1
|
Abstract
Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; ,
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; , .,Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Structural basis for glucosylsucrose synthesis by a member of the α-1,2-glucosyltransferase family. Acta Biochim Biophys Sin (Shanghai) 2022; 54:537-547. [PMID: 35607964 PMCID: PMC9909042 DOI: 10.3724/abbs.2022034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glucosylsucroses are potentially useful as additives in cosmetic and pharmaceutical formulations. Although enzymatic synthesis of glucosylsucroses is the most efficient method for their production, the key enzyme that produces them has remained unknown. Here, we report that glucosylsucrose synthase from (TeGSS) catalyzes the synthesis of glucosylsucrose using sucrose and UDP-glucose as substrates. These saccharides are homologous to glucosylsucroses produced by sp. PCC 7120 (referred to as protein alr1000). When the ratio of UDP-glucose to sucrose is relatively high, TeGSS from cyanobacteria can hydrolyze excess UDP-glucose to UDP and glucose, indicating that sucrose provides a feedback mechanism for the control of glucosylsucrose synthesis. In the present study, we solved the crystal structure of TeGSS bound to UDP and sucrose. Our structure shows that the catalytic site contains a circular region that may allow glucosylsucroses with a right-hand helical structure to enter the catalytic site. Because active site residues Tyr18 and Arg179 are proximal to UDP and sucrose, we mutate these residues (., Y18F and R179A) and show that they exhibit very low activity, supporting their role as catalytic groups. Overall, our study provides insight into the catalytic mechanism of TeGSS.
Collapse
|
3
|
Xu X, Risoul V, Byrne D, Champ S, Douzi B, Latifi A. HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium nostoc PCC 7120. eLife 2020; 9:e59190. [PMID: 32762845 PMCID: PMC7476756 DOI: 10.7554/elife.59190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 11/13/2022] Open
Abstract
Local activation and long-range inhibition are mechanisms conserved in self-organizing systems leading to biological patterns. A number of them involve the production by the developing cell of an inhibitory morphogen, but how this cell becomes immune to self-inhibition is rather unknown. Under combined nitrogen starvation, the multicellular cyanobacterium Nostoc PCC 7120 develops nitrogen-fixing heterocysts with a pattern of one heterocyst every 10-12 vegetative cells. Cell differentiation is regulated by HetR which activates the synthesis of its own inhibitory morphogens, diffusion of which establishes the differentiation pattern. Here, we show that HetR interacts with HetL at the same interface as PatS, and that this interaction is necessary to suppress inhibition and to differentiate heterocysts. hetL expression is induced under nitrogen-starvation and is activated by HetR, suggesting that HetL provides immunity to the heterocyst. This protective mechanism might be conserved in other differentiating cyanobacteria as HetL homologues are spread across the phylum.
Collapse
Affiliation(s)
- Xiaomei Xu
- Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie BactérienneMarseilleFrance
| | - Véronique Risoul
- Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie BactérienneMarseilleFrance
| | - Deborah Byrne
- Aix Marseille Univ, CNRS, Protein Expression Facility, Institut de Microbiologie de la MéditerranéeMarseilleFrance
| | - Stéphanie Champ
- Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie BactérienneMarseilleFrance
| | | | - Amel Latifi
- Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie BactérienneMarseilleFrance
| |
Collapse
|
4
|
Expression from DIF1-motif promoters of hetR and patS is dependent on HetZ and modulated by PatU3 during heterocyst differentiation. PLoS One 2020; 15:e0232383. [PMID: 32701963 PMCID: PMC7377430 DOI: 10.1371/journal.pone.0232383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
HetR and PatS/PatX-derived peptides are the activator and diffusible inhibitor for cell differentiation and patterning in heterocyst-forming cyanobacteria. HetR regulates target genes via HetR-recognition sites. However, some genes (such as patS/patX) upregulated at the early stage of heterocyst differentiation possess DIF1 (or DIF+) motif (TCCGGA) promoters rather than HetR-recognition sites; hetR possesses both predicted regulatory elements. How HetR controls heterocyst-specific expression from DIF1 motif promoters remains to be answered. This study presents evidence that the expression from DIF1 motif promoters of hetR, patS and patX is more directly dependent on hetZ, a gene regulated by HetR via a HetR-recognition site. The HetR-binding site upstream of hetR is not required for the autoregulation of hetR. PatU3 (3′ portion of PatU) that interacts with HetZ may modulate the expression of hetR, hetZ and patS. These findings contribute to understanding of the mutual regulation of hetR, hetZ-patU and patS/patX in a large group of multicellular cyanobacteria.
