1
|
Halvorsen TM, Schroeder KA, Jones AM, Hammarlöf D, Low DA, Koskiniemi S, Hayes CS. Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition. PLoS Genet 2024; 20:e1011494. [PMID: 39591464 PMCID: PMC11630599 DOI: 10.1371/journal.pgen.1011494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/10/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Contact-dependent growth inhibition (CDI) is a widespread form of inter-bacterial competition mediated by CdiA effector proteins. CdiA is presented on the inhibitor cell surface and delivers its toxic C-terminal region (CdiA-CT) into neighboring bacteria upon contact. Inhibitor cells also produce CdiI immunity proteins, which neutralize CdiA-CT toxins to prevent auto-inhibition. Here, we describe a diverse group of CDI ionophore toxins that dissipate the transmembrane potential in target bacteria. These CdiA-CT toxins are composed of two distinct domains based on AlphaFold2 modeling. The C-terminal ionophore domains are all predicted to form five-helix bundles capable of spanning the cell membrane. The N-terminal "entry" domains are variable in structure and appear to hijack different integral membrane proteins to promote toxin assembly into the lipid bilayer. The CDI ionophores deployed by E. coli isolates partition into six major groups based on their entry domain structures. Comparative sequence analyses led to the identification of receptor proteins for ionophore toxins from groups 1 & 3 (AcrB), group 2 (SecY) and groups 4 (YciB). Using forward genetic approaches, we identify novel receptors for the group 5 and 6 ionophores. Group 5 exploits homologous putrescine import proteins encoded by puuP and plaP, and group 6 toxins recognize di/tripeptide transporters encoded by paralogous dtpA and dtpB genes. Finally, we find that the ionophore domains exhibit significant intra-group sequence variation, particularly at positions that are predicted to interact with CdiI. Accordingly, the corresponding immunity proteins are also highly polymorphic, typically sharing only ~30% sequence identity with members of the same group. Competition experiments confirm that the immunity proteins are specific for their cognate ionophores and provide no protection against other toxins from the same group. The specificity of this protein interaction network provides a mechanism for self/nonself discrimination between E. coli isolates.
Collapse
Affiliation(s)
- Tiffany M. Halvorsen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Kaitlin A. Schroeder
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Allison M. Jones
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Disa Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David A. Low
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Christopher S. Hayes
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
2
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Tran TD, Lee SI, Hnasko R, McGarvey JA. Biocontrol of Escherichia coli O157:H7 by Enterobacter asburiae AEB30 on intact cantaloupe melons. Microb Biotechnol 2024; 17:e14437. [PMID: 38465735 PMCID: PMC10926056 DOI: 10.1111/1751-7915.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Escherichia coli O157:H7 causes >73,000 foodborne illnesses in the United States annually, many of which have been associated with fresh ready-to-eat produce including cantaloupe melons. In this study, we created a produce-associated bacterial (PAB) library containing >7500 isolates and screened them for the ability to inhibit the growth of E. coli O157:H7 using an in vitro fluorescence-based growth assay. One isolate, identified by 16S and whole-genome sequence analysis as Enterobacter asburiae, was able to inhibit the growth of E. coli by ~30-fold in vitro and produced zones of inhibition between 13 and 21 mm against 12 E. coli outbreak strains in an agar spot assay. We demonstrated that E. asburiae AEB30 was able to grow, persist and inhibit the growth of E. coli on cantaloupe melons under simulated pre- and post-harvest conditions. Analysis of the E. asburiae AEB30 genome revealed an operon encoding a contact-dependent growth inhibition (CDI) system that when mutated resulted in the loss of E. coli growth inhibition. These data suggest that E. asburiae AEB30 is a potential biocontrol agent to prevent E. coli contamination of cantaloupe melons in both pre- and post-harvest environments and that its mode of action is via a CDI system.
Collapse
Affiliation(s)
- Thao D. Tran
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| | - Sang In Lee
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| | - Robert Hnasko
- USDA, ARS, Produce Safety and Microbiology Research UnitAlbanyCaliforniaUSA
| | - Jeffery A. McGarvey
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| |
Collapse
|
4
|
Booth SC, Meacock OJ, Foster KR. Cell motility empowers bacterial contact weapons. THE ISME JOURNAL 2024; 18:wrae141. [PMID: 39073907 PMCID: PMC11482024 DOI: 10.1093/ismejo/wrae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Many bacteria kill competitors using short-range weapons, such as the Type VI secretion system and contact dependent inhibition (CDI). Although these weapons can deliver powerful toxins, they rely on direct contact between attacker and target cells. We hypothesized that movement enables attackers to contact more targets and thus greatly empower their weapons. To explore this, we developed individual-based and continuum models of contact-dependent combat which show that motility greatly improves toxin delivery through two underlying processes. First, genotypic mixing increases the inter-strain contact probability of attacker and sensitive cells. Second, target switching ensures attackers constantly attack new cells, instead of repeatedly hitting the same cell. We test our predictions with the pathogen Pseudomonas aeruginosa, using genetically engineered strains to study the interaction between CDI and twitching motility. As predicted, we find that motility works synergistically with CDI, in some cases increasing weapon efficacy up to 10,000-fold compared with non-motile scenarios. Moreover, we demonstrate that both mixing processes occur using timelapse single-cell microscopy and quantify their relative importance by combining experimental data with our model. Our work shows how bacteria can combine cell movement with contact-based weapons to launch powerful attacks on their competitors.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Oliver J Meacock
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, United Kingdom
| |
Collapse
|
5
|
Heithoff DM, Mahan SP, Barnes V L, Leyn SA, George CX, Zlamal JE, Limwongyut J, Bazan GC, Fried JC, Fitzgibbons LN, House JK, Samuel CE, Osterman AL, Low DA, Mahan MJ. A broad-spectrum synthetic antibiotic that does not evoke bacterial resistance. EBioMedicine 2023; 89:104461. [PMID: 36801104 PMCID: PMC10025758 DOI: 10.1016/j.ebiom.2023.104461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a critical threat to public health and disproportionately affects the health and well-being of persons in low-income and middle-income countries. Our aim was to identify synthetic antimicrobials termed conjugated oligoelectrolytes (COEs) that effectively treated AMR infections and whose structures could be readily modified to address current and anticipated patient needs. METHODS Fifteen chemical variants were synthesized that contain specific alterations to the COE modular structure, and each variant was evaluated for broad-spectrum antibacterial activity and for in vitro cytotoxicity in cultured mammalian cells. Antibiotic efficacy was analyzed in murine models of sepsis; in vivo toxicity was evaluated via a blinded study of mouse clinical signs as an outcome of drug treatment. FINDINGS We identified a compound, COE2-2hexyl, that displayed broad-spectrum antibacterial activity. This compound cured mice infected with clinical bacterial isolates derived from patients with refractory bacteremia and did not evoke bacterial resistance. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to negate bacterial cell viability and the evolution of drug-resistance. Disruption of these bacterial properties may occur through alteration of critical protein-protein or protein-lipid membrane interfaces-a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. INTERPRETATION The ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. These COE features enable the construction of a spectrum of compounds with the potential for development as a new versatile therapy for an imminent global health crisis. FUNDING U.S. Army Research Office, National Institute of Allergy and Infectious Diseases, and National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Lucien Barnes V
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Semen A Leyn
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Jaime E Zlamal
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jakkarin Limwongyut
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA; Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
6
|
Verhoeve VI, Lehman SS, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates origins of pathogen effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530123. [PMID: 36909625 PMCID: PMC10002696 DOI: 10.1101/2023.02.26.530123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F Beckmann
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Involvement of Flagellin in Kin Recognition between Bacillus velezensis Strains. mSystems 2022; 7:e0077822. [PMID: 36218362 PMCID: PMC9764977 DOI: 10.1128/msystems.00778-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kin discrimination in nature is an effective way for bacteria to stabilize population cooperation and maintain progeny benefits. However, so far, the research on kin discrimination for Bacillus still has concentrated on "attack and defense" between cells and diffusion-dependent molecular signals of quorum sensing, kin recognition in Bacillus, however, has not been reported. To determine whether flagellar is involve in the kin recognition of Bacillus, we constructed Bacillus velezensis SQR9 assembled with flagellin of its kin and non-kin strains, and performed a swarm boundary assay with SQR9, then analyzed sequence variation of flagellin and other flagellar structural proteins in B. velezensis genus. Our results showed that SQR9 assembled with flagellin of non-kin strains was more likely to form a border phenotype with wild-type strain SQR9 in swarm assay than that of kin strains, and that non-kin strains had greater variation in flagellin than kin strains. In B. velezensis, these variations in flagellin were prevalent and had evolved significantly faster than other flagellar structural proteins. Therefore, we proposed that flagellin is an effective tool partly involved in the kin recognition of B. velezensis strains. IMPORTANCE Kin selection plays an important role in stabilizing population cooperation and maintaining the progeny benefits for bacteria in nature. However, to date, the role of flagellin in kin recognition in Bacillus has not been reported. By using rhizospheric Bacillus velezensis SQR9, we accomplished flagellin region interchange among its related strains, and show that flagellin acts as a mediator to distinguish kin from non-kin in B. velezensis. We demonstrated the polymorphism of flagellin in B. velezensis through alignment analysis of flagellin protein sequences. Therefore, it was proposed that flagellin was likely to be an effective tool for mediating kin recognition in B. velezensis.
