1
|
Tremblay PL, Zhang T. Genetic tools for the electrotroph Sporomusa ovata and autotrophic biosynthesis. Appl Environ Microbiol 2024; 90:e0175723. [PMID: 38117058 PMCID: PMC10807461 DOI: 10.1128/aem.01757-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Sporomusa ovata is a Gram-negative acetogen of the Sporomusaceae family with a unique physiology. This anerobic bacterium is a core microbial catalyst for advanced CO2-based biotechnologies including gas fermentation, microbial electrosynthesis, and hybrid photosystem. Until now, no genetic tools exist for S. ovata, which is a critical obstacle to its optimization as an autotrophic chassis and the acquisition of knowledge about its metabolic capacities. Here, we developed an electroporation protocol for S. ovata. With this procedure, it became possible to introduce replicative plasmids such as pJIR751 and its derivatives into the acetogen. This system was then employed to demonstrate the feasibility of heterologous expression by introducing a functional β-glucuronidase enzyme under the promoters of different strengths in S. ovata. Next, a recombinant S. ovata strain producing the non-native product acetone both from an organic carbon substrate and from CO2 was constructed. Finally, a replicative plasmid capable of integrating itself on the chromosome of the acetogen was developed as a tool for genome editing, and gene deletion was demonstrated. These results indicate that S. ovata can be engineered and provides a first-generation genetic toolbox for the optimization of this biotechnological workhorse.IMPORTANCES. ovata harbors unique features that make it outperform most microbes for autotrophic biotechnologies such as a capacity to acquire electrons from different solid donors, a low H2 threshold, and efficient energy conservation mechanisms. The development of the first-generation genetic instruments described in this study is a key step toward understanding the molecular mechanisms involved in these outstanding metabolic and physiological characteristics. In addition, these tools enable the construction of recombinant S. ovata strains that can synthesize a wider range of products in an efficient manner.
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, China
- Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, China
| |
Collapse
|
2
|
Kwon HJ, Lee J, Kwon SJ, Lee HS. Development of a genetic engineering toolbox for syngas-utilizing acetogen Clostridium sp. AWRP. Microb Cell Fact 2024; 23:6. [PMID: 38172811 PMCID: PMC10763472 DOI: 10.1186/s12934-023-02272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Clostridium sp. AWRP (AWRP) is a novel acetogenic bacterium isolated under high partial pressure of carbon monoxide (CO) and can be one of promising candidates for alcohol production from carbon oxides. Compared to model strains such as C. ljungdahlii and C. autoethanogenum, however, genetic manipulation of AWRP has not been established, preventing studies on its physiological characteristics and metabolic engineering. RESULTS We were able to demonstrate the genetic domestication of AWRP, including transformation of shuttle plasmids, promoter characterization, and genome editing. From the conjugation experiment with E. coli S17-1, among the four replicons tested (pCB102, pAMβ1, pIP404, and pIM13), three replicated in AWRP but pCB102 was the only one that could be transferred by electroporation. DNA methylation in E. coli significantly influenced transformation efficiencies in AWRP: the highest transformation efficiencies (102-103 CFU/µg) were achieved with unmethylated plasmid DNA. Determination of strengths of several clostridial promoters enabled the establishment of a CRISPR/Cas12a genome editing system based on Acidaminococcus sp. BV3L6 cas12a gene; interestingly, the commonly used CRISPR/Cas9 system did not work in AWRP, although it expressed the weakest promoter (C. acetobutylicum Pptb) tested. This system was successfully employed for the single gene deletion (xylB and pyrE) and double deletion of two prophage gene clusters. CONCLUSIONS The presented genome editing system allowed us to achieve several genome manipulations, including double deletion of two large prophage groups. The genetic toolbox developed in this study will offer a chance for deeper studies on Clostridium sp. AWRP for syngas fermentation and carbon dioxide (CO2) sequestration.
Collapse
Affiliation(s)
- Hae Jun Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Joungmin Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
| | - Soo Jae Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Busan, Republic of Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
- KIOST School, University of Science and Technology, Busan, Republic of Korea.
| |
Collapse
|
3
|
Furuya K, Kiyoshi K, Punjuy C, Yoshida N, Maruyama R, Yasuda T, Watanabe K, Kadokura T, Nakayama S. Effect of spo0A, sigE, sigG, and sigK disruption on butanol production and spore formation in Clostridium saccharoperbutylacetonicum strain N1-4 (ATCC13564). J Biosci Bioeng 2023; 136:198-204. [PMID: 37487916 DOI: 10.1016/j.jbiosc.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Clostridium saccharoperbutylacetonicum strain N1-4 (ATCC13564) is a butanol-producing strain suitable for application to butanol production from cellulosic materials by co-culture with cellulolytic and thermophilic species, such as Hungateiclostridium thermocellum (synonym: Clostridium thermocellum). The optimal temperature for butanol production by strain N1-4 is 30 °C, and the strain is sensitive to a high culture temperature of 37 °C. Given that spore formation is observed at high frequency when strain N1-4 is cultivated at 37 °C, we assumed in a previous study that the initiation of sporulation is related to a decrease in butanol production. Therefore, to investigate the relationship between butanol production and spore formation, we generated strain N1-4 isolates in which genes related to spore formation were disrupted. The sporulation-related gene disruptants of spo0A, sigE, sigG, and sigK lost the ability to produce heat-resistant spores, irrespective of the culture temperature. Among the gene disruptants produced, only the spo0A disruptant lost butanol-producing ability when cultivated at 30 °C. Interestingly, the sigE disruptant maintained butanol productivity similar to that observed at 30 °C, even when cultivated at 37 °C. In addition, the sigE disruptant successfully produced butanol from Avicel cellulose by co-culture with H. thermocellum at a fermentation temperature of 37 °C.
Collapse
Affiliation(s)
- Kazuhiko Furuya
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiji Kiyoshi
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Chaophaya Punjuy
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Naoto Yoshida
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Risa Maruyama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tatsuki Yasuda
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kota Watanabe
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toshimori Kadokura
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
4
|
Humphreys JR, Bean Z, Twycross J, Winzer K. The Lanthipeptide Synthetase-like Protein CA_C0082 Is an Effector of Agr Quorum Sensing in Clostridium acetobutylicum. Microorganisms 2023; 11:1460. [PMID: 37374961 DOI: 10.3390/microorganisms11061460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Lanthipeptide synthetases are present in all domains of life. They catalyze a crucial step during lanthipeptide biosynthesis by introducing thioether linkages during posttranslational peptide modification. Lanthipeptides have a wide range of functions, including antimicrobial and morphogenetic activities. Intriguingly, several Clostridium species contain lanthipeptide synthetase-like genes of the class II (lanM) family but lack other components of the lanthipeptide biosynthetic machinery. In all instances, these genes are located immediately downstream of putative agr quorum sensing operons. The physiological role and mode of action of the encoded LanM-like proteins remain uncertain as they lack conserved catalytic residues. Here we show for the industrial organism Clostridium acetobutylicum that the LanM-like protein CA_C0082 is not required for the production of active AgrD-derived signaling peptide but nevertheless acts as an effector of Agr quorum sensing. Expression of CA_C0082 was shown to be controlled by the Agr system and is a prerequisite for granulose (storage polymer) formation. The accumulation of granulose, in turn, was shown to be required for maximal spore formation but also to reduce early solvent formation. CA_C0082 and its putative homologs appear to be closely associated with Agr systems predicted to employ signaling peptides with six-membered ring structures and may represent a new subfamily of LanM-like proteins. This is the first time their contribution to bacterial Agr signaling has been described.