Collapse
|
5
|
Walter J, Leganés F, Aro EM, Gollan PJ. The small Ca 2+-binding protein CSE links Ca 2+ signalling with nitrogen metabolism and filament integrity in Anabaena sp. PCC 7120. BMC Microbiol 2020; 20:57. [PMID: 32160863 PMCID: PMC7065334 DOI: 10.1186/s12866-020-01735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/24/2020] [Indexed: 02/02/2023] Open
Abstract
Background Filamentous cyanobacteria represent model organisms for investigating multicellularity. For many species, nitrogen-fixing heterocysts are formed from photosynthetic vegetative cells under nitrogen limitation. Intracellular Ca2+ has been implicated in the highly regulated process of heterocyst differentiation but its role remains unclear. Ca2+ is known to operate more broadly in metabolic signalling in cyanobacteria, although the signalling mechanisms are virtually unknown. A Ca2+-binding protein called the Ca2+ Sensor EF-hand (CSE) is found almost exclusively in filamentous cyanobacteria. Expression of asr1131 encoding the CSE protein in Anabaena sp. PCC 7120 was strongly induced by low CO2 conditions, and rapidly downregulated during nitrogen step-down. A previous study suggests a role for CSE and Ca2+ in regulation of photosynthetic activity in response to changes in carbon and nitrogen availability. Results In the current study, a mutant Anabaena sp. PCC 7120 strain lacking asr1131 (Δcse) was highly prone to filament fragmentation, leading to a striking phenotype of very short filaments and poor growth under nitrogen-depleted conditions. Transcriptomics analysis under nitrogen-replete conditions revealed that genes involved in heterocyst differentiation and function were downregulated in Δcse, while heterocyst inhibitors were upregulated, compared to the wild-type. Conclusions These results indicate that CSE is required for filament integrity and for proper differentiation and function of heterocysts upon changes in the cellular carbon/nitrogen balance. A role for CSE in transmitting Ca2+ signals during the first response to changes in metabolic homeostasis is discussed.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland.,Present address: Department of Plant Sciences, Environmental Plant Physiology, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Francisco Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049, Madrid, Spain
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland.
| |
Collapse
|
6
|
Roumezi B, Xu X, Risoul V, Fan Y, Lebrun R, Latifi A. The Pkn22 Kinase of Nostoc PCC 7120 Is Required for Cell Differentiation via the Phosphorylation of HetR on a Residue Highly Conserved in Genomes of Heterocyst-Forming Cyanobacteria. Front Microbiol 2020; 10:3140. [PMID: 32038573 PMCID: PMC6985446 DOI: 10.3389/fmicb.2019.03140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
Hanks-type kinases encoding genes are present in most cyanobacterial genomes. Despite their widespread pattern of conservation, little is known so far about their role because their substrates and the conditions triggering their activation are poorly known. Here we report that under diazotrophic conditions, normal heterocyst differentiation and growth of the filamentous cyanobacterium Nostoc PCC 7120 require the presence of the Pkn22 kinase, which is induced under combined nitrogen starvation conditions. By analyzing the phenotype of pkn22 mutant overexpressing genes belonging to the regulatory cascade initiating the development program, an epistatic relationship was found to exist between this kinase and the master regulator of differentiation, HetR. The results obtained using a bacterial two hybrid approach indicated that Pkn22 and HetR interact, and the use of a genetic screen inducing the loss of this interaction showed that residues of HetR which are essential for this interaction to occur are also crucial to HetR activity both in vitro and in vivo. Mass spectrometry showed that HetR co-produced with the Pkn22 kinase in Escherichia coli is phosphorylated on Serine 130 residue. Phosphoablative substitution of this residue impaired the ability of the strain to undergo cell differentiation, while its phosphomimetic substitution increased the number of heterocysts formed. The Serine 130 residue is part of a highly conserved sequence in filamentous cyanobacterial strains differentiating heterocysts. Heterologous complementation assays showed that the presence of this domain is necessary for heterocyst induction. We propose that the phosphorylation of HetR might have been acquired to control heterocyst differentiation.