Collapse
|
8
|
Lin L, Capozzoli R, Ferrand A, Plum M, Vettiger A, Basler M. Subcellular localization of Type VI secretion system assembly in response to cell–cell contact. EMBO J 2022; 41:e108595. [PMID: 35634969 PMCID: PMC9251886 DOI: 10.15252/embj.2021108595] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria require a number of systems, including the type VI secretion system (T6SS), for interbacterial competition and pathogenesis. The T6SS is a large nanomachine that can deliver toxins directly across membranes of proximal target cells. Since major reassembly of T6SS is necessary after each secretion event, accurate timing and localization of T6SS assembly can lower the cost of protein translocation. Although critically important, mechanisms underlying spatiotemporal regulation of T6SS assembly remain poorly understood. Here, we used super‐resolution live‐cell imaging to show that while Acinetobacter and Burkholderia thailandensis can assemble T6SS at any site, a significant subset of T6SS assemblies localizes precisely to the site of contact between neighboring bacteria. We identified a class of diverse, previously uncharacterized, periplasmic proteins required for this dynamic localization of T6SS to cell–cell contact (TslA). This precise localization is also dependent on the outer membrane porin OmpA. Our analysis links transmembrane communication to accurate timing and localization of T6SS assembly as well as uncovers a pathway allowing bacterial cells to respond to cell–cell contact during interbacterial competition.
Collapse
Affiliation(s)
- Lin Lin
- Biozentrum University of Basel Basel Switzerland
| | | | - Alexia Ferrand
- Biozentrum Imaging Core Facility University of Basel Basel Switzerland
| | - Miro Plum
- Biozentrum University of Basel Basel Switzerland
| | | | - Marek Basler
- Biozentrum University of Basel Basel Switzerland
| |
Collapse
|
9
|
Cuthbert BJ, Hayes CS, Goulding CW. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Front Mol Biosci 2022; 9:866854. [PMID: 35558562 PMCID: PMC9086364 DOI: 10.3389/fmolb.2022.866854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bacteria live in complex communities and environments, competing for space and nutrients. Within their niche habitats, bacteria have developed various inter-bacterial mechanisms to compete and communicate. One such mechanism is contact-dependent growth inhibition (CDI). CDI is found in many Gram-negative bacteria, including several pathogens. These CDI+ bacteria encode a CdiB/CdiA two-partner secretion system that delivers inhibitory toxins into neighboring cells upon contact. Toxin translocation results in the growth inhibition of closely related strains and provides a competitive advantage to the CDI+ bacteria. CdiB, an outer-membrane protein, secretes CdiA onto the surface of the CDI+ bacteria. When CdiA interacts with specific target-cell receptors, CdiA delivers its C-terminal toxin region (CdiA-CT) into the target-cell. CdiA-CT toxin proteins display a diverse range of toxic functions, such as DNase, RNase, or pore-forming toxin activity. CDI+ bacteria also encode an immunity protein, CdiI, that specifically binds and neutralizes its cognate CdiA-CT, protecting the CDI+ bacteria from auto-inhibition. In Gram-negative bacteria, toxin/immunity (CdiA-CT/CdiI) pairs have highly variable sequences and functions, with over 130 predicted divergent toxin/immunity complex families. In this review, we will discuss biochemical and structural advances made in the characterization of CDI. This review will focus on the diverse array of CDI toxin/immunity complex structures together with their distinct toxin functions. Additionally, we will discuss the most recent studies on target-cell recognition and toxin entry, along with the discovery of a new member of the CDI loci. Finally, we will offer insights into how these diverse toxin/immunity complexes could be harnessed to fight human diseases.
Collapse
Affiliation(s)
- Bonnie J. Cuthbert
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher S. Hayes
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Celia W. Goulding
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Cell density-dependent antibiotic tolerance to inhibition of the elongation machinery requires fully functional PBP1B. Commun Biol 2022; 5:107. [PMID: 35115684 PMCID: PMC8813938 DOI: 10.1038/s42003-022-03056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/18/2022] [Indexed: 01/20/2023] Open
Abstract
The peptidoglycan (PG) cell wall provides shape and structure to most bacteria. There are two systems to build PG in rod shaped organisms: the elongasome and divisome, which are made up of many proteins including the essential MreB and PBP2, or FtsZ and PBP3, respectively. The elongasome is responsible for PG insertion during cell elongation, while the divisome is responsible for septal PG insertion during division. We found that the main elongasome proteins, MreB and PBP2, can be inhibited without affecting growth rate in a quorum sensing-independent density-dependent manner. Before cells reach a particular cell density, inhibition of the elongasome results in different physiological responses, including intracellular vesicle formation and an increase in cell size. This inhibition of MreB or PBP2 can be compensated for by the presence of the class A penicillin binding protein, PBP1B. Furthermore, we found this density-dependent growth resistance to be specific for elongasome inhibition and was consistent across multiple Gram-negative rods, providing new areas of research into antibiotic treatment.
Collapse
|
12
|
Boussau Q, Grandidier E, Makmani Y. [Inhibit for ruling: Acinetobacter baumannii systems against bacteria]. Med Sci (Paris) 2021; 37:948-950. [PMID: 34647887 DOI: 10.1051/medsci/2021160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Quentin Boussau
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| | - Estée Grandidier
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| | - Yazid Makmani
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| |
Collapse
|
13
|
High-throughput suppressor screen demonstrates that RcsF monitors outer membrane integrity and not Bam complex function. Proc Natl Acad Sci U S A 2021; 118:2100369118. [PMID: 34349021 DOI: 10.1073/pnas.2100369118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulator of capsule synthesis (Rcs) is a complex signaling cascade that monitors gram-negative cell envelope integrity. The outer membrane (OM) lipoprotein RcsF is the sensory component, but how RcsF functions remains elusive. RcsF interacts with the β-barrel assembly machinery (Bam) complex, which assembles RcsF in complex with OM proteins (OMPs), resulting in RcsF's partial cell surface exposure. Elucidating whether RcsF/Bam or RcsF/OMP interactions are important for its sensing function is challenging because the Bam complex is essential, and partial loss-of-function mutations broadly compromise the OM biogenesis. Our recent discovery that, in the absence of nonessential component BamE, RcsF inhibits function of the central component BamA provided a genetic tool to select mutations that specifically prevent RcsF/BamA interactions. We employed a high-throughput suppressor screen to isolate a collection of such rcsF and bamA mutants and characterized their impact on RcsF/OMP assembly and Rcs signaling. Using these mutants and BamA inhibitors MRL-494L and darobactin, we provide multiple lines of evidence against the model in which RcsF senses Bam complex function. We show that Rcs activation in bam mutants results from secondary OM and lipopolysaccharide defects and that RcsF/OMP assembly is required for this activation, supporting an active role of RcsF/OMP complexes in sensing OM stress.