Collapse
Affiliation(s)
- Jonathan R Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Zak Bean
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Jamie Twycross
- School of Computer Science, Jubilee Campus, The University of Nottingham, Nottingham NG8 1BB, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Hocq R, Jagtap S, Boutard M, Tolonen AC, Duval L, Pirayre A, Lopes Ferreira N, Wasels F. Genome-Wide TSS Distribution in Three Related Clostridia with Normalized Capp-Switch Sequencing. Microbiol Spectr 2022; 10:e0228821. [PMID: 35412381 PMCID: PMC9045289 DOI: 10.1128/spectrum.02288-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription initiation is a tightly regulated process that is crucial for many aspects of prokaryotic physiology. High-throughput transcription start site (TSS) mapping can shed light on global and local regulation of transcription initiation, which in turn may help us understand and predict microbial behavior. In this study, we used Capp-Switch sequencing to determine the TSS positions in the genomes of three model solventogenic clostridia: Clostridium acetobutylicum ATCC 824, C. beijerinckii DSM 6423, and C. beijerinckii NCIMB 8052. We first refined the approach by implementing a normalization pipeline accounting for gene expression, yielding a total of 12,114 mapped TSSs across the species. We further compared the distributions of these sites in the three strains. Results indicated similar distribution patterns at the genome scale, but also some sharp differences, such as for the butyryl-CoA synthesis operon, particularly when comparing C. acetobutylicum to the C. beijerinckii strains. Lastly, we found that promoter structure is generally poorly conserved between C. acetobutylicum and C. beijerinckii. A few conserved promoters across species are discussed, showing interesting examples of how TSS determination and comparison can improve our understanding of gene expression regulation at the transcript level. IMPORTANCE Solventogenic clostridia have been employed in industry for more than a century, initially being used in the acetone-butanol-ethanol (ABE) fermentation process for acetone and butanol production. Interest in these bacteria has recently increased in the context of green chemistry and sustainable development. However, our current understanding of their genomes and physiology limits their optimal use as industrial solvent production platforms. The gene regulatory mechanisms of solventogenesis are still only partly understood, impeding efforts to increase rates and yields. Genome-wide mapping of transcription start sites (TSSs) for three model solventogenic Clostridium strains is an important step toward understanding mechanisms of gene regulation in these industrially important bacteria.
Collapse
Affiliation(s)
- Rémi Hocq
- IFP Energies Nouvelles, Rueil-Malmaison, France
| | | | - Magali Boutard
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, Evry, France
| | - Andrew C. Tolonen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, Evry, France
| | | | | | | | | |
Collapse
|
6
|
Zhu C, Du G, Zhang J, Xue C. A high-efficient strategy for combinatorial engineering paralogous gene family: A case study on histidine kinases in Clostridium. Biotechnol Bioeng 2021; 118:2770-2780. [PMID: 33871069 DOI: 10.1002/bit.27796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 11/10/2022]
Abstract
Microorganisms harbor bulks of functionally similar or undefined genes, which belong to paralogous gene family. There is a necessity of exploring combinatorial or interactive functions of these genes, but conventional loss-of-function strategy with one-by-one rounds suffers extremely low efficiency for generating mutant libraries with all gene permutations. Here, taking histidine kinases (HKs) in Clostridium acetobutylicum as a proof-of-concept, we developed a multi-plasmid cotransformation strategy for generating all theoretical HKs combinations in one round. For five HKs with 31 theoretical combinations, the library containing 22 mutants within all the possible HKs-inactivated combinations was constructed with 11 days compared to 242 days by conventional strategy, while the other 9 combinations cannot survive. Six mutants with the enhanced butanol production and tolerance were obtained with changes of cell development during fermentation, one of which could produce 54.2% more butanol (56.4% more solvents), while the butanol production of other mutants was unchanged or decreased. The cotransformation strategy demonstrated potentials for fast exploring pleiotropic function of paralogous family genes in cell survival, cell development, and target product metabolism.
Collapse
Affiliation(s)
- Chao Zhu
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Guangqing Du
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Jie Zhang
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China
| | - Chuang Xue
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| |
Collapse
|
7
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
8
|
Charubin K, Streett H, Papoutsakis ET. Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins. Appl Environ Microbiol 2020; 86:e01271-20. [PMID: 32769192 PMCID: PMC7531948 DOI: 10.1128/aem.01271-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
One of the biggest limitations in the study and engineering of anaerobic Clostridium organisms is the lack of strong fluorescent reporters capable of strong and real-time fluorescence. Recently, we developed a strong fluorescent reporter system for Clostridium organisms based on the FAST protein. Here, we report the development of two new strong fluorescent reporter systems for Clostridium organisms based on the HaloTag and SNAP-tag proteins, which produce strong fluorescent signals when covalently bound to fluorogenic ligands. These new fluorescent reporters are orthogonal to the FAST ligands and to each other, allowing for simultaneous labeling and visualization. We used HaloTag and SNAP-tag to label the strictly anaerobic organisms Clostridium acetobutylicum and Clostridium ljungdahlii We have also identified a new strong promoter for protein expression in C. acetobutylicum, based on the phosphotransacetylase gene (pta) from C. ljungdahlii Furthermore, the HaloTag and the SNAP-tag, in combination with the previously described FAST system, were successfully used to measure cell populations in bacterial mixed cultures and showed the simultaneous orthogonal labeling of HaloTag and SNAP-tag together with the FAST protein reporter. Finally, we show the expression of recombinant fusion protein of FAST and the ZapA division protein (from C. acetobutylicum) in C. ljungdahlii. The availability of multiple strong fluorescent reporters is a major addition to the genetic toolkit of Clostridium and other anaerobes that will lead to better understanding of these unique organisms.IMPORTANCE Up to this point, assays and methods involving fluorescent reporter proteins were unavailable or limited in Clostridium organisms and other strict anaerobes. Green fluorescent protein (GFP), mCherry, and flavin-binding proteins (and their derivatives) have been used only in a few clostridia with limited success and yielded low fluorescence compared to aerobic microbial systems. Recently, we reported a new strong fluorescent reporter system based on the FAST protein as a first step in expanding the fluorescence-based reporters for Clostridium and other anaerobic microbial platforms. Additional strong orthogonal fluorescent proteins, with distinct emission spectra are needed to allow for (i) multispecies tracking within the growing field of microbial cocultures and microbiomes, (ii) protein localization and tracking in anaerobes, and (iii) identification and development of natural and synthetic promoters, ribosome-binding sites (RBS), and terminators for optimal protein expression in anaerobes. Here, we present two new strong fluorescent reporter systems based on the HaloTag and SNAP-tag proteins.