Collapse
Affiliation(s)
- Baptiste Roumezi
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| | - Xiaomei Xu
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| | - Véronique Risoul
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| | - Yingping Fan
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| | - Régine Lebrun
- Proteomic Platform, Marseille Protéomique IBiSA Labelled, CNRS, IMM, Aix-Marseille Université, Marseille, France
| | - Amel Latifi
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| |
Collapse
|
7
|
patD, a Gene Regulated by NtcA, Is Involved in the Optimization of Heterocyst Frequency in the Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2019; 201:JB.00457-19. [PMID: 31405917 DOI: 10.1128/jb.00457-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/04/2019] [Indexed: 11/20/2022] Open
Abstract
In the filamentous multicellular cyanobacterium Anabaena sp. strain PCC 7120, 5 to 10% of the cells differentiate into heterocysts, which are specialized in N2 fixation. Heterocysts and vegetative cells are mutually dependent for filament growth through nutrient exchange. Thus, the heterocyst frequency should be optimized to maintain the cellular carbon and nitrogen (C/N) balance for filament fitness in the environment. Here, we report the identification of patD, whose expression is directly activated in developing cells by the transcription factor NtcA. The inactivation of patD increases heterocyst frequency and promotes the upregulation of the positive regulator of heterocyst development hetR, whereas its overexpression decreases the heterocyst frequency. The change in heterocyst frequency resulting from the inactivation of patD leads to the reduction in competitiveness of the filaments under combined-nitrogen-depleted conditions. These results indicate that patD regulates heterocyst frequency in Anabaena sp. PCC 7120, ensuring its optimal filament growth.IMPORTANCE Microorganisms have evolved various strategies in order to adapt to the environment and compete with other organisms. Heterocyst differentiation is a prokaryotic model for studying complex cellular regulation. The NtcA-regulated gene patD controls the ratio of heterocysts relative to vegetative cells on the filaments of Anabaena sp. strain PCC 7120. Such a regulation provides a mechanism through which carbon fixation by vegetative cells and nitrogen fixation by heterocysts are properly balanced to ensure optimal growth and keep a competitive edge for long-term survival.
Collapse
|
8
|
Abstract
The filamentous cyanobacterium Anabaena can form heterocysts specialized in N2 fixation, mostly through a cascade of transcriptional activation in response to the nitrogen starvation signal 2-oxoglutarate. It is reported now that a transcription repressor, CalA, acts as a safety device to prevent heterocyst development under certain conditions where the 2-oxoglutarate level may touch the threshold to trigger unnecessary initiation of heterocyst development. Such a control may increase the fitness of Anabaena under a constantly changing environment.
Collapse
|
9
|
cyAbrB Transcriptional Regulators as Safety Devices To Inhibit Heterocyst Differentiation in Anabaena sp. Strain PCC 7120. J Bacteriol 2019; 201:JB.00244-19. [PMID: 31085690 DOI: 10.1128/jb.00244-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria are monophyletic organisms that perform oxygenic photosynthesis. While they exhibit great diversity, they have a common set of genes. However, the essentiality of them for viability has hampered the elucidation of their functions. One example of these genes is cyabrB1 (also known as calA in Anabaena sp. strain PCC 7120), encoding a transcriptional regulator. In the present study, we investigated the function of calA/cyabrB1 in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 through CRISPR interference, a method that we recently utilized for the photosynthetic production of a useful chemical in this strain. Conditional knockdown of calA/cyabrB1 in the presence of nitrate resulted in the formation of heterocysts. Two genes, hetP and hepA, which are required for heterocyst formation, were upregulated by calA/cyabrB1 knockdown in the presence of combined nitrogen sources. These genes are known to be induced by HetR, a master regulator of heterocyst formation. hetR was not induced by calA/cyabrB1 knockdown. hetP and hepA were repressed by direct binding of CalA/cyAbrB1 to their promoter regions in a HetR-independent manner. In addition, the overexpression of calA/cyabrB1 abolished heterocyst formation upon nitrogen depletion. Also, knockout of calB/cyabrB2 (a paralogue gene of calA/cyabrB1), in addition to knockdown of calA/cyabrB1, enhanced heterocyst formation in the presence of nitrate, suggesting functional redundancy of cyAbrB proteins. We propose that a balance between amounts of HetR and CalA/cyAbrB1 is a key factor influencing heterocyst differentiation during nitrogen stepdown. We concluded that cyAbrB proteins are essential safety devices that inhibit heterocyst differentiation.IMPORTANCE Spore formation in Bacillus subtilis and Streptomyces has been extensively studied as models of prokaryotic nonterminal cell differentiation. In these organisms, many cells/hyphae differentiate simultaneously, which is governed by a network in which one regulator stands at the top. Differentiation of heterocysts in Anabaena sp. strain PCC 7120 is unique because it is terminal, and only 5 to 10% of vegetative cells differentiate into heterocysts. In this study, we identified CalA/cyAbrB1 as a repressor of two genes that are essential for heterocyst formation independently of HetR, a master activator for heterocyst differentiation. This finding is reasonable for unique cell differentiation of Anabaena because CalA/cyAbrB1 could suppress heterocyst differentiation tightly in vegetative cells, while only cells in which HetR is overexpressed could differentiate into heterocysts.
