1
|
Stöckl R, Nißl L, Reichelt R, Rachel R, Grohmann D, Grünberger F. The transcriptional regulator EarA and intergenic terminator sequences modulate archaellation in Pyrococcus furiosus. Front Microbiol 2023; 14:1241399. [PMID: 38029142 PMCID: PMC10665913 DOI: 10.3389/fmicb.2023.1241399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The regulation of archaellation, the formation of archaeal-specific cell appendages called archaella, is crucial for the motility, adhesion, and survival of archaeal organisms. Although the heavily archaellated and highly motile Pyrococcus furiosus is a key model organism for understanding the production and function of archaella in Euryarchaea, the transcriptional regulation of archaellum assembly is so far unknown. Here we show that the transcription factor EarA is the master regulator of the archaellum (arl) operon transcription, which is further modulated by intergenic transcription termination signals. EarA deletion or overexpression strains demonstrate that EarA is essential for archaellation in P. furiosus and governs the degree of archaellation. Providing a single-molecule update on the transcriptional landscape of the arl operon in P. furiosus, we identify sequence motifs for EarA binding upstream of the arl operon and intergenic terminator sequences as critical elements for fine-tuning the expression of the multicistronic arl cluster. Furthermore, transcriptome re-analysis across different Thermococcales species demonstrated a heterogeneous production of major archaellins, suggesting a more diverse composition of archaella than previously recognized. Overall, our study provides novel insights into the transcriptional regulation of archaellation and highlights the essential role of EarA in Pyrococcus furiosus. These findings advance our understanding of the mechanisms governing archaellation and have implications for the functional diversity of archaella.
Collapse
Affiliation(s)
- Richard Stöckl
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Laura Nißl
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Reinhard Rachel
- Centre for Electron Microscopy, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Felix Grünberger
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Direct binding of TFEα opens DNA binding cleft of RNA polymerase. Nat Commun 2020; 11:6123. [PMID: 33257704 PMCID: PMC7704642 DOI: 10.1038/s41467-020-19998-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Opening of the DNA binding cleft of cellular RNA polymerase (RNAP) is necessary for transcription initiation but the underlying molecular mechanism is not known. Here, we report on the cryo-electron microscopy structures of the RNAP, RNAP-TFEα binary, and RNAP-TFEα-promoter DNA ternary complexes from archaea, Thermococcus kodakarensis (Tko). The structures reveal that TFEα bridges the RNAP clamp and stalk domains to open the DNA binding cleft. Positioning of promoter DNA into the cleft closes it while maintaining the TFEα interactions with the RNAP mobile modules. The structures and photo-crosslinking results also suggest that the conserved aromatic residue in the extended winged-helix domain of TFEα interacts with promoter DNA to stabilize the transcription bubble. This study provides a structural basis for the functions of TFEα and elucidates the mechanism by which the DNA binding cleft is opened during transcription initiation in the stalk-containing RNAPs, including archaeal and eukaryotic RNAPs.
Collapse
|
3
|
Grettenberger CL, Havig JR, Hamilton TL. Metabolic diversity and co-occurrence of multiple Ferrovum species at an acid mine drainage site. BMC Microbiol 2020; 20:119. [PMID: 32423375 PMCID: PMC7236192 DOI: 10.1186/s12866-020-01768-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ferrovum spp. are abundant in acid mine drainage sites globally where they play an important role in biogeochemical cycling. All known taxa in this genus are Fe(II) oxidizers. Thus, co-occurring members of the genus could be competitors within the same environment. However, we found multiple, co-occurring Ferrovum spp. in Cabin Branch, an acid mine drainage site in the Daniel Boone National Forest, KY. RESULTS Here we describe the distribution of Ferrovum spp. within the Cabin Branch communities and metagenome assembled genomes (MAGs) of two new Ferrovum spp. In contrast to previous studies, we recovered multiple 16S rRNA gene sequence variants suggesting the commonly used 97% cutoff may not be appropriate to differentiate Ferrovum spp. We also retrieved two nearly-complete Ferrovum spp. genomes from metagenomic data. The genomes of these taxa differ in several key ways relating to nutrient cycling, motility, and chemotaxis. CONCLUSIONS Previously reported Ferrovum genomes are also diverse with respect to these categories suggesting that the genus Ferrovum contains substantial metabolic diversity. This diversity likely explains how the members of this genus successfully co-occur in Cabin Branch and why Ferrovum spp. are abundant across geochemical gradients.