Collapse
|
14
|
Wäneskog M, Halvorsen T, Filek K, Xu F, Hammarlöf DL, Hayes CS, Braaten BA, Low DA, Poole SJ, Koskiniemi S. Escherichia coli EC93 deploys two plasmid-encoded class I contact-dependent growth inhibition systems for antagonistic bacterial interactions. Microb Genom 2021; 7:mgen000534. [PMID: 33646095 PMCID: PMC8190604 DOI: 10.1099/mgen.0.000534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/29/2021] [Indexed: 01/27/2023] Open
Abstract
The phenomenon of contact-dependent growth inhibition (CDI) and the genes required for CDI (cdiBAI) were identified and isolated in 2005 from an Escherichia coli isolate (EC93) from rats. Although the cdiBAIEC93 locus has been the focus of extensive research during the past 15 years, little is known about the EC93 isolate from which it originates. Here we sequenced the EC93 genome and find two complete and functional cdiBAI loci (including the previously identified cdi locus), both carried on a large 127 kb plasmid. These cdiBAI systems are differentially expressed in laboratory media, enabling EC93 to outcompete E. coli cells lacking cognate cdiI immunity genes. The two CDI systems deliver distinct effector peptides that each dissipate the membrane potential of target cells, although the two toxins display different toxic potencies. Despite the differential expression and toxic potencies of these CDI systems, both yielded similar competitive advantages against E. coli cells lacking immunity. This can be explained by the fact that the less expressed cdiBAI system (cdiBAIEC93-2) delivers a more potent toxin than the highly expressed cdiBAIEC93-1 system. Moreover, our results indicate that unlike most sequenced CDI+ bacterial isolates, the two cdi loci of E. coli EC93 are located on a plasmid and are expressed in laboratory media.
Collapse
Affiliation(s)
- Marcus Wäneskog
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Tiffany Halvorsen
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - Klara Filek
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Present address: Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Disa L. Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Present address: Science for Life Laboratory, KTH, Sweden
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - Bruce A. Braaten
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - David A. Low
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - Stephen J. Poole
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Genetic Evidence for SecY Translocon-Mediated Import of Two Contact-Dependent Growth Inhibition (CDI) Toxins. mBio 2021; 12:mBio.03367-20. [PMID: 33531386 PMCID: PMC7858069 DOI: 10.1128/mbio.03367-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secYS281F ΔppiD or secYS281F ΔyfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secYG313W) renders ΔppiD or ΔyfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins.
Collapse
|
16
|
Boopathi S, Liu D, Jia AQ. Molecular trafficking between bacteria determines the shape of gut microbial community. Gut Microbes 2021; 13:1959841. [PMID: 34455923 PMCID: PMC8432619 DOI: 10.1080/19490976.2021.1959841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Complex inter-bacterial interactions largely influence the structure and function of the gut microbial community. Though several host-associated phenomena have often been shown to be involved in the stability, structure, and function of the gut microbial community, the implication of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. Such interactions are tightly governed at multiple layers through several extracellular organelles, including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such extracellular organelles function beyond exhibiting competitive behavior and are also involved in manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the members of the community, while competition occurs by means of multiple toxins. Intrinsic coordination between contact-dependent and contact-independent mechanisms collectively provides a fitness advantage and increased colonization resistance to the gut microbiota, where molecular trafficking plays a key role. This review is intended to provide a comprehensive view of the salient features of the different bacterial interactions and to highlight how microbiota deploy multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial community.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Danrui Liu
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
17
|
Lin HH, Filloux A, Lai EM. Role of Recipient Susceptibility Factors During Contact-Dependent Interbacterial Competition. Front Microbiol 2020; 11:603652. [PMID: 33281802 PMCID: PMC7690452 DOI: 10.3389/fmicb.2020.603652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria evolved multiple strategies to survive and develop optimal fitness in their ecological niche. They deployed protein secretion systems for robust and efficient delivery of antibacterial toxins into their target cells, therefore inhibiting their growth or killing them. To maximize antagonism, recipient factors on target cells can be recognized or hijacked to enhance the entry or toxicity of these toxins. To date, knowledge regarding recipient susceptibility (RS) factors and their mode of action is mostly originating from studies on the type Vb secretion system that is also known as the contact-dependent inhibition (CDI) system. Yet, recent studies on the type VI secretion system (T6SS), and the CDI by glycine-zipper protein (Cdz) system, also reported the emerging roles of RS factors in interbacterial competition. Here, we review these RS factors and their mechanistic impact in increasing susceptibility of recipient cells in response to CDI, T6SS, and Cdz. Past and future strategies for identifying novel RS factors are also discussed, which will help in understanding the interplay between attacker and prey upon secretion system-dependent competition. Understanding these mechanisms would also provide insights for developing novel antibacterial strategies to antagonize aggressive bacteria-killing pathogens.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Gu Y, Wang S, Huang L, Sa W, Li J, Huang J, Dai M, Cheng G. Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox. Antibiotics (Basel) 2020; 9:E791. [PMID: 33182563 PMCID: PMC7696260 DOI: 10.3390/antibiotics9110791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/31/2023] Open
Abstract
Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure of sub-inhibitory concentration (sub-MIC) of olaquindox (OLA), a representative QdNOs drug. In vitro challenge of E. coli with 1/100× MIC to 1/2× MIC of OLA showed that the bacteria needed a longer time to develop resistance and could only achieve low to moderate levels of resistance as well as form weak biofilms. The transcriptomic and genomic profiles of the resistant E. coli induced by sub-MIC of OLA demonstrated that genes involved in tricarboxylic acid cycle, oxidation-reduction process, biofilm formation, and efflux pumps were up-regulated, while genes involved in DNA repair and outer membrane porin were down-regulated. Mutation rates were significantly increased in the sub-MIC OLA-treated bacteria and the mutated genes were mainly involved in the oxidation-reduction process, DNA repair, and replication. The SNPs were found in degQ, ks71A, vgrG, bigA, cusA, and DR76-4702 genes, which were covered in both transcriptomic and genomic profiles. This study provides new insights into the resistance mechanism of QdNOs and increases the current data pertaining to the development of bacterial resistance under the stress of antibacterials at sub-MIC concentrations.
Collapse
Affiliation(s)
- Yufeng Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuge Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Sa
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Jun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Junhong Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Menghong Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
| | - Guyue Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (S.W.); (L.H.); (W.S.); (J.L.); (J.H.); (M.D.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Contact-Dependent Growth Inhibition in Bacteria: Do Not Get Too Close! Int J Mol Sci 2020; 21:ijms21217990. [PMID: 33121148 PMCID: PMC7662968 DOI: 10.3390/ijms21217990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Over millions of years of evolution, bacteria have developed complex strategies for intra-and interspecies interactions and competition for ecological niches and resources. Contact-dependent growth inhibition systems (CDI) are designed to realize a direct physical contact of one bacterial cell with other cells in proximity via receptor-mediated toxin delivery. These systems are found in many microorganisms including clinically important human pathogens. The main purpose of these systems is to provide competitive advantages for the growth of the population. In addition, non-competitive roles for CDI toxin delivery systems including interbacterial signal transduction and mediators of bacterial collaboration have been suggested. In this review, our goal was to systematize the recent findings on the structure, mechanisms, and purpose of CDI systems in bacterial populations and discuss the potential biological and evolutionary impact of CDI-mediated interbacterial competition and/or cooperation.
Collapse
|
20
|
Ruhe ZC, Low DA, Hayes CS. Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Annu Rev Microbiol 2020; 74:497-520. [PMID: 32680451 DOI: 10.1146/annurev-micro-020518-115638] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
21
|
Krasauskas R, Skerniškytė J, Martinkus J, Armalytė J, Sužiedėlienė E. Capsule Protects Acinetobacter baumannii From Inter-Bacterial Competition Mediated by CdiA Toxin. Front Microbiol 2020; 11:1493. [PMID: 32849318 PMCID: PMC7396552 DOI: 10.3389/fmicb.2020.01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Currently, Acinetobacter baumannii is considered as one of the most important infectious agents causing hospital acquired infections worldwide. It has been observed that many clinically important pathogens express contact-dependent growth inhibition (CDI) phenomenon, which modulates cell–cell and cell–environment interactions, potentially allowing bacteria to adapt to ever-changing conditions. Mainly, these systems are used for the inhibition of the growth of genetically different individuals within the same species. In this work, by performing cell competition assays with three genotypically different (as determined by pulse-field gel electrophoresis) clinical A. baumannii isolates II-c, II-a, and II-a1, we show that A. baumannii capsule is the main feature protecting from CDI-mediated inhibition. We also observed that for one clinical isolate, the two-component BfmRS system, contributed to the resistance against CDI-mediated inhibition. Moreover, we were able to demonstrate, that the effector protein CdiA is released into the growth media and exhibits its inhibitory activity without the requirement of a cell–cell contact. Lastly, by evaluating the remaining number of the cells pre-mixed with the CdiA and performing live/dead assay, we demonstrate that purified CdiA protein causes a rapid cell growth arrest. Our results indicate, that capsule efficiently protects A. baumannii from a CDI-mediated inhibition by a clinical A. baumannii V15 strain, which is able to secrete CdiA effector into the growth media and cause target cell growth arrest without a cell–cell contact.