Collapse
Affiliation(s)
- Kamil Charubin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Hannah Streett
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Vees CA, Neuendorf CS, Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020; 47:753-787. [PMID: 32894379 PMCID: PMC7658081 DOI: 10.1007/s10295-020-02296-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures containing H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility operates continuously, the acetone-butanol-ethanol (ABE) fermentation is traditionally operated in batch mode. This review highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current industrial bioproduction of solvents.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christian Simon Neuendorf
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
10
|
Diallo M, Kint N, Monot M, Collas F, Martin-Verstraete I, van der Oost J, Kengen SWM, López-Contreras AM. Transcriptomic and Phenotypic Analysis of a spoIIE Mutant in Clostridium beijerinckii. Front Microbiol 2020; 11:556064. [PMID: 33042064 PMCID: PMC7522474 DOI: 10.3389/fmicb.2020.556064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a phosphatase involved in the activation of the first sigma factor of the forespore, σ F , during sporulation. A ΔspoIIE mutant of Clostridium beijerinckii NCIMB 8052, previously generated by CRISPR-Cas9, did not sporulate but still produced granulose and solvents. Microscopy analysis also showed that the cells of the ΔspoIIE mutant are elongated with the presence of multiple septa. This observation suggests that in C. beijerinckii, SpoIIE is necessary for the completion of the sporulation process, as seen in Bacillus and Clostridium acetobutylicum. Moreover, when grown in reactors, the spoIIE mutant produced higher levels of solvents than the wild type strain. The impact of the spoIIE inactivation on gene transcription was assessed by comparative transcriptome analysis at three time points (4 h, 11 h and 23 h). Approximately 5% of the genes were differentially expressed in the mutant compared to the wild type strain at all time points. Out of those only 12% were known sporulation genes. As expected, the genes belonging to the regulon of the sporulation specific transcription factors (σ F , σ E , σ G , σ K ) were strongly down-regulated in the mutant. Inactivation of spoIIE also caused differential expression of genes involved in various cell processes at each time point. Moreover, at 23 h, genes involved in butanol formation and tolerance, as well as in cell motility, were up-regulated in the mutant. In contrast, several genes involved in cell wall composition, oxidative stress and amino acid transport were down-regulated. These results indicate an intricate interdependence of sporulation and stationary phase cellular events in C. beijerinckii.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nicolas Kint
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Biomics platform, C2RT, Institut Pasteur, Paris, France
| | - Florent Collas
- Wageningen Food and Biobased Research, Wageningen, Netherlands
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
- Institut Universitaire de France, Paris, France
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
11
|
Interspecies Microbial Fusion and Large-Scale Exchange of Cytoplasmic Proteins and RNA in a Syntrophic Clostridium Coculture. mBio 2020; 11:mBio.02030-20. [PMID: 32873766 PMCID: PMC7468208 DOI: 10.1128/mbio.02030-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microbial syntrophy is universal in nature, profoundly affecting the composition and function of microbiomes. We have recently reported data suggesting direct cell-to-cell interactions leading to electron and material exchange between the two microbes in the syntrophy between Clostridium ljungdahlii and C. acetobutylicum Here, transmission electron microscopy and electron tomography demonstrated cell wall and membrane fusions between the two organisms, whereby C. ljungdahlii appears to invade C. acetobutylicum pole to pole. Correlative fluorescence transmission electron microscopy demonstrated large-scale exchange of proteins. Flow cytometry analysis captured the extent and dynamic persistence of these interactions. Dividing hybrid cells were identified containing stained proteins from both organisms, thus demonstrating persistence of cells with exchanged cellular components. Fluorescence microscopy and flow cytometry of one species with stained RNA and the other tagged with a fluorescent protein demonstrated extensive RNA exchange and identified hybrid cells, some of which continued to divide, while some were in an advanced C. acetobutylicum sporulation form. These data demonstrate that cell fusion enables large-scale cellular material exchange between the two organisms. Although unanticipated and never previously reported, these phenomena are likely widely distributed in nature, have profound implications for species evolution and the function of microbial communities, and could find utility in biotechnology. They may shed new light onto little-understood phenomena, such as antibiotic heteroresistance of pathogens, pathogen invasion of human tissues, and the evolutionary trajectory and persistence of unculturable bacteria.IMPORTANCE We report that two different bacterial organisms engage in heterologous cell fusion that leads to massive exchange of cellular material, including proteins and RNA, and the formation of persistent hybrid cells. The interspecies cell fusion observed here involves a syntrophic microbial system, but these heterologous cell fusions were observed even under nonstrict syntrophic conditions, leaving open the possibility that strict syntrophy may not be necessary for interspecies cell fusion and cellular material exchange. Formation of hybrid cells that contain proteins and RNA from both organisms is unexpected and unprecedented. Such fusion events are likely widely distributed in nature, but have gone undetected. The implications are profound and may shed light onto many unexplained phenomena in human health, natural environments, evolutionary biology, and biotechnology.
Collapse
|
12
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
13
|
Xia M, Peng M, Xue D, Cheng Y, Li C, Wang D, Lu K, Zheng Y, Xia T, Song J, Wang M. Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:111. [PMID: 32595760 PMCID: PMC7315531 DOI: 10.1186/s13068-020-01751-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/13/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellulose, which mainly stem from two key elements: (i) high biomass recalcitrance to enzymatic sugar release; (ii) lacking of suitable industrial biobutanol production strain. Though steam explosion has been proved effective for bio-refinery, few studies report SE for VR pretreatment. Much of the relevant knowledge remains unknown. Meanwhile, recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strain are quite limited. In this study, we assessed the impact of SE pretreatment, enzymatic hydrolysis kinetics, overall sugar recovery and applied atmospheric and room temperature plasma (ARTP) mutant method for the Clostridium strain development to solve the long-standing problem. RESULTS SE pretreatment was first performed. At the optimal condition, 29.47% of glucan, 71.62% of xylan and 22.21% of arabinan were depolymerized and obtained in the water extraction. In the sequential enzymatic hydrolysis process, enzymatic hydrolysis rate was increased by 13-fold compared to the VR without pretreatment and 19.60 g glucose, 15.21 g xylose and 5.63 g arabinose can be obtained after the two-step treatment from 100 g VR. Porous properties analysis indicated that steam explosion can effectively generate holes with diameter within 10-20 nm. Statistical analysis proved that enzymatic hydrolysis rate of VR followed the Pseudop-second-order kinetics equation and the relationship between SE severity and enzymatic hydrolysis rate can be well revealed by Boltzmann model. Finally, a superior inhibitor-tolerant strain, Clostridium acetobutylicum Tust-001, was generated with ARTP treatment. The water extraction and enzymolysis liquid gathered were successfully fermented, resulting in butanol titer of 7.98 g/L and 12.59 g/L of ABE. CONCLUSIONS SE proved to be quite effective for VR due to high fermentable sugar recovery and enzymatic hydrolysate fermentability. Inverse strategy employing ARTP and repetitive domestication for strain breeding is quite feasible, providing us with a new tool for solving the problem in the biofuel fields.
Collapse
Affiliation(s)
- Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Mingmeng Peng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Danni Xue
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yang Cheng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Caixia Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Di Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Kai Lu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| |
Collapse
|
14
|
Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii. Methods 2019; 172:51-60. [PMID: 31362039 DOI: 10.1016/j.ymeth.2019.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.
Collapse
|
15
|
σ 54 (σ L) plays a central role in carbon metabolism in the industrially relevant Clostridium beijerinckii. Sci Rep 2019; 9:7228. [PMID: 31076628 PMCID: PMC6510779 DOI: 10.1038/s41598-019-43822-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 11/09/2022] Open
Abstract
The solventogenic C. beijerinckii DSM 6423, a microorganism that naturally produces isopropanol and butanol, was previously modified by random mutagenesis. In this work, one of the resulting mutants was characterized. This strain, selected with allyl alcohol and designated as the AA mutant, shows a dominant production of acids, a severely diminished butanol synthesis capacity, and produces acetone instead of isopropanol. Interestingly, this solvent-deficient strain was also found to have a limited consumption of two carbohydrates and to be still able to form spores, highlighting its particular phenotype. Sequencing of the AA mutant revealed point mutations in several genes including CIBE_0767 (sigL), which encodes the σ54 sigma factor. Complementation with wild-type sigL fully restored solvent production and sugar assimilation and RT-qPCR analyses revealed its transcriptional control of several genes related to solventogensis, demonstrating the central role of σ54 in C. beijerinckii DSM 6423. Comparative genomics analysis suggested that this function is conserved at the species level, and this hypothesis was further confirmed through the deletion of sigL in the model strain C. beijerinckii NCIMB 8052.
