1
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
2
|
Distinct Interaction Mechanism of RNAP and ResD and Distal Subsites for Transcription Activation of Nitrite Reductase in Bacillus subtilisψ. J Bacteriol 2021; 204:e0043221. [PMID: 34898263 DOI: 10.1128/jb.00432-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis. The nasD operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the nasD operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for nasD transcription. Full transcriptional activation requires the upstream promoter region where five molecules of ResD bind. The distal ResD-binding subsite at -87 to -84 partially overlaps a sequence similar to the consensus distal subsite of the upstream (UP) element with which the Escherichia coli C-terminal domain of the α subunit (αCTD) of RNAP interacts to stimulate transcription. We propose that interaction between αCTD and ResD at the promoter-distal site is essential for stimulating nasD transcription. Although nasD has an extended -10 promoter, it lacks a reasonable -35 element. Genetic analysis and structural simulations predicted that the absence of the -35 element might be compensated by interactions between σA and αCTD, and between αCTD and ResD at the promoter-proximal ResD-binding subsite. Thus, our work suggested that ResD likely participates in nasD transcription activation by binding to two αCTD subunits at the proximal and distal promoter sites, representing a unique configuration for transcription activation. IMPORTANCE A significant number of ResD-controlled genes have been identified and transcription regulatory pathways in which ResD participates have emerged. Nevertheless, the mechanism of how ResD activates transcription of different genes in a nucleotide sequence-specific manner has been less explored. This study suggested that among the five ResD-binding subsites in the promoter of the nasD operon, the promoter-proximal and -distal ResD-binding subsites play important roles in nasD activation by adapting different modes of protein-protein and protein-DNA interactions. The finding of a new-type of protein-promoter architecture provides insight into the understanding of transcription activation mechanisms controlled by transcription factors including the ubiquitous response regulators of two-component regulatory systems particularly in Gram-positive bacteria.
Collapse
|
3
|
Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms 2021; 9:microorganisms9102030. [PMID: 34683351 PMCID: PMC8540375 DOI: 10.3390/microorganisms9102030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
The lipopeptide produced by microorganisms is one of the representative biosurfactants and is characterized as a series of structural analogues of different families. Thirty-four families covering about 300 lipopeptide compounds have been reported in the last decades, and most of the reported lipopeptides produced by microorganisms were under aerobic conditions. The lipopeptide-producing strains under anaerobic conditions have attracted much attention from both the academic and industrial communities, due to the needs and the challenge of their applications in anaerobic environments, such as in oil reservoirs and in microbial enhanced oil recovery (MEOR). In this review, the fifty-eight reported bacterial strains, mostly isolated from oil reservoirs and dominated by the species Bacillus subtilis, producing lipopeptide biosurfactants, and the species Pseudomonas aeruginosa, producing glycolipid biosurfactants under anaerobic conditions were summarized. The metabolic pathway and the non-ribosomal peptide synthetases (NRPSs) of the strain Bacillus subtilis under anaerobic conditions were analyzed, which is expected to better understand the key mechanisms of the growth and production of lipopeptide biosurfactants of such kind of bacteria under anaerobic conditions, and to expand the industrial application of anaerobic biosurfactant-producing bacteria.