Collapse
Affiliation(s)
- Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julius Martinkus
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
22
|
Tipping MJ, Gibbs KA. Growth Recovery Assay and FACS-based Population Sorting Following Territorial Exclusion in Proteus mirabilis. Bio Protoc 2020; 10:e3543. [PMID: 33659517 PMCID: PMC7842609 DOI: 10.21769/bioprotoc.3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/02/2022] Open
Abstract
Many bacteria take part in self recognition and kin discrimination behavior using contact-dependent effectors. Understanding the effects these effectors cause is important to explain bacterial community formation and population dynamics. Typically, kin discrimination effectors are toxins that kill target cells; their effect is therefore obvious and easily measurable. However, many self-recognition effectors, such as the Proteus mirabilis Ids system, are non-lethal and do not cause obvious physiological changes in target cells. Previously, experimental techniques to probe cells experiencing non-lethal kin recognition have been limited. Here we describe a technique to reliably isolate cells deemed self and non-self through Ids self-recognition for downstream phenotypic analysis. Liquid cultures of fluorescently labeled self-recognition mutants are mixed together and inoculated on swarm-permissive agar. Mixed swarms are harvested, and each strain is isolated through fluorescence-activated cell sorting (FACS). The growth rate of each strain is measured on a plate reader. This protocol is adaptable for other bacterial species. We describe briefly how sorted particles can be used for other analyses such as RNA-Seq library preparation.
Collapse
Affiliation(s)
- Murray J. Tipping
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| | - Karine A. Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| |
Collapse
|
23
|
Lin L, Ringel PD, Vettiger A, Dürr L, Basler M. DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi. Cell Rep 2019; 29:1633-1644.e4. [DOI: 10.1016/j.celrep.2019.09.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
|
24
|
Roussin M, Rabarioelina S, Cluzeau L, Cayron J, Lesterlin C, Salcedo SP, Bigot S. Identification of a Contact-Dependent Growth Inhibition (CDI) System That Reduces Biofilm Formation and Host Cell Adhesion of Acinetobacter baumannii DSM30011 Strain. Front Microbiol 2019; 10:2450. [PMID: 31736897 PMCID: PMC6831553 DOI: 10.3389/fmicb.2019.02450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant nosocomial opportunistic pathogen that is becoming a major health threat worldwide. In this study, we have focused on the A. baumannii DSM30011 strain, an environmental isolate that retains many virulence-associated traits. We found that its genome contains two loci encoding for contact-dependent growth inhibition (CDI) systems. These systems serve to kill or inhibit the growth of non-sibling bacteria by delivering toxins into the cytoplasm of target cells, thereby conferring the host strain a significant competitive advantage. We show that one of the two toxins functions as a DNA-damaging enzyme, capable of inducing DNA double-stranded breaks to the chromosome of Escherichia coli strain. The second toxin has unknown catalytic activity but stops the growth of E. coli without bactericidal effect. In our conditions, only one of the CDI systems was highly expressed in the A. baumannii DSM30011 strain and was found to mediate interbacterial competition. Surprisingly, the absence of this CDI system promotes adhesion of A. baumannii DSM30011 to both abiotic and biotic surfaces, a phenotype that differs from previously described CDI systems. Our results suggest that a specific regulation mediated by this A. baumannii DSM30011 CDI system may result in changes in bacterial physiology that repress host cell adhesion and biofilm formation.
Collapse
Affiliation(s)
- Morgane Roussin
- Cell Biology of Bacterial Pathogenicity Team, Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Sedera Rabarioelina
- Cell Biology of Bacterial Pathogenicity Team, Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Laurence Cluzeau
- Cell Biology of Bacterial Pathogenicity Team, Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Julien Cayron
- Cell to Cell DNA Transfer Team, Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Christian Lesterlin
- Cell to Cell DNA Transfer Team, Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Suzana P Salcedo
- Cell Biology of Bacterial Pathogenicity Team, Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Sarah Bigot
- Cell Biology of Bacterial Pathogenicity Team, Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France.,Cell to Cell DNA Transfer Team, Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France
| |
Collapse
|
25
|
Bottery MJ, Passaris I, Dytham C, Wood AJ, van der Woude MW. Spatial Organization of Expanding Bacterial Colonies Is Affected by Contact-Dependent Growth Inhibition. Curr Biol 2019; 29:3622-3634.e5. [PMID: 31630946 PMCID: PMC6839403 DOI: 10.1016/j.cub.2019.08.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
Abstract
Identifying how microbes are able to manipulate, survive, and thrive in complex multispecies communities has expanded our understanding of how microbial ecosystems impact human health and the environment. The ability of bacteria to negatively affect neighbors, through explicit toxin delivery systems, provides them with an opportunity to manipulate the composition of growing microbial communities. Contact-dependent inhibition (CDI) systems (a Type Vb secretion system) are a distinct subset of competition systems whose contribution to shaping the development of spatially structured bacterial communities are yet to be fully understood. Here, we compare the impact of different CDI systems, at both the single-cell and population level, to determine the key drivers of CDI-mediated competition within spatially structured bacterial populations. Through an iterative approach using both an Escherichia coli experimental system and computational modeling, we show that CDI systems have subtle and system-specific effects at the single-cell level, generating single-cell-wide boundaries between CDI-expressing inhibitor cells and their neighboring targets. Despite the subtle effects of CDI at a single-cell level, CDI systems greatly diminished the ability of susceptible targets to expand their range during colony growth. The inoculum density of the population, together with the CDI system-specific variables of the speed of inhibition after contact and biological cost of CDI, strongly affects CDI-mediated competition. In contrast, the magnitude of the toxin-induced growth retardation of target cells only weakly impacts the composition of the population. Our work reveals how distinct CDI systems can differentially affect the composition and spatial arrangement of bacterial populations. CDI causes subtle growth inhibition in a subset of contacted target cells Model describes and predicts observed effects on spatial distribution of strains CDI facilitates success of inhibitor strain increasing population patch size A CDI system’s inhibition rate dominates toxicity in driving competition outcome
Collapse
Affiliation(s)
- Michael J Bottery
- Centre for Immunology and Infection and Hull York Medical School, University of York, York YO10 5DD, UK; Department of Biology, University of York, York YO10 5DD, UK
| | - Ioannis Passaris
- Centre for Immunology and Infection and Hull York Medical School, University of York, York YO10 5DD, UK; Department of Biology, University of York, York YO10 5DD, UK
| | - Calvin Dytham
- Department of Biology, University of York, York YO10 5DD, UK
| | - A Jamie Wood
- Department of Biology, University of York, York YO10 5DD, UK; Department of Mathematics, University of York, York YO10 5DD, UK.
| | - Marjan W van der Woude
- Centre for Immunology and Infection and Hull York Medical School, University of York, York YO10 5DD, UK; York Biomedical Research Institute, University of York YO10 5DD, UK.
| |
Collapse
|
26
|
Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins. Structure 2019; 27:1660-1674.e5. [PMID: 31515004 DOI: 10.1016/j.str.2019.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/03/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022]
Abstract
Contact-dependent growth inhibition (CDI) is a form of interbacterial competition mediated by CdiB-CdiA two-partner secretion systems. CdiA effector proteins carry polymorphic C-terminal toxin domains (CdiA-CT), which are neutralized by specific CdiI immunity proteins to prevent self-inhibition. Here, we present the crystal structures of CdiA-CT⋅CdiI complexes from Klebsiella pneumoniae 342 and Escherichia coli 3006. The toxins adopt related folds that resemble the ribonuclease domain of colicin D, and both are isoacceptor-specific tRNases that cleave the acceptor stem of deacylated tRNAGAUIle. Although the toxins are similar in structure and substrate specificity, CdiA-CTKp342 activity requires translation factors EF-Tu and EF-Ts, whereas CdiA-CTEC3006 is intrinsically active. Furthermore, the corresponding immunity proteins are unrelated in sequence and structure. CdiIKp342 forms a dimeric β sandwich, whereas CdiIEC3006 is an α-solenoid monomer. Given that toxin-immunity genes co-evolve as linked pairs, these observations suggest that the similarities in toxin structure and activity reflect functional convergence.