Collapse
|
10
|
Flores E, Picossi S, Valladares A, Herrero A. Transcriptional regulation of development in heterocyst-forming cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:673-684. [DOI: 10.1016/j.bbagrm.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023]
|
11
|
Kaushik MS, Mishra AK. Iron deficiency influences NtcA-dependent regulation of fatty acid desaturation and heterocyte envelop formation in Anabaena sp. PCC 7120. PHYSIOLOGIA PLANTARUM 2019; 166:570-584. [PMID: 30035317 DOI: 10.1111/ppl.12806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
In Anabaena sp. PCC 7120, iron is an essential trace element and its availability determines proper functioning of several kinds of metabolisms. Iron deficiency leads to several unavoidable consequences including membrane damage. In the present study, we dealt with the impact of iron deficiency on NtcA (global nitrogen regulator)-dependent regulation of two important processes, i.e. fatty acid desaturation and heterocyte envelop formation in cyanobacterium Anabaena sp. PCC 7120. In Anabaena sp. PCC 7120, NtcA regulates fatty acid desaturation by regulating enzyme fatty acid desaturases. The NtcA-based regulation of fatty acid desaturation may be direct or indirect. Furthermore, the expression of genes involved in the heterocyte envelope polysaccharide (HEP) layer formation (hepABCK) and heterocyte-specific glycolipids (HGLs) synthesis (devH, hglEA , prpJ and devB) were also under the control of NtcA and reduced under iron deficiency background. The enhanced expression of furA and early downregulation of ntcA under iron deficiency is responsible for reduction in fatty acid desaturation as well as decrease in the expression of genes involved in HEP layer formation and HGL synthesis. Overall results confirmed that iron deficiency influences the NtcA-based regulation of fatty acid desaturation and heterocyte envelop formation in Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Manish S Kaushik
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun K Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
12
|
Popova AA, Semashko TA, Kostina NV, Rasmussen U, Govorun VM, Koksharova OA. The Cyanotoxin BMAA Induces Heterocyst Specific Gene Expression in Anabaena sp. PCC 7120 under Repressive Conditions. Toxins (Basel) 2018; 10:toxins10110478. [PMID: 30453523 PMCID: PMC6266585 DOI: 10.3390/toxins10110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Cyanobacteria synthesize neurotoxic β-N-methylamino-l-alanine (BMAA). The roles of this non-protein amino acid in cyanobacterial cells are insufficiently studied. During diazotrophic growth, filamentous cyanobacteria form single differentiated cells, called heterocysts, which are separated by approximately 12–15 vegetative cells. When combined nitrogen is available, heterocyst formation is blocked and cyanobacterial filaments contain only vegetative cells. In the present study, we discovered that exogenous BMAA induces the process of heterocyst formation in filamentous cyanobacteria under nitrogen-replete conditions that normally repress cell differentiation. BMAA treated cyanobacteria form heterocyst-like dark non-fluorescent non-functional cells. It was found that glutamate eliminates the BMAA mediated derepression. Quantitative polymerase chain reaction (qPCR) permitted to detect the BMAA impact on the transcriptional activity of several genes that are implicated in nitrogen assimilation and heterocyst formation in Anabaena sp. PCC 7120. We demonstrated that the expression of several essential genes increases in the BMAA presence under repressive conditions.
Collapse
Affiliation(s)
- Alexandra A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia.
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospekt 60 let Oktyabrya, 7/2, 117312 Moscow, Russia.
| | - Tatiana A Semashko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Natalia V Kostina
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119991 Moscow, Russia.
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Vadim M Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Olga A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia.
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 40, 119992 Moscow, Russia.
| |
Collapse
|
13
|
Elhai J, Khudyakov I. Ancient association of cyanobacterial multicellularity with the regulator HetR and an RGSGR pentapeptide-containing protein (PatX). Mol Microbiol 2018; 110:931-954. [PMID: 29885033 DOI: 10.1111/mmi.14003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
One simple model to explain biological pattern postulates the existence of a stationary regulator of differentiation that positively affects its own expression, coupled with a diffusible suppressor of differentiation that inhibits the regulator's expression. The first has been identified in the filamentous, heterocyst-forming cyanobacterium, Anabaena PCC 7120 as the transcriptional regulator, HetR and the second as the small protein, PatS, which contains a critical RGSGR motif that binds to HetR. HetR is present in almost all filamentous cyanobacteria, but only a subset of heterocyst-forming strains carry proteins similar to PatS. We identified a third protein, PatX that also carries the RGSGR motif and is coextensive with HetR. Amino acid sequences of PatX contain two conserved regions: the RGSGR motif and a hydrophobic N-terminus. Within 69 nt upstream from all instances of the gene is a DIF1 motif correlated in Anabaena with promoter induction in developing heterocysts, preceded in heterocyst-forming strains by an apparent NtcA-binding site, associated with regulation by nitrogen-status. Consistent with a role in the simple model, PatX is expressed dependent on HetR and acts to inhibit differentiation. The acquisition of the PatX/HetR pair preceded the appearance of both PatS and heterocysts, dating back to the beginnings of multicellularity.