Collapse
|
16
|
|
17
|
Charubin K, Bennett RK, Fast AG, Papoutsakis ET. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metab Eng 2018; 50:173-191. [DOI: 10.1016/j.ymben.2018.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022]
|
18
|
Small and Low but Potent: the Complex Regulatory Role of the Small RNA SolB in Solventogenesis in Clostridium acetobutylicum. Appl Environ Microbiol 2018; 84:AEM.00597-18. [PMID: 29728392 DOI: 10.1128/aem.00597-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
The recently revived Clostridium acetobutylicum-based acetone-butanol-ethanol (ABE) fermentation is widely celebrated and studied for its impact on industrial biotechnology. C. acetobutylicum has been studied and engineered extensively, yet critical areas of the molecular basis for how solvent formation is regulated remain unresolved. The core solventogenic genes (adhE1/aad, ctfA, ctfB, and adc) are carried on the sol locus of the pSOL1 megaplasmid, whose loss leads to asporogenous, "degenerate" cells. The sol locus includes a noncoding small RNA (sRNA), SolB, whose role is presumed to be critical for solventogenesis but has eluded resolution. In the present study, SolB overexpression downregulated the sol-locus genes at the transcript level, resulting in attenuated protein expression and a solvent-deficient phenotype, thus suggesting that SolB affects expression of all sol-locus transcripts and seemingly validating its hypothesized role as a repressor. However, deletion of solB resulted in a total loss of acetone production and severe attenuation of butanol formation, with complex effects on sol-locus genes and proteins: it had a small impact on adc mRNA or its corresponding protein (acetoacetate decarboxylase) expression level, somewhat reduced adhE1 and ctfA-ctfB mRNA levels, and abolished the ctfA-ctfB-encoded coenzyme A transferase (CoAT) activity. Computational predictions support a model whereby SolB expressed at low levels enables the stabilization and translation of sol-locus transcripts to facilitate tuning of the production of various solvents depending on the prevailing culture conditions. A key predicted SolB target is the ribosome binding site (RBS) of the ctfA transcript, and this was verified by expressing variants of the ctfA-ctfB genes to demonstrate the importance of SolB for acetone formation.IMPORTANCE Small noncoding RNAs regulate many important metabolic and developmental programs in prokaryotes, but their role in anaerobes has been explored minimally. Regulation of solvent formation in the important industrial organism C. acetobutylicum remains incompletely understood. While the genes for solvent formation and their promoters are known, the means by which this organism tunes the ratios of key solvents, notably the butanol/acetone ratio to balance its electron resources, remains unknown. Significantly, the roles of several coding and noncoding genes in the sol locus in tuning the solvent formation ratios have not been explored. Here we show that the small RNA SolB fine-tunes the expression of solvents, with acetone formation being a key target, by regulating the translation of the acetone formation rate-limiting enzyme, the coenzyme A transferase (CoAT). It is notable that SolB expressed at very low levels enables CoAT translation, while at high, nonphysiological expression levels, it leads to degradation of the corresponding transcript.
Collapse
|
19
|
Máté de Gérando H, Wasels F, Bisson A, Clement B, Bidard F, Jourdier E, López-Contreras AM, Lopes Ferreira N. Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423. BMC Genomics 2018; 19:242. [PMID: 29636009 PMCID: PMC5894183 DOI: 10.1186/s12864-018-4636-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/28/2018] [Indexed: 12/23/2022] Open
Abstract
Background There is a worldwide interest for sustainable and environmentally-friendly ways to produce fuels and chemicals from renewable resources. Among them, the production of acetone, butanol and ethanol (ABE) or Isopropanol, Butanol and Ethanol (IBE) by anaerobic fermentation has already a long industrial history. Isopropanol has recently received a specific interest and the best studied natural isopropanol producer is C. beijerinckii DSM 6423 (NRRL B-593). This strain metabolizes sugars into a mix of IBE with only low concentrations of ethanol produced (< 1 g/L). However, despite its relative ancient discovery, few genomic details have been described for this strain. Research efforts including omics and genetic engineering approaches are therefore needed to enable the use of C. beijerinckii as a microbial cell factory for production of isopropanol. Results The complete genome sequence and a first transcriptome analysis of C. beijerinckii DSM 6423 are described in this manuscript. The combination of MiSeq and de novo PacBio sequencing revealed a 6.38 Mbp chromosome containing 6254 genomic objects. Three Mobile Genetic Elements (MGE) were also detected: a linear double stranded DNA bacteriophage (ϕ6423) and two plasmids (pNF1 and pNF2) highlighting the genomic complexity of this strain. A first RNA-seq transcriptomic study was then performed on 3 independent glucose fermentations. Clustering analysis allowed us to detect some key gene clusters involved in the main life cycle steps (acidogenesis, solvantogenesis and sporulation) and differentially regulated among the fermentation. These putative clusters included some putative metabolic operons comparable to those found in other reference strains such as C. beijerinckii NCIMB 8052 or C. acetobutylicum ATCC 824. Interestingly, only one gene was encoding for an alcohol dehydrogenase converting acetone into isopropanol, suggesting a single genomic event occurred on this strain to produce isopropanol. Conclusions We present the full genome sequence of Clostridium beijerinckii DSM 6423, providing a complete genetic background of this strain. This offer a great opportunity for the development of dedicated genetic tools currently lacking for this strain. Moreover, a first RNA-seq analysis allow us to better understand the global metabolism of this natural isopropanol producer, opening the door to future targeted engineering approaches. Electronic supplementary material The online version of this article (10.1186/s12864-018-4636-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hadrien Máté de Gérando
- Wageningen Food and Biobased Research, Bornse Weilanden 9, 6709WG, Wageningen, The Netherlands.,IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - François Wasels
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Angélique Bisson
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Benjamin Clement
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Frédérique Bidard
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Etienne Jourdier
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | | | | |
Collapse
|
20
|
Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel In Vivo CO Exchange Activity En Route to Heterologous Installation of a Functional Wood-Ljungdahl Pathway. Appl Environ Microbiol 2018; 84:AEM.02307-17. [PMID: 29374033 DOI: 10.1128/aem.02307-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/21/2018] [Indexed: 11/20/2022] Open
Abstract
Engineering the Wood-Ljungdahl pathway (WLP) in the established industrial organism Clostridium acetobutylicum would allow for the conversion of carbohydrates into butanol, acetone, and other metabolites at higher yields than are currently possible, while minimizing CO2 and H2 release. To this effect, we expressed 11 Clostridium ljungdahlii core genes coding for enzymes and accessory proteins of the WLP in Clostridium acetobutylicum The engineered WLP in C. acetobutylicum showed functionality of the eastern branch of the pathway based on the formation of labeled 5,10-methylenetetrahydrofolate from 13C-labeled formate, as well as functionality of the western branch as evidenced by the formation of CO from CO2 However, the lack of labeling in acetate and butyrate pools indicated that the connection between the two branches is not functional. The focus of our investigation then centered on the functional expression of the acetyl-coenzyme A (CoA) synthase (ACS), which forms a complex with the CO dehydrogenase (CODH) and serves to link the two branches of the WLP. The CODH/ACS complex catalyzes the reduction of CO2 to CO and the condensation of CO with a methyl group to form acetyl-CoA, respectively. Here, we show the simultaneous activities of the two recombinant enzymes. We demonstrate in vivo the classical in vitro ACS carbonyl carbon exchange assay, whereby the carbonyl carbon of acetyl-CoA is exchanged with the CO carbon. Our data suggest that the low heterologous expression of ACS may limit the functionality of the heterologous WLP in C. acetobutylicum IMPORTANCE The bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) from C. ljungdahlii was heterologously expressed in the obligate heterotroph C. acetobutylicum The functional activity of the CODH was confirmed through both the oxidation and reduction of CO, as had previously been shown for the heterologous CODH from Clostridium carboxidivorans Significantly, a novel in vivo assay for ACS exchange activity using 13C-tracers was developed and used to confirm functional ACS expression.