Collapse
|
27
|
Binding and enzymatic properties of Ageritin, a fungal ribotoxin with novel zinc-dependent function. Int J Biol Macromol 2019; 136:625-631. [DOI: 10.1016/j.ijbiomac.2019.06.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
|
28
|
Bartelli NL, Sun S, Gucinski GC, Zhou H, Song K, Hayes CS, Dahlquist FW. The Cytoplasm-Entry Domain of Antibacterial CdiA Is a Dynamic α-Helical Bundle with Disulfide-Dependent Structural Features. J Mol Biol 2019; 431:3203-3216. [PMID: 31181288 PMCID: PMC6727969 DOI: 10.1016/j.jmb.2019.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/01/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
Many Gram-negative bacterial species use contact-dependent growth inhibition (CDI) systems to compete with neighboring cells. CDI+ strains express cell-surface CdiA effector proteins, which carry a toxic C-terminal region (CdiA-CT) that is cleaved from the effector upon transfer into the periplasm of target bacteria. The released CdiA-CT consists of two domains. The C-terminal domain is typically a nuclease that inhibits cell growth, and the N-terminal "cytoplasm-entry" domain mediates toxin translocation into the target-cell cytosol. Here, we use NMR and circular dichroism spectroscopic approaches to probe the structure, stability, and dynamics of the cytoplasm-entry domain from Escherichia coli STEC_MHI813. Chemical shift analysis reveals that the CdiA-CTMHI813 entry domain is composed of a C-terminal helical bundle and a dynamic N-terminal region containing two disulfide linkages. Disruption of the disulfides by mutagenesis or chemical reduction destabilizes secondary structure over the N-terminus, but has no effect on the C-terminal helices. Although critical for N-terminal structure, the disulfides have only modest effects on global thermodynamic stability, and the entry domain exhibits characteristics of a molten globule. We find that the disulfides form in vivo as the entry domain dwells in the periplasm of inhibitor cells prior to target-cell recognition. CdiA-CTMHI813 variants lacking either disulfide still kill target bacteria, but disruption of both bonds abrogates growth inhibition activity. We propose that the entry domain's dynamic structural features are critical for function. In its molten globule-like state, the domain resists degradation after delivery, yet remains pliable enough to unfold for membrane translocation.
Collapse
Affiliation(s)
- Nicholas L Bartelli
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Sheng Sun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Grant C Gucinski
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Kiho Song
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States.
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
29
|
Ruhe ZC, Subramanian P, Song K, Nguyen JY, Stevens TA, Low DA, Jensen GJ, Hayes CS. Programmed Secretion Arrest and Receptor-Triggered Toxin Export during Antibacterial Contact-Dependent Growth Inhibition. Cell 2019; 175:921-933.e14. [PMID: 30388452 DOI: 10.1016/j.cell.2018.10.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/31/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022]
Abstract
Contact-dependent growth inhibition (CDI) entails receptor-mediated delivery of CdiA-derived toxins into Gram-negative target bacteria. Using electron cryotomography, we show that each CdiA effector protein forms a filament extending ∼33 nm from the cell surface. Remarkably, the extracellular filament represents only the N-terminal half of the effector. A programmed secretion arrest sequesters the C-terminal half of CdiA, including the toxin domain, in the periplasm prior to target-cell recognition. Upon binding receptor, CdiA secretion resumes, and the periplasmic FHA-2 domain is transferred to the target-cell outer membrane. The C-terminal toxin region of CdiA then penetrates into the target-cell periplasm, where it is cleaved for subsequent translocation into the cytoplasm. Our findings suggest that the FHA-2 domain assembles into a transmembrane conduit for toxin transport into the periplasm of target bacteria. We propose that receptor-triggered secretion ensures that FHA-2 export is closely coordinated with integration into the target-cell outer membrane. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Poorna Subramanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kiho Song
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Josephine Y Nguyen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Pasadena, CA 91125, USA.
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
30
|
Tipping MJ, Gibbs KA. Peer pressure from a Proteus mirabilis self-recognition system controls participation in cooperative swarm motility. PLoS Pathog 2019; 15:e1007885. [PMID: 31323074 PMCID: PMC6682164 DOI: 10.1371/journal.ppat.1007885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/05/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
Colonies of the opportunistic pathogen Proteus mirabilis can distinguish self from non-self: in swarming colonies of two different strains, one strain excludes the other from the expanding colony edge. Predominant models characterize bacterial kin discrimination as immediate antagonism towards non-kin cells, typically through delivery of toxin effector molecules from one cell into its neighbor. Upon effector delivery, receiving cells must either neutralize it by presenting a cognate anti-toxin as would a clonal sibling, or suffer cell death or irreversible growth inhibition as would a non-kin cell. Here we expand this paradigm to explain the non-lethal Ids self-recognition system, which stops access to a social behavior in P. mirabilis by selectively and transiently inducing non-self cells into a growth-arrested lifestyle incompatible with cooperative swarming. This state is characterized by reduced expression of genes associated with protein synthesis, virulence, and motility, and also causes non-self cells to tolerate previously lethal concentrations of antibiotics. We show that temporary activation of the stringent response is necessary for entry into this state, ultimately resulting in the iterative exclusion of non-self cells as a swarm colony migrates outwards. These data clarify the intricate connection between non-lethal recognition and the lifecycle of P. mirabilis swarm colonies. A resident of animal intestines, Proteus mirabilis is a major cause of catheter-associated urinary tract infections and can cause recurrent, persistent infections. Swarming, which is a collective behavior that promotes centimeter-scale population migration, is implicated in colonization of bladders and kidneys. A regulatory factor of swarming is kin recognition, which involves the transfer of a self-identity protein from one cell into a physically adjacent neighboring cell. However, how kin recognition regulates swarming was previously unclear. We have now shown a mechanism linking kin recognition, swarm migration, and antibiotics tolerance: cells induce a transient antibiotics-tolerant, persister-like state in adjacent non-identical cells which in turn prevents non-identical cells from continuing to participate in collective swarming. These affected non-identical cells continue to exhibit large-scale gene expression suggesting an active shift into a different expression state. These data provide two key insights for the field. First, kin recognition can be a regulatory mechanism that acts with spatial and temporal precision. Second, induction into an antibiotics-tolerant state, instead of occurring stochastically, can be physically and spatially regulated by neighboring cells. These insights highlight the importance of further developing four-dimensional (time and X-, Y-, Z-axes) model systems for interrogating cell-cell signaling and control in microbial populations.
Collapse
Affiliation(s)
- Murray J. Tipping
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Karine A. Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Diversity of Contact-Dependent Growth Inhibition Systems of Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00776-18. [PMID: 31036723 DOI: 10.1128/jb.00776-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems are used in bacterial competition to hinder the growth of neighboring microbes. These systems utilize a two-partner secretion mechanism to display the CdiA exoprotein at the bacterial cell surface. CdiA forms a long filamentous stalk that facilitates binding to a target cell and delivery of a C-terminal toxin (CT) domain. This CT domain is processed and delivered into the cytoplasm of a target cell upon contact. CDI systems also encode a cognate immunity protein (CdiI) that protects siblings and resistant targeted cells from intoxication by high-affinity binding to the CT. CdiA CT domains vary among strains within a species, and many alleles encode enzymatic functions that target nucleic acids. This variation is thought to help drive diversity and adaptation within a species. CdiA diversity is well studied in Escherichia coli and several other bacteria, but little is known about the extent of this diversity in Pseudomonas aeruginosa. The purpose of this review is to highlight the variability that exists in CDI systems of P. aeruginosa. We show that this diversity is apparent even among strains isolated from a single geographical region, suggesting that CDI systems play an important role in the ecology of P. aeruginosa.
Collapse
|
32
|
Virtanen P, Wäneskog M, Koskiniemi S. Class II contact-dependent growth inhibition (CDI) systems allow for broad-range cross-species toxin delivery within the Enterobacteriaceae family. Mol Microbiol 2019; 111:1109-1125. [PMID: 30710431 PMCID: PMC6850196 DOI: 10.1111/mmi.14214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
Contact‐dependent growth inhibition (CDI) allows bacteria to recognize kin cells in mixed bacterial populations. In Escherichia coli, CDI mediated effector delivery has been shown to be species‐specific, with a preference for the own strain over others. This specificity is achieved through an interaction between a receptor‐binding domain in the CdiA protein and its cognate receptor protein on the target cell. But how conserved this specificity is has not previously been investigated in detail. Here, we show that class II CdiA receptor‐binding domains and their Enterobacter cloacae analog are highly promiscuous, and can allow for efficient effector delivery into several different Enterobacteriaceae species, including Escherichia,Enterobacter,Klebsiella and Salmonella spp. In addition, although we observe a preference for the own receptors over others for two of the receptor‐binding domains, this did not limit cross‐species effector delivery in all experimental conditions. These results suggest that class II CdiA proteins could allow for broad‐range and cross‐species growth inhibition in mixed bacterial populations.