Collapse
Affiliation(s)
- Jeff Elhai
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Ivan Khudyakov
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, 196608, Russia
| |
Collapse
|
14
|
Herrero A, Flores E. Genetic responses to carbon and nitrogen availability in Anabaena. Environ Microbiol 2018; 21:1-17. [PMID: 30066380 DOI: 10.1111/1462-2920.14370] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/27/2022]
Abstract
Heterocyst-forming cyanobacteria are filamentous organisms that perform oxygenic photosynthesis and CO2 fixation in vegetative cells and nitrogen fixation in heterocysts, which are formed under deprivation of combined nitrogen. These organisms can acclimate to use different sources of nitrogen and respond to different levels of CO2 . Following work mainly done with the best studied heterocyst-forming cyanobacterium, Anabaena, here we summarize the mechanisms of assimilation of ammonium, nitrate, urea and N2 , the latter involving heterocyst differentiation, and describe aspects of CO2 assimilation that involves a carbon concentration mechanism. These processes are subjected to regulation establishing a hierarchy in the assimilation of nitrogen sources -with preference for the most reduced nitrogen forms- and a dependence on sufficient carbon. This regulation largely takes place at the level of gene expression and is exerted by a variety of transcription factors, including global and pathway-specific transcriptional regulators. NtcA is a CRP-family protein that adjusts global gene expression in response to the C-to-N balance in the cells, and PacR is a LysR-family transcriptional regulator (LTTR) that extensively acclimates the cells to oxygenic phototrophy. A cyanobacterial-specific transcription factor, HetR, is involved in heterocyst differentiation, and other LTTR factors are specifically involved in nitrate and CO2 assimilation.
Collapse
Affiliation(s)
- Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| |
Collapse
|
15
|
Wegelius A, Li X, Turco F, Stensjö K. Design and characterization of a synthetic minimal promoter for heterocyst-specific expression in filamentous cyanobacteria. PLoS One 2018; 13:e0203898. [PMID: 30204806 PMCID: PMC6133370 DOI: 10.1371/journal.pone.0203898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/29/2018] [Indexed: 11/25/2022] Open
Abstract
Short and well defined promoters are essential for advancing cyanobacterial biotechnology. The heterocyst of Nostoc sp. is suggested as a microbial cell factory for oxygen sensitive catalysts, such as hydrogenases for hydrogen production, due to its microoxic environment. We identified and predicted promoter elements of possible significance through a consensus strategy using a pool of heterocyst-induced DIF+ promoters known from Anabaena sp. PCC 7120. To test if these conserved promoter elements were crucial for heterocyst-specific expression, promoter-yfp reporter constructs were designed. The characterization was accomplished by replacing, -35 and -10 regions and the upstream element, with well described elements from the trc promoter of Escherichia coli, which is also functional in Nostoc sp. From the in vivo spatial fluorescence of the different promoter-yfp reporters in Nostoc punctiforme ATCC 29133, we concluded that both the consensus -35 and extended -10 regions were important for heterocyst-specific expression. Further that the promoter strength could be improved by the addition of an upstream element. We designed a short synthetic promoter of 48 nucleotides, PsynDIF, including a consensus DIF1 sequence, a 17 base pair stretch of random nucleotides and an extended consensus -10 region, and thus generated the shortest promoter for heterocyst-specific expression to date.
Collapse
Affiliation(s)
- Adam Wegelius
- Department of Chemistry– Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Xin Li
- Department of Chemistry– Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Federico Turco
- Department of Chemistry– Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Stensjö
- Department of Chemistry– Ångström Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
16
|
Popova AA, Rasmussen U, Semashko TA, Govorun VM, Koksharova OA. Stress effects of cyanotoxin β-methylamino-L-alanine (BMAA) on cyanobacterial heterocyst formation and functionality. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:369-377. [PMID: 29624906 DOI: 10.1111/1758-2229.12647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Various species of cyanobacteria, diatoms and dinoflagellates are capable of synthesizing the non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA), which is known to be a causative agent of human neurodegeneration. Similar to most cyanotoxins, the biological and ecological functions of BMAA in cyanobacteria are unknown. In this study, we show for the first time that BMAA, in micromolar amounts, inhibits the formation of heterocysts (specialized nitrogen-fixing cells) in heterocystous, diazotrophic cyanobacteria [Anabaena sp. PCC 7120, Nostoc punctiforme PCC 73102 (ATCC 29133), Nostoc sp. strain 8963] under conditions of nitrogen starvation. The inhibitory effect of BMAA is abolished by the addition of glutamate. To understand the genetic reason for the observed phenomenon, we used qPCR to study the expression of key genes involved in cell differentiation and nitrogen metabolism in the model cyanobacterium Anabaena sp. PCC 7120. We observed that in the presence of BMAA, Anabaena sp. PCC 7120 does not express two essential genes associated with heterocyst differentiation, namely, hetR and hepA. We also found that addition of BMAA to cyanobacterial cultures with mature heterocysts inhibits nifH gene expression and nitrogenase activity.