Collapse
Affiliation(s)
| | - Jeff R Havig
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, 218 Cargill Building, St. Paul, MN, 55108, USA.
- The BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
4
|
Feng X, Sun M, Han W, Liang YX, She Q. A transcriptional factor B paralog functions as an activator to DNA damage-responsive expression in archaea. Nucleic Acids Res 2019; 46:7085-7096. [PMID: 29618058 PMCID: PMC6101594 DOI: 10.1093/nar/gky236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Previously it was shown that UV irradiation induces a strong upregulation of tfb3 coding for a paralog of the archaeal transcriptional factor B (TFB) in Sulfolobus solfataricus, a crenarchaea. To investigate the function of this gene in DNA damage response (DDR), tfb3 was inactivated by gene deletion in Sulfolobus islandicus and the resulting Δtfb3 was more sensitive to DNA damage agents than the original strain. Transcriptome analysis revealed that a large set of genes show TFB3-dependent activation, including genes of the ups operon and ced system. Furthermore, the TFB3 protein was found to be associated with DDR gene promoters and functional dissection of TFB3 showed that the conserved Zn-ribbon and coiled-coil motif are essential for the activation. Together, the results indicated that TFB3 activates the expression of DDR genes by interaction with other transcriptional factors at the promoter regions of DDR genes to facilitate the formation of transcription initiation complex. Strikingly, TFB3 and Ced systems are present in a wide range of crenarchaea, suggesting that the Ced system function as a primary DNA damage repair mechanism in Crenarchaeota. Our findings further suggest that TFB3 and the concurrent TFB1 form a TFB3-dependent DNA damage-responsive circuit with their target genes, which is evolutionarily conserved in the major lineage of Archaea.
Collapse
Affiliation(s)
- Xu Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mengmeng Sun
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Wenyuan Han
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Smollett K, Blombach F, Reichelt R, Thomm M, Werner F. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase. Nat Microbiol 2017; 2:17021. [PMID: 28248297 PMCID: PMC7616672 DOI: 10.1038/nmicrobiol.2017.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
Abstract
The archaeal transcription apparatus is closely related to the eukaryotic RNA polymerase (RNAP) II system, while archaeal genomes are more similar to bacteria with densely packed genes organized in operons. This makes understanding transcription in archaea vital, both in terms of molecular mechanisms and evolution. Very little is known about how archaeal cells orchestrate transcription on a systems level. We have characterized the genome-wide occupancy of the Methanocaldococcus jannaschii transcription machinery and its transcriptome. Our data reveal how the TATA and BRE promoter elements facilitate recruitment of the essential initiation factors TATA-binding protein and transcription factor B, respectively, which in turn are responsible for the loading of RNAP into the transcription units. The occupancies of RNAP and Spt4/5 strongly correlate with each other and with RNA levels. Our results show that Spt4/5 is a general elongation factor in archaea as its presence on all genes matches RNAP. Spt4/5 is recruited proximal to the transcription start site on the majority of transcription units, while on a subset of genes, including rRNA and CRISPR loci, Spt4/5 is recruited to the transcription elongation complex during early elongation within 500 base pairs of the transcription start site and akin to its bacterial homologue NusG.
Collapse
Affiliation(s)
- Katherine Smollett
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Fabian Blombach
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Robert Reichelt
- Institut of Microbiology and Archaea Center, Universität Regensburg, 93053Regensburg, Germany
| | - Michael Thomm
- Institut of Microbiology and Archaea Center, Universität Regensburg, 93053Regensburg, Germany
| | - Finn Werner
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
6
|
Blombach F, Grohmann D. Same same but different: The evolution of TBP in archaea and their eukaryotic offspring. Transcription 2017; 8:162-168. [PMID: 28340330 PMCID: PMC5501381 DOI: 10.1080/21541264.2017.1289879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transcription factors TBP and TF(II)B assemble with RNA polymerase at the promoter DNA forming the initiation complex. Despite a high degree of conservation, the molecular binding mechanisms of archaeal and eukaryotic TBP and TF(II)B differ significantly. Based on recent biophysical data, we speculate how the mechanisms co-evolved with transcription regulation and TBP multiplicity.
Collapse
Affiliation(s)
- Fabian Blombach
- a RNAP Laboratory , University College London, Institute of Structural and Molecular Biology, Division of Biosciences , London , UK
| | - Dina Grohmann
- b Department of Biochemistry, Genetics and Microbiology , Institute of Microbiology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
7
|
Transcription Factor-Mediated Gene Regulation in Archaea. RNA METABOLISM AND GENE EXPRESSION IN ARCHAEA 2017. [DOI: 10.1007/978-3-319-65795-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
8
|
Abstract
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.