Collapse
Affiliation(s)
- Petra Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| | - Marcus Wäneskog
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| |
Collapse
|
33
|
Saile N, Schuh E, Semmler T, Eichhorn I, Wieler LH, Bauwens A, Schmidt H. Determination of virulence and fitness genes associated with the pheU, pheV and selC integration sites of LEE-negative food-borne Shiga toxin-producing Escherichia coli strains. Gut Pathog 2018; 10:43. [PMID: 30337962 PMCID: PMC6174562 DOI: 10.1186/s13099-018-0271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023] Open
Abstract
Background In the current study, nine foodborne “Locus of Enterocyte Effacement” (LEE)-negative Shiga toxin-producing Escherichia coli (STEC) strains were selected for whole genome sequencing and analysis for yet unknown genetic elements within the already known LEE integration sites selC, pheU and pheV. Foreign DNA ranging in size from 3.4 to 57 kbp was detected and further analyzed. Five STEC strains contained an insertion of foreign DNA adjacent to the selC tRNA gene and five and seven strains contained foreign DNA adjacent to the pheU and pheV tRNA genes, respectively. We characterized the foreign DNA insertion associated with selC (STEC O91:H21 strain 17584/1), pheU (STEC O8:H4 strain RF1a and O55:Hnt strain K30) and pheV (STEC O91:H21 strain 17584/1 and O113:H21 strain TS18/08) as examples. Results In total, 293 open reading frames partially encoding putative virulence factors such as TonB-dependent receptors, DNA helicases, a hemolysin activator protein precursor, antigen 43, anti-restriction protein KlcA, ShiA, and phosphoethanolamine transferases were detected. A virulence type IV toxin-antitoxin system was detected in three strains. Additionally, the ato system was found in one strain. In strain 17584/1 we were able to define a new genomic island which we designated GIselC17584/1. The island contained integrases and mobile elements in addition to genes for increased fitness and those playing a putative role in pathogenicity. Conclusion The data presented highlight the important role of the three tRNAs selC, pheU, and pheV for the genomic flexibility of E. coli. Electronic supplementary material The online version of this article (10.1186/s13099-018-0271-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadja Saile
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Elisabeth Schuh
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.,2Department Biological Safety, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | | | - Inga Eichhorn
- 4Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | | | - Andreas Bauwens
- 5Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Herbert Schmidt
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| |
Collapse
|
34
|
Chen H, Fang Q, Tu Q, Liu C, Yin J, Yin Y, Xia L, Bian X, Zhang Y. Identification of a contact-dependent growth inhibition system in the probiotic Escherichia coli Nissle 1917. FEMS Microbiol Lett 2018; 365:4980907. [PMID: 29688444 DOI: 10.1093/femsle/fny102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/19/2018] [Indexed: 01/02/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) is a type of competitive mechanisms and has been identified in various strains including Burkholderia, Dickeya, E. coli and Yersinia. Classical CDI systems contain three genes, cdiB, cdiA and cdiI. CdiB encoded by cdiB gene is a conserved β-barrel protein and required for export of CdiA. CdiA protein encoded by cdiA gene includes a conserved N-terminal domain and variable C-terminal toxic domain (CdiA-CT). Immunity protein CdiI binds and inactivates toxin protein CdiA-CT. Here, we identified two CDI systems, an intact cdiBAI operon with a truncated CdiB due to an unexpected mutation and an 'orphan' cdiA-CT/cdiI module in the probiotic Escherichia coli Nissle 1917 (EcN) genome. Both CdiA-CTs from EcN showed auto-inhibition activity when transferring into E. coli DH5α, as well the sequential deletion of amino acid residues resulted in the generation of the most potent mutant of CdiA-CT. CdiI neutralized the toxicity activity of CdiA and was immunity protein as previous report. In conclusion, this is the first report that the functional CDI system is in probiotic EcN and might provide a potential competitive mechanism for probiotic EcN in intestinal microenvironment.
Collapse
Affiliation(s)
- Hanna Chen
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Qian Fang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Qiang Tu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.,Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Chenlang Liu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaoying Bian
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Youming Zhang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.,Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
35
|
Ghosh A, Baltekin Ö, Wäneskog M, Elkhalifa D, Hammarlöf DL, Elf J, Koskiniemi S. Contact-dependent growth inhibition induces high levels of antibiotic-tolerant persister cells in clonal bacterial populations. EMBO J 2018; 37:embj.201798026. [PMID: 29572241 DOI: 10.15252/embj.201798026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/08/2018] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial populations can use bet-hedging strategies to cope with rapidly changing environments. One example is non-growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact-dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI-mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon-mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density-dependent bet-hedging strategy, where the fraction of non-growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts.
Collapse
Affiliation(s)
- Anirban Ghosh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Özden Baltekin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marcus Wäneskog
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Dina Elkhalifa
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Disa L Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Kryshtafovych A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring GW, Koning RI, Lo Leggio L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T. Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016). Proteins 2018; 86 Suppl 1:27-50. [PMID: 28960539 PMCID: PMC5820184 DOI: 10.1002/prot.25392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022]
Abstract
The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment.
Collapse
Affiliation(s)
- Andriy Kryshtafovych
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Pedro Bule
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Alessandro T Caputo
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Ana Luisa Carvalho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Cien⁁cias e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Krzysztof Fidelis
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Folmer Fredslund
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry/Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology/Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, 93106
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742
| | - Johan C Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Andrzej Joachimiak
- Argonne National Laboratory, Midwest Center for Structural Genomics/Structural Biology Center, Biosciences Division, Argonne, Illinois, 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| | - Gert-Wieland Kohring
- Microbiology, Saarland University, Campus Building A1.5, Saarbrücken, Saarland, D-66123, Germany
| | - Roman I Koning
- Netherlands Centre for Electron Nanoscopy, Institute of Biology Leiden, Leiden University, 2333, CC Leiden, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Karolina Michalska
- Argonne National Laboratory, Midwest Center for Structural Genomics/Structural Biology Center, Biosciences Division, Argonne, Illinois, 60439
| | - John Moult
- Department of Cell Biology and Molecular genetics, University of Maryland, 9600 Gudelsky Drive, Institute for Bioscience and Biotechnology Research, Rockville, Maryland, 20850
| | - Shabir Najmudin
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano, 20133, Italy
| | - Valentina Nardone
- Department of Biosciences, University of Milano, Milano, 20133, Italy
| | - Didier Ndeh
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Thanh-Hong Nguyen
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia (CSIC), calle Darwin 3, Madrid, 28049, Spain
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Villeurbanne, 69100, France
| | - Sandra Postel
- University of Maryland School of Medicine, Institute of Human Virology, Baltimore, Maryland, 21201
| | - Mark J van Raaij
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia (CSIC), calle Darwin 3, Madrid, 28049, Spain
| | - Pietro Roversi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, University Road, Leicester, LE1 7RN, UK
| | - Amir Shimon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Abhimanyu K Singh
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Eric J Sundberg
- Department of Medicine and Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Human Virology, Baltimore, Maryland, 21201
| | - Kaspars Tars
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
- Faculty of Biology, Department of Molecular Biology, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Torsten Schwede
- Biozentrum/SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 50, Basel, 4056, Switzerland
| |
Collapse
|
37
|
Michalska K, Gucinski GC, Garza-Sánchez F, Johnson PM, Stols LM, Eschenfeldt WH, Babnigg G, Low DA, Goulding CW, Joachimiak A, Hayes CS. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs. Nucleic Acids Res 2017; 45:10306-10320. [PMID: 28973472 PMCID: PMC5737660 DOI: 10.1093/nar/gkx700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/29/2017] [Indexed: 12/23/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxin specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Together, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Grant C Gucinski
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Lucy M Stols
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - William H Eschenfeldt
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - David A Low
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Christopher S Hayes
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
38
|
Can't you hear me knocking: contact-dependent competition and cooperation in bacteria. Emerg Top Life Sci 2017; 1:75-83. [PMID: 29085916 DOI: 10.1042/etls20160019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microorganisms are in constant competition for growth niches and environmental resources. In Gram-negative bacteria, contact-dependent growth inhibition (CDI) systems link the fate of one cell with its immediate neighbor through touch-dependent, receptor-mediated toxin delivery. Though discovered for their ability to confer a competitive growth advantage, CDI systems also play significant roles in inter-sibling cooperation, promoting both auto-aggregation and biofilm formation. In this review, we detail the mechanisms of CDI toxin delivery and consider how toxin exchange between isogenic sibling cells could regulate gene expression.