Collapse
Affiliation(s)
- Alexandra A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Tatiana A Semashko
- Scientific-Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vadim M Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Olga A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1, 40, Moscow, 119992, Russia
| |
Collapse
|
17
|
Videau P, Rivers OS, Tom SK, Oshiro RT, Ushijima B, Swenson VA, Philmus B, Gaylor MO, Cozy LM. The hetZ gene indirectly regulates heterocyst development at the level of pattern formation in Anabaena sp. strain PCC 7120. Mol Microbiol 2018; 109:91-104. [PMID: 29676808 DOI: 10.1111/mmi.13974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Multicellular development requires the careful orchestration of gene expression to correctly create and position specialized cells. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are differentiated from vegetative cells in a reproducibly periodic and physiologically relevant pattern. While many genetic factors required for heterocyst development have been identified, the role of HetZ has remained unclear. Here, we present evidence to clarify the requirement of hetZ for heterocyst production and support a model where HetZ functions in the patterning stage of differentiation. We show that a clean, nonpolar deletion of hetZ fails to express the developmental genes hetR, patS, hetP and hetZ correctly and fails to produce heterocysts. Complementation and overexpression of hetZ in a hetP mutant revealed that hetZ was incapable of bypassing hetP, suggesting that it acts upstream of hetP. Complementation and overexpression of hetZ in a hetR mutant, however, demonstrated bypass of hetR, suggesting that it acts downstream of hetR and is capable of bypassing the need for hetR for differentiation irrespective of nitrogen status. Finally, protein-protein interactions were observed between HetZ and HetR, Alr2902 and HetZ itself. Collectively, this work suggests a regulatory role for HetZ in the patterning phase of cellular differentiation in Anabaena.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Orion S Rivers
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Sasa K Tom
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Reid T Oshiro
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Blake Ushijima
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Vaille A Swenson
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael O Gaylor
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Loralyn M Cozy
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| |
Collapse
|
18
|
Functional Overlap of hetP and hetZ in Regulation of Heterocyst Differentiation in Anabaena sp. Strain PCC 7120. J Bacteriol 2018; 200:JB.00707-17. [PMID: 29440250 DOI: 10.1128/jb.00707-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
HetR plays a key role in regulation of heterocyst differentiation and patterning in Anabaena It directly regulates genes involved in heterocyst differentiation (such as hetP and hetZ), genes involved in pattern formation (patA), and many others. In this study, we investigated the functional relationship of hetP and hetZ and their role in HetR-dependent cell differentiation. Coexpression of hetP and hetZ from the promoter of ntcA, which encodes the global nitrogen regulator, enabled a hetR mutant to form heterocysts with low aerobic nitrogenase activity. Overexpression of hetZ restored heterocyst differentiation in a hetP mutant and vice versa. Overexpression of hetR restored heterocyst formation in either a hetP or a hetZ mutant but not in a hetZ hetP double mutant. The functional overlap of hetP and hetZ was further confirmed by reverse transcription-quantitative PCR (RT-qPCR) and transcriptomic analyses of their effects on gene expression. In addition, yeast two-hybrid and pulldown assays showed the interaction of HetZ with HetR. HetP and HetZ are proposed as the two major factors that control heterocyst formation in response to upregulation of hetRIMPORTANCE Heterocyst-forming cyanobacteria contribute significantly to N2 fixation in marine, freshwater, and terrestrial ecosystems. Formation of heterocysts enables this group of cyanobacteria to fix N2 efficiently under aerobic conditions. HetR, HetP, and HetZ are among the most important factors involved in heterocyst differentiation. We present evidence for the functional overlap of hetP and hetZ and for the key role of the HetR-HetP/HetZ circuit in regulation of heterocyst differentiation. The regulatory mechanism based on HetR, HetP, and HetZ is probably conserved in all heterocyst-forming cyanobacteria.
Collapse
|
19
|
Zhang L, Zhou F, Wang S, Xu X. Processing of PatS, a morphogen precursor, in cell extracts of Anabaena sp. PCC 7120. FEBS Lett 2017; 591:751-759. [PMID: 28155229 DOI: 10.1002/1873-3468.12582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/18/2017] [Accepted: 01/29/2017] [Indexed: 11/08/2022]
Abstract
Upon N-stepdown, Anabaena sp. PCC 7120 differentiates heterocysts along filaments in a semiregular pattern. A 17-amino acid peptide called PatS is a morphogen precursor for pattern formation. The principal PatS derivative involved in heterocyst patterning has been proposed to be the C-terminal peptide PatS-5 (RGSGR), PatS-6 (ERGSGR), or PatS-8 (CDERGSGR). We present the first evidence for processing of PatS in cell extracts of this cyanobacterium. PatS is probably cleaved between the C-terminal 7th and 8th amino acid residues, producing PatS-7 (DERGSGR), then converted into PatS-6 and PatS-5. The processing site could be changed by a substitution at the C-terminal 8th residue.