Collapse
|
21
|
The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation. Nat Commun 2017; 8:1514. [PMID: 29138399 PMCID: PMC5686105 DOI: 10.1038/s41467-017-01809-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022] Open
Abstract
Polyketides are an important class of bioactive small molecules valued not only for their diverse therapeutic applications, but also for their role in controlling interesting biological phenotypes in their producing organisms. While numerous polyketides are known to be derived from aerobic organisms, only a single family of polyketides has been identified from anaerobic organisms. Here we uncover a family of polyketides native to the anaerobic bacterium Clostridium acetobutylicum, an organism well-known for its historical use as an industrial producer of the organic solvents acetone, butanol, and ethanol. Through mutational analysis and chemical complementation assays, we demonstrate that these polyketides act as chemical triggers of sporulation and granulose accumulation in this strain. This study represents a significant addition to the body of work demonstrating the existence and importance of polyketides in anaerobes, and showcases a strategy of manipulating the secondary metabolism of an organism to improve traits relevant for industrial applications. Polyketides are secondary metabolites mainly found in aerobic organisms with wide applications in medicine and agriculture. Here, the authors uncover new polyketides native to the anaerobic bacterium Clostridium acetobutylicum and show their role in triggering sporulation and granulose accumulation.
Collapse
|
22
|
THE CONTENTS OF NEUTRAL AND POLAR LIPIDS IN CLOSTRIDIA CELLS UNDER CULTIVATION IN THE PRESENCE OF BUTANOL. BIOTECHNOLOGIA ACTA 2017. [DOI: 10.15407/biotech10.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4. Appl Environ Microbiol 2016; 83:AEM.02942-16. [PMID: 27836845 DOI: 10.1128/aem.02942-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/01/2016] [Indexed: 01/23/2023] Open
Abstract
While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 106 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. IMPORTANCE This paper presents the first steps toward advanced genetic engineering of the industrial butanol producer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT). In addition to providing an efficient method for introducing foreign DNA into this species, we demonstrate successful rational engineering for increasing solvent production. Examples of future applications of this work include metabolic engineering for improving desirable industrial traits of this species and heterologous gene expression for expanding the end product profile to include high-value fuels and chemicals.
Collapse
|
24
|
Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells. Front Microbiol 2016; 7:1698. [PMID: 27833595 PMCID: PMC5080291 DOI: 10.3389/fmicb.2016.01698] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60-75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the resistance of C. difficile to common decontamination methods. These results further demonstrate that the vegetative cells and spores of various C. difficile strains have different resistance properties that may impact decontamination of surfaces and hands.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Samiha T Karim
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Ricardo A Pascual
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Lina M Jowhar
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Sarah E Anderson
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Shonna M McBride
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|
25
|
Cho C, Lee SY. Efficient gene knockdown inClostridium acetobutylicumby synthetic small regulatory RNAs. Biotechnol Bioeng 2016; 114:374-383. [DOI: 10.1002/bit.26077] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/19/2016] [Accepted: 08/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Changhee Cho
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST; Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST; Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon Republic of Korea
| |
Collapse
|
26
|
Lee SH, Yun EJ, Kim J, Lee SJ, Um Y, Kim KH. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Appl Microbiol Biotechnol 2016; 100:8255-71. [PMID: 27531513 DOI: 10.1007/s00253-016-7760-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Butanol is considered an attractive biofuel and a commercially important bulk chemical. However, economical production of butanol by solventogenic clostridia, e.g., via fermentative production of acetone-butanol-ethanol (ABE), is hampered by low fermentation performance, mainly as a result of toxicity of butanol to microorganisms and high substrate costs. Recently, sugars from marine macroalgae and syngas were recognized as potent carbon sources in biomass feedstocks that are abundant and do not compete for arable land with edible crops. With the aid of systems metabolic engineering, many researchers have developed clostridial strains with improved performance on fermentation of these substrates. Alternatively, fermentation strategies integrated with butanol recovery processes such as adsorption, gas stripping, liquid-liquid extraction, and pervaporation have been designed to increase the overall titer of butanol and volumetric productivity. Nevertheless, for economically feasible production of butanol, innovative strategies based on recent research should be implemented. This review describes and discusses recent advances in the development of biomass feedstocks, microbial strains, and fermentation processes for butanol production.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Sang Jun Lee
- Biosystems and Bioengineering Program, University of Science and Technology and Microbiomics and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
27
|
Abstract
Engineering industrial microorganisms for ambitious applications, for example, the production of second-generation biofuels such as butanol, is impeded by a lack of knowledge of primary metabolism and its regulation. A quantitative system-scale analysis was applied to the biofuel-producing bacterium Clostridium acetobutylicum, a microorganism used for the industrial production of solvent. An improved genome-scale model, iCac967, was first developed based on thorough biochemical characterizations of 15 key metabolic enzymes and on extensive literature analysis to acquire accurate fluxomic data. In parallel, quantitative transcriptomic and proteomic analyses were performed to assess the number of mRNA molecules per cell for all genes under acidogenic, solventogenic, and alcohologenic steady-state conditions as well as the number of cytosolic protein molecules per cell for approximately 700 genes under at least one of the three steady-state conditions. A complete fluxomic, transcriptomic, and proteomic analysis applied to different metabolic states allowed us to better understand the regulation of primary metabolism. Moreover, this analysis enabled the functional characterization of numerous enzymes involved in primary metabolism, including (i) the enzymes involved in the two different butanol pathways and their cofactor specificities, (ii) the primary hydrogenase and its redox partner, (iii) the major butyryl coenzyme A (butyryl-CoA) dehydrogenase, and (iv) the major glyceraldehyde-3-phosphate dehydrogenase. This study provides important information for further metabolic engineering of C. acetobutylicum to develop a commercial process for the production of n-butanol. Currently, there is a resurgence of interest in Clostridium acetobutylicum, the biocatalyst of the historical Weizmann process, to produce n-butanol for use both as a bulk chemical and as a renewable alternative transportation fuel. To develop a commercial process for the production of n-butanol via a metabolic engineering approach, it is necessary to better characterize both the primary metabolism of C. acetobutylicum and its regulation. Here, we apply a quantitative system-scale analysis to acidogenic, solventogenic, and alcohologenic steady-state C. acetobutylicum cells and report for the first time quantitative transcriptomic, proteomic, and fluxomic data. This approach allows for a better understanding of the regulation of primary metabolism and for the functional characterization of numerous enzymes involved in primary metabolism.