Collapse
|
39
|
Abstract
Contact-dependent growth inhibition (CDI) systems encode CdiA effectors, which bind to specific receptors on neighboring bacteria and deliver C-terminal toxin domains to suppress target cell growth. Two classes of CdiA effectors that bind distinct cell surface receptors have been identified, but the molecular basis of receptor specificity is not understood. Alignment of BamA-specific CdiAEC93 from Escherichia coli EC93 and OmpC-specific CdiAEC536 from E. coli 536 suggests that the receptor-binding domain resides within a central region that varies between the two effectors. In support of this hypothesis, we find that CdiAEC93 fragments containing residues Arg1358 to Phe1646 bind specifically to purified BamA. Moreover, chimeric CdiAEC93 that carries the corresponding sequence from CdiAEC536 is endowed with OmpC-binding activity, demonstrating that this region dictates receptor specificity. A survey of E. coli CdiA proteins reveals two additional effector classes, which presumably recognize distinct receptors. Using a genetic approach, we identify the outer membrane nucleoside transporter Tsx as the receptor for a third class of CdiA effectors. Thus, CDI systems exploit multiple outer membrane proteins to identify and engage target cells. These results underscore the modularity of CdiA proteins and suggest that novel effectors can be constructed through genetic recombination to interchange different receptor-binding domains and toxic payloads.IMPORTANCE CdiB/CdiA two-partner secretion proteins mediate interbacterial competition through the delivery of polymorphic toxin domains. This process, known as contact-dependent growth inhibition (CDI), requires stable interactions between the CdiA effector protein and specific receptors on the surface of target bacteria. Here, we localize the receptor-binding domain to the central region of E. coli CdiA. Receptor-binding domains vary between CdiA proteins, and E. coli strains collectively encode at least four distinct effector classes. Further, we show that receptor specificity can be altered by exchanging receptor-binding regions, demonstrating the modularity of this domain. We propose that novel CdiA effectors are naturally generated through genetic recombination to interchange different receptor-binding domains and toxin payloads.
Collapse
|
40
|
Danka ES, Garcia EC, Cotter PA. Are CDI Systems Multicolored, Facultative, Helping Greenbeards? Trends Microbiol 2017; 25:391-401. [PMID: 28285908 DOI: 10.1016/j.tim.2017.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Competitive and cooperative interactions between organisms, including bacteria, can significantly impact the composition of a community and the fitness of its members, as well as the fitness of their hosts when communities are living on or within other organisms. Understanding the underlying mechanisms is critical to the development of strategies to control microbiological communities that impact animal and plant health and also for understanding the evolution of social behaviors, which has been challenging for evolutionary biologists. Contact-dependent growth inhibition (CDI) is a phenomenon defined by the delivery of a protein toxin to the cytoplasm of neighboring bacteria upon cell-cell contact, resulting in growth inhibition or death unless a specific immunity protein is present. CDI was first described based on observations of interbacterial killing and has been assumed to function primarily as a means of eliminating competitor cells. However, recent molecular evidence indicates that multiple levels of specificity restrict CDI toxin delivery and activity to the same bacterial strain, and that CDI system proteins can mediate cooperative behaviors among 'self' cells, a phenomenon called contact-dependent signaling (CDS). Here we review these recent findings and discuss potential biological and evolutionary implications of CDI system-mediated interbacterial competition and cooperation.
Collapse
Affiliation(s)
- Elizabeth S Danka
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, NC, USA
| | - Erin C Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, KY, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Proc Natl Acad Sci U S A 2017; 114:E1951-E1957. [PMID: 28223500 DOI: 10.1073/pnas.1619273114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a mechanism by which bacteria exchange toxins via direct cell-to-cell contact. CDI systems are distributed widely among Gram-negative pathogens and are thought to mediate interstrain competition. Here, we describe tsf mutations that alter the coiled-coil domain of elongation factor Ts (EF-Ts) and confer resistance to the CdiA-CTEC869 tRNase toxin from enterohemorrhagic Escherichia coli EC869. Although EF-Ts is required for toxicity in vivo, our results indicate that it is dispensable for tRNase activity in vitro. We find that CdiA-CTEC869 binds to elongation factor Tu (EF-Tu) with high affinity and this interaction is critical for nuclease activity. Moreover, in vitro tRNase activity is GTP-dependent, suggesting that CdiA-CTEC869 only cleaves tRNA in the context of translationally active GTP·EF-Tu·tRNA ternary complexes. We propose that EF-Ts promotes the formation of GTP·EF-Tu·tRNA ternary complexes, thereby accelerating substrate turnover for rapid depletion of target-cell tRNA.
Collapse
|
42
|
CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria. PLoS Pathog 2016; 12:e1005925. [PMID: 27723824 PMCID: PMC5056734 DOI: 10.1371/journal.ppat.1005925] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/10/2016] [Indexed: 12/28/2022] Open
Abstract
Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. Bacterial pathogens often live in crowded communities where cells reside in close contact with one another. Many of these bacteria possess contact-dependent growth inhibition (CDI) systems, which allow cells to touch and inhibit each other using toxic CdiA proteins. CDI+ bacteria also produce immunity proteins that specifically protect the cell from the CdiA toxins of neighboring sibling cells. The CDI system from Escherichia coli EC93 was the first to be characterized and its CdiA toxin recognizes a receptor (BamA) that is identical in virtually all E. coli isolates. Here, we describe a different CDI system from uropathogenic E. coli 536, which causes urinary tract infections. In contrast to E. coli EC93, CdiA from E. coli 536 binds to receptor proteins (OmpC/OmpF) that vary widely between different E. coli isolates. Thus, uropathogenic E. coli preferentially bind and deliver toxins into sibling cells and other closely related E. coli strains. These results suggest that CDI systems distinguish between "self" and "non-self" cells. Moreover, because sibling cells are immune to CdiA-mediated growth inhibition, these findings raise the possibility that toxin exchange may be used for communication and cooperative behavior between genetically identical bacteria.
Collapse
|
43
|
Asfahl KL, Schuster M. Social interactions in bacterial cell-cell signaling. FEMS Microbiol Rev 2016; 41:92-107. [PMID: 27677972 DOI: 10.1093/femsre/fuw038] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/19/2016] [Accepted: 08/14/2016] [Indexed: 01/16/2023] Open
Abstract
Cooperation and conflict in microorganisms is being recognized as an important factor in the organization and function of microbial communities. Many of the cooperative behaviors described in bacteria are governed through a cell-cell signaling process generally termed quorum sensing. Communication and cooperation in diverse microorganisms exhibit predictable trends that behave according to social evolutionary theory, notably that public goods dilemmas produce selective pressures for divergence in social phenotypes including cheating. In this review, we relate the general features of quorum sensing and social adaptation in microorganisms to established evolutionary theory. We then describe physiological and molecular mechanisms that have been shown to stabilize cooperation in microbes, thereby preventing a tragedy of the commons. Continued study of the role of communication and cooperation in microbial ecology and evolution is important to clinical treatment of pathogens, as well as to our fundamental understanding of cooperative selection at all levels of life.