Collapse
|
9
|
Blombach F, Smollett KL, Grohmann D, Werner F. Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation. J Mol Biol 2016; 428:2592-2606. [PMID: 27107643 PMCID: PMC7616663 DOI: 10.1016/j.jmb.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/24/2022]
Abstract
Transcription initiation requires that the promoter DNA is melted and the template strand is loaded into the active site of the RNA polymerase (RNAP), forming the open complex (OC). The archaeal initiation factor TFE and its eukaryotic counterpart TFIIE facilitate this process. Recent structural and biophysical studies have revealed the position of TFE/TFIIE within the pre-initiation complex (PIC) and illuminated its role in OC formation. TFE operates via allosteric and direct mechanisms. Firstly, it interacts with the RNAP and induces the opening of the flexible RNAP clamp domain, concomitant with DNA melting and template loading. Secondly, TFE binds physically to single-stranded DNA in the transcription bubble of the OC and increases its stability. The identification of the β-subunit of archaeal TFE enabled us to reconstruct the evolutionary history of TFE/TFIIE-like factors, which is characterised by winged helix (WH) domain expansion in eukaryotes and loss of metal centres including iron-sulfur clusters and Zinc ribbons. OC formation is an important target for the regulation of transcription in all domains of life. We propose that TFE and the bacterial general transcription factor CarD, although structurally and evolutionary unrelated, show interesting parallels in their mechanism to enhance OC formation. We argue that OC formation is used as a way to regulate transcription in all domains of life, and these regulatory mechanisms coevolved with the basal transcription machinery.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Katherine L Smollett
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Dina Grohmann
- Institute of Microbiology, University of Regensburg, Regensburg 93053, Germany
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Walker JE, Santangelo TJ. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase. Methods 2015; 86:73-9. [PMID: 26028597 DOI: 10.1016/j.ymeth.2015.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 11/27/2022] Open
Abstract
Transcription factors regulate the activities of RNA polymerase (RNAP) at each stage of the transcription cycle. Many basal transcription factors with common ancestry are employed in eukaryotic and archaeal systems that directly bind to RNAP and influence intramolecular movements of RNAP and modulate DNA or RNA interactions. We describe and employ a flexible methodology to directly probe and quantify the binding of transcription factors to RNAP in vivo. We demonstrate that binding of the conserved and essential archaeal transcription factor TFE to the archaeal RNAP is directed, in part, by interactions with the RpoE subunit of RNAP. As the surfaces involved are conserved in many eukaryotic and archaeal systems, the identified TFE-RNAP interactions are likely conserved in archaeal-eukaryal systems and represent an important point of contact that can influence the efficiency of transcription initiation.
Collapse
Affiliation(s)
- Julie E Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
12
|
Different roles of two transcription factor B proteins in the hyperthermophilic archaeon Thermococcus kodakarensis. Extremophiles 2014; 18:573-88. [DOI: 10.1007/s00792-014-0638-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/03/2014] [Indexed: 11/26/2022]
|
13
|
Abstract
The ability of organisms to sense and respond to their environment is essential to their survival. This is no different for members of the third domain of life, the Archaea. Archaea are found in diverse and often extreme habitats. However, their ability to sense and respond to their environment at the level of gene expression has been understudied when compared to bacteria and eukaryotes. Over the last decade, the field has expanded, and a variety of unique and interesting regulatory schemes have been unraveled. In this review, the current state of knowledge of archaeal transcription regulation is explored.
Collapse
|
14
|
The Sulfolobus initiator element is an important contributor to promoter strength. J Bacteriol 2013; 195:5216-22. [PMID: 24039266 DOI: 10.1128/jb.00768-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basal elements in archaeal promoters, except for putative initiator elements encompassing transcription start sites, are well characterized. Here, we employed the Sulfolobus araS promoter as a model to study the function of the initiator element (Inr) in archaea. We have provided evidence for the presence of a third core promoter element, the Sulfolobus Inr, whose action depends on a TATA box and the TFB recognition element (BRE). Substitution mutations in the araS Inr did not alter the location of the transcription start site. Using systematic mutagenesis, the most functional araS Inr was defined as +1 GAGAMK +6 (where M is A/C and K is G/T). Furthermore, WebLogo analysis of a subset of promoters with coding sequences for 5' untranslated regions (UTRs) larger than 4 nucleotides (nt) in Sulfolobus solfataricus P2 identified an Inr consensus that exactly matches the functional araS Inr sequence. Moreover, mutagenesis of 3 randomly selected promoters confirmed the Inr sequences to be important for basal promoter strength in the subgroup. Importantly, the result of the araS Inr being added to the Inr-less promoters indicates that the araS Inr, the core promoter element, is able to enhance the strength of Inr-less promoters. We infer that transcription factor B (TFB) and subunits of RNA polymerase bind the Inr to enhance promoter strength. Taken together, our data suggest that the presence or absence of an Inr on basal promoters is important for global gene regulation in Sulfolobus.
