shuhui Song
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Min Sun
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Nutrition, Health and Food Safety, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Abstract
Intestinal colonization of bifidobacteria is important for the health of infants. Human milk oligosaccharides (HMO) have been identified as growth factors for bifidobacteria. Recently, a bifidobacterial enzymatic system to metabolize HMO was identified. 1,3-β-Galactosyl-N-acetylhexosamine phosphorylase (GLNBP, EC 2.4.1.211), which catalyzes the reversible phosphorolysis of galacto-N-biose (GNB) (Galβ1→3GalNAc)] and lacto-N-biose I (LNB) (Galβ1→3GlcNAc), is a key enzyme to explain the metabolism of HMO. Infant-type bifidobacteria possess the intracellular pathway to specifically metabolize GNB and LNB (GNB/LNB pathway). Bifidobacterium bifidum possesses extracellular enzymes to liberate LNB from HMO. However, Bifidobacterium longum subsp. infantis imports intact HMO to be hydrolyzed by intracellular enzymes. Bifidobacterial enzymes related to the metabolism of HMO are useful tools for preparing compounds related to HMO. For instance, LNB and GNB were produced from sucrose and GlcNAc/GalNAc in 1 pot using 4 bifidobacterial enzymes, including GLNBP. LNB is expected to be a selective bifidus factor for infant-type strains.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
25
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
26
|
Leach ALB, Chong JPJ, Redeker KR. SSuMMo: rapid analysis, comparison and visualization of microbial communities. ACTA ACUST UNITED AC 2012; 28:679-86. [PMID: 22238261 DOI: 10.1093/bioinformatics/bts017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MOTIVATION Next-generation sequencing methods are generating increasingly massive datasets, yet still do not fully capture genetic diversity in the richest environments. To understand such complicated and elusive systems, effective tools are needed to assist with delineating the differences found in and between community datasets. RESULTS The Small Subunit Markov Modeler (SSuMMo) was developed to probabilistically assign SSU rRNA gene fragments from any sequence dataset to recognized taxonomic clades, producing consistent, comparable cladograms. Accuracy tests predicted >90% of genera correctly for sequences downloaded from public reference databases. Sequences from a next-generation sequence dataset, sampled from lean, overweight and obese individuals, were analysed to demonstrate parallel visualization of comparable datasets. SSuMMo shows potential as a valuable curatorial tool, as numerous incorrect and outdated taxonomic entries and annotations were identified in public databases. AVAILABILITY AND IMPLEMENTATION SSuMMo is GPLv3 open source Python software, available at http://code.google.com/p/ssummo/. Taxonomy and HMM databases can be downloaded from http://bioltfws1.york.ac.uk/ssummo/. SUPPLEMENTARY INFORMATION Supplemental materials are available at Bioinformatics Online.
Collapse
Affiliation(s)
- Alex L B Leach
- Department of Biology, University of York, York YO10 5DD, UK.
| | | | | |
Collapse
|
27
|
Nelson OW, Garrity GM. Genome sequences published outside of Standards in Genomic Sciences, January – June 2011. Stand Genomic Sci 2011. [DOI: 10.4056/sigs.2044675] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Xiao M, Xu P, Zhao J, Wang Z, Zuo F, Zhang J, Ren F, Li P, Chen S, Ma H. Oxidative stress-related responses of Bifidobacterium longum subsp. longum BBMN68 at the proteomic level after exposure to oxygen. Microbiology (Reading) 2011; 157:1573-1588. [DOI: 10.1099/mic.0.044297-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bifidobacterium longum subsp. longum BBMN68, an anaerobic probiotic isolated from healthy centenarian faeces, shows low oxygen (3 %, v/v) tolerance. To understand the effects of oxidative stress and the mechanisms protecting against it in this strain, a proteomic approach was taken to analyse changes in the cellular protein profiles of BBMN68 under the following oxygen-stress conditions. Mid-exponential phase BBMN68 cells grown in MRS broth at 37 °C were exposed to 3 % O2 for 1 h (I) or 9 h (II), and stationary phase cells were subjected to 3 % O2 for 1 h (III). Respective controls were grown under identical conditions but were not exposed to O2. A total of 51 spots with significant changes after exposure to oxygen were identified, including the oxidative stress-protective proteins alkyl hydroperoxide reductase C22 (AhpC) and pyridine nucleotide-disulfide reductase (PNDR), and the DNA oxidative damage-protective proteins DNA-binding ferritin-like protein (Dps), ribonucleotide reductase (NrdA) and nucleotide triphosphate (NTP) pyrophosphohydrolases (MutT1). Changes in polynucleotide phosphorylase (PNPase) plus enolase, which may play important roles in scavenging oxidatively damaged RNA, were also found. Following validation at the transcriptional level of differentially expressed proteins, the physiological and biochemical functions of BBMN68 Dps were further proven by in vitro and in vivo tests under oxidative stress. Our results reveal the key oxidative stress-protective proteins and DNA oxidative damage-protective proteins involved in the defence strategy of BBMN68 against oxygen, and provide the first proteomic information toward understanding the responses of Bifidobacterium and other anaerobes to oxygen stress.
Collapse
Affiliation(s)
- Man Xiao
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, and Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Pan Xu
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, and Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jianyun Zhao
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, and Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zeng Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Fanglei Zuo
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, and Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiangwei Zhang
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, and Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, and Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Pinglan Li
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, and Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shangwu Chen
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, and Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Huiqin Ma
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
29
|
Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol 2010; 149:37-44. [PMID: 21276626 DOI: 10.1016/j.ijfoodmicro.2010.12.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/01/2023]
Abstract
Members of the genus Bifidobacterium are high G+C Gram positive bacteria belonging to the phylum Actinobacteria, and represent common inhabitants of the gastro-intestinal tract (GIT) of mammals, birds and certain cold-blooded animals. The overall microbial population that resides in the GIT, referred to as the "gut microbiota", is an extremely complex community of microorganisms whose functions are believed to have a significant impact on human physiology. Different ecological relationships between bifidobacteria and their host can be developed, ranging from opportunistic pathogenic interactions (e.g. in the case of Bifidobacterium dentium) to a commensal or even health-promoting relationship (e.g. in the case of Bifidobacterium bifidum and Bifidobacterium breve species). Among the known health-promoting or probiotic microorganisms, bifidobacteria represent one of the most dominant group and some bifidobacterial species are frequently used as the probiotic ingredient in many functional foods. However, despite the generally accepted importance of bifidobacteria as constituents of the human microbiota, there is only limited information available on their phylogeny, physiology and genetics. Moreover, host-microbiota interactions and cross-talk between different members of the gut microbiota are far from completely understood although they represent a crucial factor in the development and maintenance of human physiology and immune system. The aim of this review is to highlight the genetic and functional features of bifidobacteria residing in the human GIT using genomic and ecology-based information.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution University of Parma, Italy
| | | | | |
Collapse
|