Collapse
Affiliation(s)
- Kyle L Asfahl
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331-3804, USA
| |
Collapse
|
44
|
Ruhe ZC, Nguyen JY, Chen AJ, Leung NY, Hayes CS, Low DA. CDI Systems Are Stably Maintained by a Cell-Contact Mediated Surveillance Mechanism. PLoS Genet 2016; 12:e1006145. [PMID: 27355474 PMCID: PMC4927057 DOI: 10.1371/journal.pgen.1006145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems are widespread amongst Gram-negative bacteria where they play important roles in inter-cellular competition and biofilm formation. CDI+ bacteria use cell-surface CdiA proteins to bind neighboring bacteria and deliver C-terminal toxin domains. CDI+ cells also express CdiI immunity proteins that specifically neutralize toxins delivered from adjacent siblings. Genomic analyses indicate that cdi loci are commonly found on plasmids and genomic islands, suggesting that these Type 5 secretion systems are spread through horizontal gene transfer. Here, we examine whether CDI toxin and immunity activities serve to stabilize mobile genetic elements using a minimal F plasmid that fails to partition properly during cell division. This F plasmid is lost from Escherichia coli populations within 50 cell generations, but is maintained in ~60% of the cells after 100 generations when the plasmid carries the cdi gene cluster from E. coli strain EC93. By contrast, the ccdAB "plasmid addiction" module normally found on F exerts only a modest stabilizing effect. cdi-dependent plasmid stabilization requires the BamA receptor for CdiA, suggesting that plasmid-free daughter cells are inhibited by siblings that retain the CDI+ plasmid. In support of this model, the CDI+ F plasmid is lost rapidly from cells that carry an additional cdiI immunity gene on a separate plasmid. These results indicate that plasmid stabilization occurs through elimination of non-immune cells arising in the population via plasmid loss. Thus, genetic stabilization reflects a strong selection for immunity to CDI. After long-term passage for more than 300 generations, CDI+ plasmids acquire mutations that increase copy number and result in 100% carriage in the population. Together, these results show that CDI stabilizes genetic elements through a toxin-mediated surveillance mechanism in which cells that lose the CDI system are detected and eliminated by their siblings.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Josephine Y Nguyen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Annette J Chen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Nicole Y Leung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
45
|
Khandige S, Møller-Jensen J. Fimbrial phase variation: stochastic or cooperative? Curr Genet 2015; 62:237-41. [DOI: 10.1007/s00294-015-0529-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
|
46
|
Morse RP, Willett JLE, Johnson PM, Zheng J, Credali A, Iniguez A, Nowick JS, Hayes CS, Goulding CW. Diversification of β-Augmentation Interactions between CDI Toxin/Immunity Proteins. J Mol Biol 2015; 427:3766-84. [PMID: 26449640 DOI: 10.1016/j.jmb.2015.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Contact-dependent growth inhibition (CDI) is a widespread mechanism of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion proteins. CdiA effectors carry diverse C-terminal toxin domains (CdiA-CT), which are delivered into neighboring target cells to inhibit growth. CDI(+) bacteria also produce CdiI immunity proteins that bind specifically to cognate CdiA-CT toxins and protect the cell from auto-inhibition. Here, we compare the structures of homologous CdiA-CT/CdiI complexes from Escherichia coli EC869 and Yersinia pseudotuberculosis YPIII to explore the evolution of CDI toxin/immunity protein interactions. Both complexes share an unusual β-augmentation interaction, in which the toxin domain extends a β-hairpin into the immunity protein to complete a six-stranded anti-parallel sheet. However, the specific contacts differ substantially between the two complexes. The EC869 β-hairpin interacts mainly through direct H-bond and ion-pair interactions, whereas the YPIII β-hairpin pocket contains more hydrophobic contacts and a network of bridging water molecules. In accord with these differences, we find that each CdiI protein only protects target bacteria from its cognate CdiA-CT toxin. The compact β-hairpin binding pocket within the immunity protein represents a tractable system for the rationale design of small molecules to block CdiA-CT/CdiI complex formation. We synthesized a macrocyclic peptide mimic of the β-hairpin from EC869 toxin and solved its structure in complex with cognate immunity protein. These latter studies suggest that small molecules could potentially be used to disrupt CDI toxin/immunity complexes.
Collapse
Affiliation(s)
- Robert P Morse
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Julia L E Willett
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jing Zheng
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Alfredo Credali
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Angelina Iniguez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA; Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
47
|
Abstract
The major class of integral proteins found in the outer membrane (OM) of E. coli and Salmonella adopt a β-barrel conformation (OMPs). OMPs are synthesized in the cytoplasm with a typical signal sequence at the amino terminus, which directs them to the secretion machinery (SecYEG) located in the inner membrane for translocation to the periplasm. Chaperones such as SurA, or DegP and Skp, escort these proteins across the aqueous periplasm protecting them from aggregation. The chaperones then deliver OMPs to a highly conserved outer membrane assembly site termed the Bam complex. In E. coli, the Bam complex is composed of an essential OMP, BamA, and four associated OM lipoproteins, BamBCDE, one of which, BamD, is also essential. Here we provide an overview of what we know about the process of OMP assembly and outline the various hypotheses that have been proposed to explain how proteins might be integrated into the asymmetric OM lipid bilayer in an environment that lacks obvious energy sources. In addition, we describe the envelope stress responses that ensure the fidelity of OM biogenesis and how factors, such as phage and certain toxins, have coopted this essential machine to gain entry into the cell.
Collapse
|
48
|
Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol 2015; 427:3754-65. [PMID: 26388411 DOI: 10.1016/j.jmb.2015.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
Bacteria have developed several strategies to communicate and compete with one another in complex environments. One important mechanism of inter-bacterial competition is contact-dependent growth inhibition (CDI), in which Gram-negative bacteria use CdiB/CdiA two-partner secretion proteins to suppress the growth of neighboring target cells. CdiB is an Omp85 outer-membrane protein that exports and assembles CdiA exoproteins onto the inhibitor cell surface. CdiA binds to receptors on susceptible bacteria and subsequently delivers its C-terminal toxin domain (CdiA-CT) into the target cell. CDI systems also encode CdiI immunity proteins, which specifically bind to the CdiA-CT and neutralize its toxin activity, thereby protecting CDI(+) cells from auto-inhibition. Remarkably, CdiA-CT sequences are highly variable between bacteria, as are the corresponding CdiI immunity proteins. Variations in CDI toxin/immunity proteins suggest that these systems function in bacterial self/non-self recognition and thereby play an important role in microbial communities. In this review, we discuss recent advances in the biochemistry, structural biology and physiology of CDI.
Collapse
|
49
|
Ruhe ZC, Townsley L, Wallace AB, King A, Van der Woude MW, Low DA, Yildiz FH, Hayes CS. CdiA promotes receptor-independent intercellular adhesion. Mol Microbiol 2015; 98:175-92. [PMID: 26135212 DOI: 10.1111/mmi.13114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 01/02/2023]
Abstract
CdiB/CdiA proteins mediate inter-bacterial competition in a process termed contact-dependent growth inhibition (CDI). Filamentous CdiA exoproteins extend from CDI(+) cells and bind specific receptors to deliver toxins into susceptible target bacteria. CDI has also been implicated in auto-aggregation and biofilm formation in several species, but the contribution of CdiA-receptor interactions to these multi-cellular behaviors has not been examined. Using Escherichia coli isolate EC93 as a model, we show that cdiA and bamA receptor mutants are defective in biofilm formation, suggesting a prominent role for CdiA-BamA mediated cell-cell adhesion. However, CdiA also promotes auto-aggregation in a BamA-independent manner, indicating that the exoprotein possesses an additional adhesin activity. Cells must express CdiA in order to participate in BamA-independent aggregates, suggesting that adhesion could be mediated by homotypic CdiA-CdiA interactions. The BamA-dependent and BamA-independent interaction domains map to distinct regions within the CdiA filament. Thus, CdiA orchestrates a collective behavior that is independent of its growth-inhibition activity. This adhesion should enable 'greenbeard' discrimination, in which genetically unrelated individuals cooperate with one another based on a single shared trait. This kind-selective social behavior could provide immediate fitness benefits to bacteria that acquire the systems through horizontal gene transfer.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106-9625, USA
| | - Loni Townsley
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Adam B Wallace
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106-9625, USA
| | - Andrew King
- Centre for Immunology and Infection, Hull York Medical School and the Department of Biology, University of York, York, YO10 5DD, UK
| | - Marjan W Van der Woude
- Centre for Immunology and Infection, Hull York Medical School and the Department of Biology, University of York, York, YO10 5DD, UK
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106-9625, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, 93106-9625, USA
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106-9625, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, 93106-9625, USA
| |
Collapse
|
50
|
Abstract
Bacteria have evolved numerous strategies to increase their competitiveness and fight against each other. Indeed, a large arsenal of antibacterial weapons is available in order to inhibit the proliferation of competitor cells. Polymorphic toxin systems (PTS), recently identified by bioinformatics in all major bacterial lineages, correspond to such a system primarily involved in conflict between related bacterial strains. They are typically composed of a secreted multidomain toxin, a protective immunity protein, and multiple cassettes encoding alternative toxic domains. The C-terminal domains of polymorphic toxins carry the toxic activity, whereas the N-terminal domains are related to the trafficking mode. In silico analysis of PTS identified over 150 distinct toxin domains, including putative nuclease, deaminase, or peptidase domains. Immunity genes found immediately downstream of the toxin genes encode small proteins that protect bacteria against their own toxins or against toxins secreted by neighboring cells. PTS encompass well-known colicins and pyocins, contact-dependent growth inhibition systems which include CdiA and Rhs toxins and some effectors of type VI secretion systems. We have recently characterized the MafB toxins, a new family of PTS deployed by pathogenic Neisseria spp. Many other putative PTS have been identified by in silico predictions but have yet to be characterized experimentally. However, the high number of these systems suggests that PTS have a fundamental role in bacterial biology that is likely to extend beyond interbacterial competition.
Collapse
|