Collapse
|
15
|
Jennebach S, Herzog F, Aebersold R, Cramer P. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage. Nucleic Acids Res 2012; 40:5591-601. [PMID: 22396529 PMCID: PMC3384336 DOI: 10.1093/nar/gks220] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase (Pol) I contains a 10-subunit catalytic core that is related to the core of Pol II and includes subunit A12.2. In addition, Pol I contains the heterodimeric subcomplexes A14/43 and A49/34.5, which are related to the Pol II subcomplex Rpb4/7 and the Pol II initiation factor TFIIF, respectively. Here we used lysine-lysine crosslinking, mass spectrometry (MS) and modeling based on five crystal structures, to extend the previous homology model of the Pol I core, to confirm the location of A14/43 and to position A12.2 and A49/34.5 on the core. In the resulting model of Pol I, the C-terminal ribbon (C-ribbon) domain of A12.2 reaches the active site via the polymerase pore, like the C-ribbon of the Pol II cleavage factor TFIIS, explaining why the intrinsic RNA cleavage activity of Pol I is strong, in contrast to the weak cleavage activity of Pol II. The A49/34.5 dimerization module resides on the polymerase lobe, like TFIIF, whereas the A49 tWH domain resides above the cleft, resembling parts of TFIIE. This indicates that Pol I and also Pol III are distantly related to a Pol II-TFIIS-TFIIF-TFIIE complex.
Collapse
Affiliation(s)
- Stefan Jennebach
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
16
|
Turkarslan S, Reiss DJ, Gibbins G, Su WL, Pan M, Bare JC, Plaisier CL, Baliga NS. Niche adaptation by expansion and reprogramming of general transcription factors. Mol Syst Biol 2011; 7:554. [PMID: 22108796 PMCID: PMC3261711 DOI: 10.1038/msb.2011.87] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/25/2011] [Indexed: 02/01/2023] Open
Abstract
Numerous lineage-specific expansions of the transcription factor B (TFB) family in archaea suggests an important role for expanded TFBs in encoding environment-specific gene regulatory programs. Given the characteristics of hypersaline lakes, the unusually large numbers of TFBs in halophilic archaea further suggests that they might be especially important in rapid adaptation to the challenges of a dynamically changing environment. Motivated by these observations, we have investigated the implications of TFB expansions by correlating sequence variations, regulation, and physical interactions of all seven TFBs in Halobacterium salinarum NRC-1 to their fitness landscapes, functional hierarchies, and genetic interactions across 2488 experiments covering combinatorial variations in salt, pH, temperature, and Cu stress. This systems analysis has revealed an elegant scheme in which completely novel fitness landscapes are generated by gene conversion events that introduce subtle changes to the regulation or physical interactions of duplicated TFBs. Based on these insights, we have introduced a synthetically redesigned TFB and altered the regulation of existing TFBs to illustrate how archaea can rapidly generate novel phenotypes by simply reprogramming their TFB regulatory network.
Collapse
Affiliation(s)
| | - David J Reiss
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | | | - Wan Lin Su
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | - Min Pan
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Nitin S Baliga
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Biology, Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Abstract
Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression.
Collapse
|
18
|
Abstract
To elucidate the mechanism of transcription by cellular RNA polymerases (RNAPs), high-resolution X-ray crystal structures together with structure-guided biochemical, biophysical, and genetics studies are essential. The recently solved X-ray crystal structures of archaeal RNAP allow a structural comparison of the transcription machinery among all three domains of life. The archaea were once thought of closely related to bacteria, but they are now considered to be more closely related to the eukaryote at the molecular level than bacteria. According to these structures, the archaeal transcription apparatus, which includes RNAP and general transcription factors (GTFs), is similar to the eukaryotic transcription machinery. Yet, the transcription regulators, activators and repressors, encoded by archaeal genomes are closely related to bacterial factors. Therefore, archaeal transcription appears to possess an intriguing hybrid of eukaryotic-type transcription apparatus and bacterial-like regulatory mechanisms. Elucidating the transcription mechanism in archaea, which possesses a combination of bacterial and eukaryotic transcription mechanisms that are commonly regarded as separate and mutually exclusive, can provide data that will bring basic transcription mechanisms across all life forms.