Collapse
|
28
|
Wetzel D, Fischer RJ. Small acid-soluble spore proteins of Clostridium acetobutylicum are able to protect DNA in vitro and are specifically cleaved by germination protease GPR and spore protease YyaC. MICROBIOLOGY-SGM 2015; 161:2098-109. [PMID: 26362088 DOI: 10.1099/mic.0.000162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small acid-soluble proteins (SASPs) play an important role in protection of DNA in dormant bacterial endospores against damage by heat, UV radiation or enzymic degradation. In the genome of the strict anaerobe Clostridium acetobutylicum, five genes encoding SASPs have been annotated and here a further sixth candidate is suggested. The ssp genes are expressed in parallel dependent upon Spo0A, a master regulator of sporulation. Analysis of the transcription start points revealed a σG or a σF consensus promoter upstream of each ssp gene, confirming a forespore-specific gene expression. SASPs were termed SspA (Cac2365), SspB (Cac1522), SspD (Cac1620), SspF (Cac2372), SspH (Cac1663) and Tlp (Cac1487). Here it is shown that with the exception of Tlp, every purified recombinant SASP is able to bind DNA in vitro thereby protecting it against enzymic degradation by DNase I. Moreover, SspB and SspD were specifically cleaved by the two germination-specific proteases GPR (Cac1275) and YyaC (Cac2857), which were overexpressed in Escherichia coli and activated by an autocleavage reaction. Thus, for the first time to our knowledge, GPR-like activity and SASP specificity could be demonstrated for a YyaC-like protein. Collectively, the results assign SspA, SspB, SspD, SspF and SspH of C. acetobutylicum as members of α/β-type SASPs, whereas Tlp seems to be a non-DNA-binding spore protein of unknown function. In acetic acid-extracted proteins of dormant spores of C. acetobutylicum, SspA was identified almost exclusively, indicating its dominant biological role as a major α/β-type SASP in vivo.
Collapse
Affiliation(s)
- Daniela Wetzel
- Abteilung für Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| | - Ralf-Jörg Fischer
- Abteilung für Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
29
|
Papoutsakis ET. Reassessing the Progress in the Production of Advanced Biofuels in the Current Competitive Environment and Beyond: What Are the Successes and Where Progress Eludes Us and Why. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01695] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eleftherios T. Papoutsakis
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, Department of Biological Sciences & the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| |
Collapse
|
30
|
The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 2015; 79:19-37. [PMID: 25631287 DOI: 10.1128/mmbr.00025-14] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SUMMARY Bacillus and Clostridium organisms initiate the sporulation process when unfavorable conditions are detected. The sporulation process is a carefully orchestrated cascade of events at both the transcriptional and posttranslational levels involving a multitude of sigma factors, transcription factors, proteases, and phosphatases. Like Bacillus genomes, sequenced Clostridium genomes contain genes for all major sporulation-specific transcription and sigma factors (spo0A, sigH, sigF, sigE, sigG, and sigK) that orchestrate the sporulation program. However, recent studies have shown that there are substantial differences in the sporulation programs between the two genera as well as among different Clostridium species. First, in the absence of a Bacillus-like phosphorelay system, activation of Spo0A in Clostridium organisms is carried out by a number of orphan histidine kinases. Second, downstream of Spo0A, the transcriptional and posttranslational regulation of the canonical set of four sporulation-specific sigma factors (σ(F), σ(E), σ(G), and σ(K)) display different patterns, not only compared to Bacillus but also among Clostridium organisms. Finally, recent studies demonstrated that σ(K), the last sigma factor to be activated according to the Bacillus subtilis model, is involved in the very early stages of sporulation in Clostridium acetobutylicum, C. perfringens, and C. botulinum as well as in the very late stages of spore maturation in C. acetobutylicum. Despite profound differences in initiation, propagation, and orchestration of expression of spore morphogenetic components, these findings demonstrate not only the robustness of the endospore sporulation program but also the plasticity of the program to generate different complex phenotypes, some apparently regulated at the epigenetic level.
Collapse
|
31
|
Updates on the sporulation process in Clostridium species. Res Microbiol 2015; 166:225-35. [DOI: 10.1016/j.resmic.2014.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022]
|
32
|
Fimlaid KA, Shen A. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Curr Opin Microbiol 2015; 24:88-95. [PMID: 25646759 DOI: 10.1016/j.mib.2015.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/23/2014] [Accepted: 01/10/2015] [Indexed: 11/27/2022]
Abstract
Sporulation allows bacteria to survive adverse conditions and is essential to the lifecycle of some obligate anaerobes. In Bacillus subtilis, the sporulation-specific sigma factors, σ(F), σ(E), σ(G), and σ(K), activate compartment-specific transcriptional programs that drive sporulation through its morphological stages. The regulation of these sigma factors was predicted to be conserved across the Firmicutes, since the regulatory proteins controlling their activation are largely conserved. However, recent studies in (Pepto)Clostridium difficile, Clostridium acetobutylicum, Clostridium perfringens, and Clostridium botulinum have revealed striking differences in the order, activation, and function of sporulation sigma factors. These studies indicate that gene conservation does not necessarily predict gene function and that new mechanisms for controlling cell fate determination remain to be discovered in the anaerobic Clostridia.
Collapse
Affiliation(s)
- Kelly A Fimlaid
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
33
|
Daniell J, Nagaraju S, Burton F, Köpke M, Simpson SD. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 156:293-321. [PMID: 26957126 DOI: 10.1007/10_2015_5005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.
Collapse
Affiliation(s)
- James Daniell
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shilpa Nagaraju
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Freya Burton
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | | |
Collapse
|
34
|
Sandoval NR, Venkataramanan KP, Groth TS, Papoutsakis ET. Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:227. [PMID: 26705421 PMCID: PMC4690370 DOI: 10.1186/s13068-015-0408-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Biodiesel production results in crude glycerol waste from the transesterification of fatty acids (10 % w/w). The solventogenic Clostridium pasteurianum, an anaerobic Firmicute, can produce butanol from glycerol as the sole carbon source. Coupling butanol fermentation with biodiesel production can improve the overall economic viability of biofuels. However, crude glycerol contains growth-inhibiting byproducts which reduce feedstock consumption and solvent production. RESULTS To obtain a strain with improved characteristics, a random mutagenesis and directed evolution selection technique was used. A wild-type C. pasteurianum (ATCC 6013) culture was chemically mutagenized, and the resulting population underwent 10 days of selection in increasing concentrations of crude glycerol (80-150 g/L). The best-performing mutant (M150B) showed a 91 % increase in butanol production in 100 g/L crude glycerol compared to the wild-type strain, as well as increased growth rate, a higher final optical density, and less production of the side product PDO (1,3-propanediol). Wild-type and M150B strains were sequenced via Single Molecule Real-Time (SMRT) sequencing. Mutations introduced to the M150B genome were identified by sequence comparison to the wild-type and published closed sequences. A major mutation (a deletion) in the gene of the master transcriptional regulator of sporulation, Spo0A, was identified. A spo0A single gene knockout strain was constructed using a double--crossover genome-editing method. The Spo0A-deficient strain showed similar tolerance to crude glycerol as the evolved mutant strain M150B. Methylation patterns on genomic DNA identified by SMRT sequencing were used to transform plasmid DNA to overcome the native C. pasteurianum restriction endonuclease. CONCLUSIONS Solvent production in the absence of Spo0A shows C. pasteurianum differs in solvent-production regulation compared to other solventogenic Clostridium. Growth-associated butanol production shows C. pasteurianum to be an attractive option for further engineering as it may prove a better candidate for butanol production through continuous fermentation.