Collapse
Affiliation(s)
- Lianglin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fang Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shuai Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
The heterocyst regulatory protein HetP and its homologs modulate heterocyst commitment in Anabaena sp. strain PCC 7120. Proc Natl Acad Sci U S A 2016; 113:E6984-E6992. [PMID: 27791130 DOI: 10.1073/pnas.1610533113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium Anabaena sp. strain PCC 7120 terminally commits ∼10% of its cells to become specialized nitrogen-fixing heterocysts. Although commitment is known to occur 9-14 h after the induction of differentiation, the factors that regulate the initiation and duration of this phase have yet to be elucidated. Here, we report the identification of four genes that share a functional domain and modulate heterocyst commitment: hetP (alr2818), asl1930, alr2902, and alr3234 Epistatic relationships between all four genes relating to commitment were revealed by deleting them individually and in combination; asl1930 and alr3234 acted most upstream to delay commitment, alr2902 acted next in the pathway to inhibit development, and hetP acted most downstream to drive commitment forward. Possible protein-protein interactions between HetP, its homologs, and the heterocyst master regulator, HetR, were assessed, and interaction partners were defined. Finally, patterns of gene expression for each homolog, as determined by promoter fusions to gfp and reverse transcription-quantitative PCR, were distinct from that of hetP in both spatiotemporal organization and regulation. We posit that a dynamic succession of protein-protein interactions modulates the timing and efficiency of the commitment phase of development and note that this work highlights the utility of a multicellular cyanobacterium as a model for the study of developmental processes.
Collapse
|
21
|
Mutation of the murC and murB Genes Impairs Heterocyst Differentiation in Anabaena sp. Strain PCC 7120. J Bacteriol 2016; 198:1196-206. [PMID: 26811320 DOI: 10.1128/jb.01027-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/20/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:L-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. IMPORTANCE Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program.
Collapse
|
22
|
Structural insights into HetR-PatS interaction involved in cyanobacterial pattern formation. Sci Rep 2015; 5:16470. [PMID: 26576507 PMCID: PMC4649674 DOI: 10.1038/srep16470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/12/2015] [Indexed: 01/07/2023] Open
Abstract
The one-dimensional pattern of heterocyst in the model cyanobacterium Anabaena sp. PCC 7120 is coordinated by the transcription factor HetR and PatS peptide. Here we report the complex structures of HetR binding to DNA, and its hood domain (HetRHood) binding to a PatS-derived hexapeptide (PatS6) at 2.80 and 2.10 Å, respectively. The intertwined HetR dimer possesses a couple of novel HTH motifs, each of which consists of two canonical α-helices in the DNA-binding domain and an auxiliary α-helix from the flap domain of the neighboring subunit. Two PatS6 peptides bind to the lateral clefts of HetRHood, and trigger significant conformational changes of the flap domain, resulting in dissociation of the auxiliary α-helix and eventually release of HetR from the DNA major grove. These findings provide the structural insights into a prokaryotic example of Turing model.
Collapse
|
23
|
ABC Transporter Required for Intercellular Transfer of Developmental Signals in a Heterocystous Cyanobacterium. J Bacteriol 2015; 197:2685-93. [PMID: 26055115 DOI: 10.1128/jb.00304-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED In the filamentous cyanobacterium Anabaena, patS and hetN encode peptide-derived signals with many of the properties of morphogens. These signals regulate the formation of a periodic pattern of heterocysts by lateral inhibition of differentiation. Here we show that intercellular transfer of the patS- and hetN-dependent developmental signals from heterocysts to vegetative cells requires HetC, a predicted ATP-binding cassette transporter (ABC transporter). Relative to the wild type, in a hetC mutant differentiation resulted in a reduced number of heterocysts that were incapable of nitrogen fixation, but deletion of patS or hetN restored heterocyst number and function in a hetC background. These epistasis results suggest that HetC is necessary for conferring self-immunity to the inhibitors on differentiating cells. Nine hours after induction of differentiation, HetC was required for neither induction of transcription of patS nor intercellular transfer of the patS-encoded signal to neighboring cells. Conversely, in strains lacking HetC, the patS- and hetN-encoded signals were not transferred from heterocyst cells to adjacent vegetative cells. The results support a model in which the patS-dependent signal is initially transferred between vegetative cells in a HetC-independent fashion, but some time before morphological differentiation of heterocysts is complete, transfer of both signals transitions to a HetC-dependent process. IMPORTANCE How chemical cues that regulate pattern formation in multicellular organisms move from one cell to another is a central question in developmental biology. In this study, we show that an ABC transporter, HetC, is necessary for transport of two developmental signals between different types of cells in a filamentous cyanobacterium. ABC transporters are found in organisms as diverse as bacteria and humans and, as the name implies, are often involved in the transport of molecules across a cellular membrane. The activity of HetC was shown to be required for signaling between heterocysts, which supply fixed nitrogen to the organism, and other cells, as well as for conferring immunity to self-signaling on developing heterocysts.