Collapse
Affiliation(s)
- Sung-Hoon Jun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
19
|
Functional analysis of the three TATA binding protein homologs in Methanosarcina acetivorans. J Bacteriol 2010; 192:1511-7. [PMID: 20081030 DOI: 10.1128/jb.01165-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of three TATA binding protein (TBP) homologs (TBP1, TBP2, and TBP3) in the archaeon Methanosarcina acetivorans were investigated by using genetic and molecular approaches. Although tbp2 and tbp3 deletion mutants were readily obtained, a tbp1 mutant was not obtained, and the growth of a conditional tbp1 expression strain was tetracycline dependent, indicating that TBP1 is essential. Transcripts of tbp1 were 20-fold more abundant than transcripts of tbp2 and 100- to 200-fold more abundant than transcripts of tbp3, suggesting that TBP1 is the primary TBP utilized during growth. Accordingly, tbp1 is strictly conserved in the genomes of Methanosarcina species. Deltatbp3 and Deltatbp2 strains exhibited an extended lag phase compared with the wild type, although the lag phase for the Deltatbp2 strain was less pronounced when this strain was transitioning from growth on methylotrophic substrates to growth on acetate. Acetate-adapted Deltatbp3 cells exhibited growth rates, final growth yields, and lag times that were significantly reduced compared with those of the wild type when the organisms were cultured with growth-limiting concentrations of acetate, and the acetate-adapted Deltatbp2 strain exhibited a final growth yield that was reduced compared with that of the wild type when the organisms were cultured with growth-limiting acetate concentrations. DNA microarray analyses identified 92 and 77 genes with altered transcription in the Deltatbp2 and Deltatbp3 strains, respectively, which is consistent with a role for TBP2 and TBP3 in optimizing gene expression. Together, the results suggest that TBP2 and TBP3 are required for efficient growth under conditions similar to the conditions in the native environment of M. acetivorans.
Collapse
|
20
|
|
21
|
Kassavetis GA, Prakash P, Shim E. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J Biol Chem 2009; 285:2695-706. [PMID: 19940126 DOI: 10.1074/jbc.m109.074013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C53 and C37 subunits of RNA polymerase III (pol III) form a subassembly that is required for efficient termination; pol III lacking this subcomplex displays increased processivity of RNA chain elongation. We show that the C53/C37 subcomplex additionally plays a role in formation of the initiation-ready open promoter complex similar to that of the Brf1 N-terminal zinc ribbon domain. In the absence of C53 and C37, the transcription bubble fails to stably propagate to and beyond the transcriptional start site even when the DNA template is supercoiled. The C53/C37 subcomplex also stimulates the formation of an artificially assembled elongation complex from its component DNA and RNA strands. Protein-RNA and protein-DNA photochemical cross-linking analysis places a segment of C53 close to the RNA 3' end and transcribed DNA strand at the catalytic center of the pol III elongation complex. We discuss the implications of these findings for the mechanism of transcriptional termination by pol III and propose a structural as well as functional correspondence between the C53/C37 subcomplex and the RNA polymerase II initiation factor TFIIF.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
22
|
Hirata A, Murakami KS. Archaeal RNA polymerase. Curr Opin Struct Biol 2009; 19:724-31. [PMID: 19880312 DOI: 10.1016/j.sbi.2009.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/21/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
The recently solved X-ray crystal structures of archaeal RNA polymerase (RNAP) allow a structural comparison of the transcription machinery among all three domains of life. Archaeal transcription is very simple and all components, including the structures of general transcription factors and RNAP, are highly conserved in eukaryotes. Therefore, it could be a new model for the dissection of the eukaryotic transcription apparatus. The archaeal RNAP structure also provides a framework for addressing the functional role that Fe-S clusters play within the transcription machinery of archaea and eukaryotes. A comparison between bacterial and archaeal open complex models reveals likely key motifs of archaeal RNAP for DNA unwinding during the open complex formation.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
23
|
Peng N, Xia Q, Chen Z, Liang YX, She Q. An upstream activation element exerting differential transcriptional activation on an archaeal promoter. Mol Microbiol 2009; 74:928-39. [PMID: 19818017 DOI: 10.1111/j.1365-2958.2009.06908.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microorganisms can utilize different sugars as energy and carbon sources and the genes involved in sugar metabolism often exhibit highly regulated expression. To study cis-acting elements controlling arabinose-responsive expression in archaea, the promoter of the Sulfolobus solfataricus araS gene encoding an arabinose binding protein was characterized using an Sulfolobus islandicus reporter gene system. The minimal active araS promoter (P(araS)) was found to be 59 nucleotides long and harboured four promoter elements: an ara-box, an upstream transcription factor B-responsive element (BRE), a TATA-box and a proximal promoter element, each of which contained important nucleotides that either greatly decreased or completely abolished promoter activity upon mutagenesis. The basal araS promoter was virtually inactive due to intrinsically weak BRE element, and the upstream activating sequence (UAS) ara-box activated the basal promoter by recruiting transcription factor B to its BRE. While this UAS ensured a general expression from an inactive or weak basal promoter in the presence of other tested carbon resources, it exhibited a strong arabinose-responsive transcriptional activation. To our knowledge, this represents the first example of an archaeal UAS that exhibits differential activation to the expression on the same promoter in the presence of different carbon sources.