Collapse
Affiliation(s)
- Nicholas R. Sandoval
- />Department of Chemical and Biomolecular Engineering and the Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Keerthi P. Venkataramanan
- />Department of Chemical and Biomolecular Engineering and the Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Theodore S. Groth
- />Department of Chemical and Biomolecular Engineering and the Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Eleftherios T. Papoutsakis
- />Department of Chemical and Biomolecular Engineering and the Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
- />Department of Biological Sciences, University of Delaware, Newark, USA
| |
Collapse
|
35
|
Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 2014; 32:1460-75. [PMID: 25281583 DOI: 10.1016/j.biotechadv.2014.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
Abstract
Methane is the main component of natural gas and biogas. As an abundant energy source, methane is crucial not only to meet current energy needs but also to achieve a sustainable energy future. Conversion of methane to liquid fuels provides energy-dense products and therefore reduces costs for storage, transportation, and distribution. Compared to thermochemical processes, biological conversion has advantages such as high conversion efficiency and using environmentally friendly processes. This paper is a comprehensive review of studies on three promising groups of microorganisms (methanotrophs, ammonia-oxidizing bacteria, and acetogens) that hold potential in converting methane to liquid fuels; their habitats, biochemical conversion mechanisms, performance in liquid fuels production, and genetic modification to enhance the conversion are also discussed. To date, methane-to-methanol conversion efficiencies (moles of methanol produced per mole methane consumed) of up to 80% have been reported. A number of issues that impede scale-up of this technology, such as mass transfer limitations of methane, inhibitory effects of H2S in biogas, usage of expensive chemicals as electron donors, and lack of native strains capable of converting methane to liquid fuels other than methanol, are discussed. Future perspectives and strategies in addressing these challenges are also discussed.
Collapse
|
36
|
Abstract
ABSTRACT
Clostridia are Gram-positive, anaerobic, endospore-forming bacteria, incapable of dissimilatory sulfate reduction. Comprising approximately 180 species, the genus
Clostridium
is one of the largest bacterial genera. Physiology is mostly devoted to acid production. Numerous pathways are known, such as the homoacetate fermentation by acetogens, the propionate fermentation by
Clostridium propionicum
, and the butyrate/butanol fermentation by
C. acetobutylicum
, a well-known solvent producer. Clostridia degrade sugars, alcohols, amino acids, purines, pyrimidines, and polymers such as starch and cellulose. Energy conservation can be performed by substrate-level phosphorylation as well as by the generation of ion gradients. Endospore formation resembles the mechanism elucidated in
Bacillus
. Morphology, contents, and properties of spores are very similar to bacilli endospores. Sporulating clostridia usually form swollen mother cells and accumulate the storage substance granulose. However, clostridial sporulation differs by not employing the so-called phosphorelay. Initiation starts by direct phosphorylation of the master regulator Spo0A. The cascade of sporulation-specific sigma factors is again identical to what is known from
Bacillus
. The onset of sporulation is coupled in some species to either solvent (acetone, butanol) or toxin (e.g.,
C. perfringens
enterotoxin) formation. The germination of spores is often induced by various amino acids, often in combination with phosphate and sodium ions. In medical applications,
C. butyricum
spores are used as a
C. difficile
prophylaxis and as treatment against diarrhea. Recombinant spores are currently under investigation and testing as antitumor agents, because they germinate only in hypoxic tissues (i.e., tumor tissue), allowing precise targeting and direct killing of tumor cells.
Collapse
|
37
|
Alternative sigma factors SigF, SigE, and SigG are essential for sporulation in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 2014; 80:5141-50. [PMID: 24928875 DOI: 10.1128/aem.01015-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum produces heat-resistant endospores that may germinate and outgrow into neurotoxic cultures in foods. Sporulation is regulated by the transcription factor Spo0A and the alternative sigma factors SigF, SigE, SigG, and SigK in most spore formers studied to date. We constructed mutants of sigF, sigE, and sigG in C. botulinum ATCC 3502 and used quantitative reverse transcriptase PCR and electron microscopy to assess their expression of the sporulation pathway on transcriptional and morphological levels. In all three mutants the expression of spo0A was disrupted. The sigF and sigE mutants failed to induce sigG and sigK beyond exponential-phase levels and halted sporulation during asymmetric cell division. In the sigG mutant, peak transcription of sigE was delayed and sigK levels remained lower than that in the parent strain. The sigG mutant forespore was engulfed by the mother cell and possessed a spore coat but no peptidoglycan cortex. The findings suggest that SigF and SigE of C. botulinum ATCC 3502 are essential for early sporulation and late-stage induction of sigK, whereas SigG is essential for spore cortex formation but not for coat formation, as opposed to previous observations in B. subtilis sigG mutants. Our findings add to a growing body of evidence that regulation of sporulation in C. botulinum ATCC 3502, and among the clostridia, differs from the B. subtilis model.
Collapse
|
38
|
Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014; 98:5823-37. [DOI: 10.1007/s00253-014-5785-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
|
39
|
Li Y, Xu T, Tschaplinski TJ, Engle NL, Yang Y, Graham DE, He Z, Zhou J. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:25. [PMID: 24555718 PMCID: PMC3936895 DOI: 10.1186/1754-6834-7-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/06/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate, acetate, ethanol and hydrogen. However, the cellulose utilization efficiency of C. cellulolyticum still remains very low, impeding its application in consolidated bioprocessing for biofuels production. In this study, two metabolic engineering strategies were exploited to improve cellulose utilization efficiency, including sporulation abolishment and carbon overload alleviation. RESULTS The spo0A gene at locus Ccel_1894, which encodes a master sporulation regulator was inactivated. The spo0A mutant abolished the sporulation ability. In a high concentration of cellulose (50 g/l), the performance of the spo0A mutant increased dramatically in terms of maximum growth, final concentrations of three major metabolic products, and cellulose catabolism. The microarray and gas chromatography-mass spectrometry (GC-MS) analyses showed that the valine, leucine and isoleucine biosynthesis pathways were up-regulated in the spo0A mutant. Based on this information, a partial isobutanol producing pathway modified from valine biosynthesis was introduced into C. cellulolyticum strains to further increase cellulose consumption by alleviating excessive carbon load. The introduction of this synthetic pathway to the wild-type strain improved cellulose consumption from 17.6 g/l to 28.7 g/l with a production of 0.42 g/l isobutanol in the 50 g/l cellulose medium. However, the spo0A mutant strain did not appreciably benefit from introduction of this synthetic pathway and the cellulose utilization efficiency did not further increase. A technical highlight in this study was that an in vivo promoter strength evaluation protocol was developed using anaerobic fluorescent protein and flow cytometry for C. cellulolyticum. CONCLUSIONS In this study, we inactivated the spo0A gene and introduced a heterologous synthetic pathway to manipulate the stress response to heavy carbon load and accumulation of metabolic products. These findings provide new perspectives to enhance the ability of cellulolytic bacteria to produce biofuels and biocommodities with high efficiency and at low cost directly from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yongchao Li
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, 101 David L. Boren Boulevard, Norman, OK 73019, USA
| | - Tao Xu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, 101 David L. Boren Boulevard, Norman, OK 73019, USA
| | - Timothy J Tschaplinski
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nancy L Engle
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhili He
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, 101 David L. Boren Boulevard, Norman, OK 73019, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, 101 David L. Boren Boulevard, Norman, OK 73019, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Kumar M, Saini S, Gayen K. Elementary mode analysis reveals that Clostridium acetobutylicum modulates its metabolic strategy under external stress. ACTA ACUST UNITED AC 2014; 10:2090-105. [DOI: 10.1039/c4mb00126e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clostridium acetobutylicumis a strict anaerobe which exhibits two distinct steps in its metabolic network.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemical Engineering
- Indian Institute of Technology Gandhinagar
- Ahmedabad - 382424, India
| | - Supreet Saini
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai - 400076, India
| | - Kalyan Gayen
- Department of Chemical Engineering
- National Institute of Technology Agartala
- Tripura - 799053, India
| |
Collapse
|
41
|
σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. J Bacteriol 2013; 196:287-99. [PMID: 24187083 DOI: 10.1128/jb.01103-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σ(H) (early), σ(F), σ(E), σ(G), and σ(K) (late). Here we show that the Clostridium acetobutylicum σ(K) acts both early, prior to Spo0A expression, and late, past σ(G) activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σ(G) proteins were not detectable by Western analysis, while σ(F) protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σ(K) is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σ(F), σ(E), and σ(G), but not sporulation, which was blocked past the σ(G) stage of development, thus demonstrating that σ(K) is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles.