Collapse
|
24
|
Ehira S, Miyazaki S. Regulation of Genes Involved in Heterocyst Differentiation in the Cyanobacterium Anabaena sp. Strain PCC 7120 by a Group 2 Sigma Factor SigC. Life (Basel) 2015; 5:587-603. [PMID: 25692906 PMCID: PMC4390870 DOI: 10.3390/life5010587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/17/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates specialized cells for nitrogen fixation called heterocysts upon limitation of combined nitrogen in the medium. During heterocyst differentiation, expression of approximately 500 genes is upregulated with spatiotemporal regulation. In the present study, we investigated the functions of sigma factors of RNA polymerase in the regulation of heterocyst differentiation. The transcript levels of sigC, sigE, and sigG were increased during heterocyst differentiation, while expression of sigJ was downregulated. We carried out DNA microarray analysis to identify genes regulated by SigC, SigE, and SigG. It was indicated that SigC regulated the expression of genes involved in heterocyst differentiation and functions. Moreover, genes regulated by SigC partially overlapped with those regulated by SigE, and deficiency of SigC was likely to be compensated by SigE.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Shogo Miyazaki
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
25
|
The HetR-binding site that activates expression of patA in vegetative cells is required for normal heterocyst patterning in Anabaena sp. PCC 7120. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-014-0724-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
The trpE gene negatively regulates differentiation of heterocysts at the level of induction in Anabaena sp. strain PCC 7120. J Bacteriol 2014; 197:362-70. [PMID: 25384479 DOI: 10.1128/jb.02145-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotated trpE genes in Anabaena sp. strain PCC 7120 resulted in a spike in the 2-OG level and subsequent differentiation of a wild-type pattern of heterocysts when filaments of the mutant were transferred from growth on ammonia to growth on nitrate. In contrast, 2-OG levels were unaffected in the wild type, which did not differentiate under the same conditions. An inverted-repeat sequence located upstream of trpE bound a central regulator of differentiation, HetR, in vitro and was necessary for HetR-dependent transcription of a reporter fusion and complementation of the mutant phenotype in vivo. Functional complementation of the mutant phenotype with the addition of tryptophan suggested that levels of tryptophan, rather than the demonstrated anthranilate synthase activity of TrpE, mediated the developmental response of the wild type to nitrate. A model is presented for the observed increase in 2-OG in the trpE mutant.
Collapse
|
27
|
Videau P, Oshiro RT, Cozy LM, Callahan SM. Transcriptional dynamics of developmental genes assessed with an FMN-dependent fluorophore in mature heterocysts of Anabaena sp. strain PCC 7120. MICROBIOLOGY-SGM 2014; 160:1874-1881. [PMID: 25061040 DOI: 10.1099/mic.0.078352-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that differentiates nitrogen-fixing heterocysts when available combined nitrogen is limiting. Growth under diazotrophic conditions results in a mixture of 'new' (recently differentiated) and 'old' (mature) heterocysts. The microoxic environment present in heterocysts makes the interpretation of gene expression using oxygen-dependent fluorophores, including GFP, difficult. The work presented here evaluates the transcriptional dynamics of three developmental genes in mature heterocysts utilizing EcFbFP, a flavin mononucleotide-dependent fluorophore, as the reporter. Expression of both GFP and EcFbFP from the heterologous petE promoter showed that, although GFP and EcFbFP fluoresced in both vegetative cells and new heterocysts, only EcFbFP fluoresced in old heterocysts. A transcriptional fusion of EcFbFP to the late-stage heterocyst-specific nifB promoter displayed continued expression beyond the cessation of GFP fluorescence in heterocysts. Promoter fusions of the master regulator of differentiation, hetR, and its inhibitors, patS and hetN, to GFP and EcFbFP were visualized to determine their role(s) in heterocyst function after morphogenesis. The expression of hetR and hetN was found to persist beyond the completion of development in most heterocysts, whereas patS expression ceased. These data are consistent with a model of heterocyst patterning in which patS is involved in de novo pattern formation, hetN is required for pattern maintenance, and hetR is needed for all stages of development.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Reid T Oshiro
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Loralyn M Cozy
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Sean M Callahan
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|