Collapse
Affiliation(s)
- Nan Peng
- State key laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
24
|
Paytubi S, White MF. The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription. Mol Microbiol 2009; 72:1487-99. [PMID: 19460096 DOI: 10.1111/j.1365-2958.2009.06737.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcription initiation factor B (TFB) is conserved in eukaryotes and archaea and has an essential role in the recruitment of RNA polymerase to the promoter and the initiation of transcription. The genome of Sulfolobus solfataricus and related crenarchaea contain three paralogues of the tfb gene. Two of them (tfb1 and tfb2) encode full-length TFB proteins. The third (tfb3) is significantly shorter than the other two, possessing an N-terminal Zn ribbon domain but lacking the B-finger and DNA binding domains. In S. solfataricus and Sulfolobus acidocaldarius, tfb3 is one of the most highly upregulated transcripts following exposure to UV irradiation. We demonstrate that S. solfataricus TFB3 binds to the RpoK subunit of RNA polymerase, an interaction dependent on the Zn ribbon motif of TFB3. TFB3 can also interact with the ternary complex of TBP and TFB1 bound to a DNA promoter. TFB3 stimulates transcription in vitro from several promoters in the presence of TFB1 and TBP. These observations are consistent with a model whereby TFB3 activates general transcription in trans, via an interaction with RNA polymerase in the pre-initiation complex. This could provide a mechanism for the modulation of transcription initiation in response to environmental stresses, such as DNA damage.
Collapse
Affiliation(s)
- Sonia Paytubi
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
25
|
Hirata A, Kanai T, Santangelo TJ, Tajiri M, Manabe K, Reeve JN, Imanaka T, Murakami KS. Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. Mol Microbiol 2008; 70:623-33. [PMID: 18786148 PMCID: PMC3737576 DOI: 10.1111/j.1365-2958.2008.06430.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All archaeal genomes encode RNA polymerase (RNAP) subunits E and F that share a common ancestry with the eukaryotic RNAP subunits A43 and A14 (Pol I), Rpb7 and Rpb4 (Pol II), and C25 and C17 (Pol III). By gene replacement, we have isolated archaeal mutants of Thermococcus kodakarensis with the subunit F-encoding gene (rpoF) deleted, but we were unable to isolate mutants lacking the subunit E-encoding gene (rpoE). Wild-type T. kodakarensis grows at temperatures ranging from 60 degrees C to 100 degrees C, optimally at 85 degrees C, and the DeltarpoF cells grew at the same rate as wild type at 70 degrees C, but much slower and to lower cell densities at 85 degrees C. The abundance of a chaperonin subunit, CpkB, was much reduced in the DeltarpoF strain growing at 85 degrees C and increased expression of cpkB, rpoF or rpoE integrated at a remote site in the genome, using a nutritionally regulated promoter, improved the growth of DeltarpoF cells. RNAP preparations purified from DeltarpoF cells lacked subunit F and also subunit E and a transcription factor TFE that co-purifies with RNAP from wild-type cells, but in vitro, this mutant RNAP exhibited no discernible differences from wild-type RNAP in promoter-dependent transcription, abortive transcript synthesis, transcript elongation or termination.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | - Momoko Tajiri
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kenji Manabe
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - John N. Reeve
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Tadayuki Imanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|