Collapse
|
42
|
Pereira FC, Saujet L, Tomé AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 2013; 9:e1003782. [PMID: 24098139 PMCID: PMC3789829 DOI: 10.1371/journal.pgen.1003782] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022] Open
Abstract
Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.
Collapse
Affiliation(s)
- Fátima C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Laure Saujet
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Ana R. Tomé
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Evelyne Couture-Tosi
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Isabelle Martin-Verstraete
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- * E-mail: (BD); (AOH)
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
- * E-mail: (BD); (AOH)
| |
Collapse
|
43
|
Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 2013; 9:e1003756. [PMID: 24098137 PMCID: PMC3789822 DOI: 10.1371/journal.pgen.1003756] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σ(F) and σ(G) in the forespore and σ(E) and σ(K) in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σ(F), σ(E), σ(G) and σ(K) regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σ(F) regulon, 97 σ(E)-dependent genes, 50 σ(G)-governed genes and 56 genes under σ(K) control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σ(E) or σ(K) control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σ(E) regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σ(E) regulon in the mother cell was not strictly under the control of σ(F) despite the fact that the forespore product SpoIIR was required for the processing of pro-σ(E). In addition, the σ(K) regulon was not controlled by σ(G) in C. difficile in agreement with the lack of pro-σ(K) processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes.
Collapse
Affiliation(s)
- Laure Saujet
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Fátima C. Pereira
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Monica Serrano
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Pavel V. Shelyakin
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny per, 19, Moscow, Russia
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny per, 19, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biengineering and Bioinformatics, Vorobievy Gory 1-73, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Adriano O. Henriques
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
44
|
Gaida SM, Al-Hinai MA, Indurthi DC, Nicolaou SA, Papoutsakis ET. Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res 2013; 41:8726-37. [PMID: 23892399 PMCID: PMC3794604 DOI: 10.1093/nar/gkt651] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 12/31/2022] Open
Abstract
Synthetic acid tolerance, especially during active cell growth, is a desirable phenotype for many biotechnological applications. Natively, acid resistance in Escherichia coli is largely a stationary-phase phenotype attributable to mechanisms mostly under the control of the stationary-phase sigma factor RpoS. We show that simultaneous overexpression of noncoding small RNAs (sRNAs), DsrA, RprA and ArcZ, which are translational RpoS activators, increased acid tolerance (based on a low-pH survival assay) supra-additively up to 8500-fold during active cell growth, and provided protection against carboxylic acid and oxidative stress. Overexpression of rpoS without its regulatory 5'-UTR resulted in inferior acid tolerance. The supra-additive effect of overexpressing the three sRNAs results from the impact their expression has on RpoS-protein levels, and the beneficial perturbation of the interconnected RpoS and H-NS networks, thus leading to superior tolerance during active growth. Unlike the overexpression of proteins, overexpression of sRNAs imposes hardly any metabolic burden on cells, and constitutes a more effective strain engineering strategy.
Collapse
Affiliation(s)
- Stefan M. Gaida
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| | - Mohab A. Al-Hinai
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| | - Dinesh C. Indurthi
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| | - Sergios A. Nicolaou
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| | - Eleftherios T. Papoutsakis
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| |
Collapse
|
45
|
Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 2013; 9:e1003660. [PMID: 23950727 PMCID: PMC3738446 DOI: 10.1371/journal.pgen.1003660] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/28/2013] [Indexed: 12/19/2022] Open
Abstract
The Gram-positive, spore-forming pathogen Clostridium difficile is the leading definable cause of healthcare-associated diarrhea worldwide. C. difficile infections are difficult to treat because of their frequent recurrence, which can cause life-threatening complications such as pseudomembranous colitis. The spores of C. difficile are responsible for these high rates of recurrence, since they are the major transmissive form of the organism and resistant to antibiotics and many disinfectants. Despite the importance of spores to the pathogenesis of C. difficile, little is known about their composition or formation. Based on studies in Bacillus subtilis and other Clostridium spp., the sigma factors σ(F), σ(E), σ(G), and σ(K) are predicted to control the transcription of genes required for sporulation, although their specific functions vary depending on the organism. In order to determine the roles of σ(F), σ(E), σ(G), and σ(K) in regulating C. difficile sporulation, we generated loss-of-function mutations in genes encoding these sporulation sigma factors and performed RNA-Sequencing to identify specific sigma factor-dependent genes. This analysis identified 224 genes whose expression was collectively activated by sporulation sigma factors: 183 were σ(F)-dependent, 169 were σ(E)-dependent, 34 were σ(G)-dependent, and 31 were σ(K)-dependent. In contrast with B. subtilis, C. difficile σ(E) was dispensable for σ(G) activation, σ(G) was dispensable for σ(K) activation, and σ(F) was required for post-translationally activating σ(G). Collectively, these results provide the first genome-wide transcriptional analysis of genes induced by specific sporulation sigma factors in the Clostridia and highlight that diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes.
Collapse
|
46
|
Quantification of endospore-forming firmicutes by quantitative PCR with the functional gene spo0A. Appl Environ Microbiol 2013; 79:5302-12. [PMID: 23811505 DOI: 10.1128/aem.01376-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial endospores are highly specialized cellular forms that allow endospore-forming Firmicutes (EFF) to tolerate harsh environmental conditions. EFF are considered ubiquitous in natural environments, in particular, those subjected to stress conditions. In addition to natural habitats, EFF are often the cause of contamination problems in anthropogenic environments, such as industrial production plants or hospitals. It is therefore desirable to assess their prevalence in environmental and industrial fields. To this end, a high-sensitivity detection method is still needed. The aim of this study was to develop and evaluate an approach based on quantitative PCR (qPCR). For this, the suitability of functional genes specific for and common to all EFF were evaluated. Seven genes were considered, but only spo0A was retained to identify conserved regions for qPCR primer design. An approach based on multivariate analysis was developed for primer design. Two primer sets were obtained and evaluated with 16 pure cultures, including representatives of the genera Bacillus, Paenibacillus, Brevibacillus, Geobacillus, Alicyclobacillus, Sulfobacillus, Clostridium, and Desulfotomaculum, as well as with environmental samples. The primer sets developed gave a reliable quantification when tested on laboratory strains, with the exception of Sulfobacillus and Desulfotomaculum. A test using sediment samples with a diverse EFF community also gave a reliable quantification compared to 16S rRNA gene pyrosequencing. A detection limit of about 10(4) cells (or spores) per gram of initial material was calculated, indicating this method has a promising potential for the detection of EFF over a wide range of applications.
Collapse
|
47
|
Hou S, Jones SW, Choe LH, Papoutsakis ET, Lee KH. Workflow for quantitative proteomic analysis of Clostridium acetobutylicum ATCC 824 using iTRAQ tags. Methods 2013; 61:269-76. [DOI: 10.1016/j.ymeth.2013.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/21/2013] [Accepted: 03/12/2013] [Indexed: 11/16/2022] Open
|
48
|
|
49
|
A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 2012. [PMID: 23204413 DOI: 10.1128/aem.02891-12] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.
Collapse
|
50
|
Fast AG, Papoutsakis ET. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 2012. [DOI: 10.1016/j.coche.2012.07.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|