Collapse
|
4
|
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 2018; 115:2541-2553. [PMID: 29940069 DOI: 10.1002/bit.26774] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 μmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Penghui He
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyi Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Fei Mo
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, School of food and biological engineering, Hubei University of Technology, Wuhan, China
| | - Qin Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Christopher T Nomura
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry (SUNY ESF), Iowa State University, Syracuse, New York
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
5
|
Cai D, Hu S, Chen Y, Liu L, Yang S, Ma X, Chen S. Enhanced Production of Poly-γ-glutamic acid by Overexpression of the Global Anaerobic Regulator Fnr in Bacillus licheniformis WX-02. Appl Biochem Biotechnol 2018; 185:958-970. [PMID: 29388009 DOI: 10.1007/s12010-018-2693-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Poly-γ-glutamic acid is a multi-functional biopolymer with various applications. ATP supply plays an important role in poly-γ-glutamic acid (γ-PGA) synthesis. Global anaerobic regulator Fnr plays a key role in anaerobic adaptation and nitrate respiration, which might affect ATP generation during γ-PGA synthesis. In this study, we have improved γ-PGA production by overexpression of Fnr in Bacillus licheniformis WX-02. First, the gene fnr was knocked out in WX-02, and the γ-PGA yields have no significant differences between WX-02 and the fnr-deficient strain WXΔfnr in the medium without nitrate (BFC medium). However, the γ-PGA yield of 8.95 g/L, which was produced by WXΔfnr in the medium with nitrate addition (BFCN medium), decreased by 74% compared to WX-02 (34.53 g/L). Then, the fnr complementation strain WXΔfnr/pHY-fnr restored the γ-PGA synthesis capability, and γ-PGA yield was increased by 13% in the Fnr overexpression strain WX/pHY-fnr (39.96 g/L) in BFCN medium, compared to WX/pHY300 (35.41 g/L). Furthermore, the transcriptional levels of narK, narG, and hmp were increased by 5.41-, 4.93-, and 3.93-fold in WX/pHY-fnr, respectively, which led to the increases of nitrate consumption rate and ATP supply for γ-PGA synthesis. Collectively, Fnr affects γ-PGA synthesis mainly through manipulating the expression level of nitrate metabolism, and this study provides a novel strategy to improve γ-PGA production by overexpression of Fnr.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiying Hu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Liu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shihui Yang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
6
|
Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by In Vivo Footprinting. J Bacteriol 2017; 199:JB.00086-17. [PMID: 28439033 DOI: 10.1128/jb.00086-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Upon oxygen limitation, the Bacillus subtilis ResE sensor kinase and its cognate ResD response regulator play primary roles in the transcriptional activation of genes functioning in anaerobic respiration. The nitric oxide (NO)-sensitive NsrR repressor controls transcription to support nitrate respiration. In addition, the ferric uptake repressor (Fur) can modulate transcription under anaerobic conditions. However, whether these controls are direct or indirect has been investigated only in a gene-specific manner. To gain a genomic view of anaerobic gene regulation, we determined the genome-wide in vivo DNA binding of ResD, NsrR, and Fur transcription factors (TFs) using in situ DNase I footprinting combined with chromatin affinity precipitation sequencing (ChAP-seq; genome footprinting by high-throughput sequencing [GeF-seq]). A significant number of sites were targets of ResD and NsrR, and a majority of them were also bound by Fur. The binding of multiple TFs to overlapping targets affected each individual TF's binding, which led to combinatorial transcriptional control. ResD bound to both the promoters and the coding regions of genes under its positive control. Other genes showing enrichment of ResD at only the promoter regions are targets of direct ResD-dependent repression or antirepression. The results support previous findings of ResD as an RNA polymerase (RNAP)-binding protein and indicated that ResD can associate with the transcription elongation complex. The data set allowed us to reexamine consensus sequence motifs of Fur, ResD, and NsrR and uncovered evidence that multiple TGW (where W is A or T) sequences surrounded by an A- and T-rich sequence are often found at sites where all three TFs competitively bind.IMPORTANCE Bacteria encounter oxygen fluctuation in their natural environment as well as in host organisms. Hence, understanding how bacteria respond to oxygen limitation will impact environmental and human health. ResD, NsrR, and Fur control transcription under anaerobic conditions. This work using in situ DNase I footprinting uncovered the genome-wide binding profile of the three transcription factors (TFs). Binding of the TFs is often competitive or cooperative depending on the promoters and the presence of other TFs, indicating that transcriptional regulation by multiple TFs is much more complex than we originally thought. The results from this study provide a more complete picture of anaerobic gene regulation governed by ResD, NsrR, and Fur and contribute to our further understanding of anaerobic physiology.
Collapse
|
7
|
Duport C, Jobin M, Schmitt P. Adaptation in Bacillus cereus: From Stress to Disease. Front Microbiol 2016; 7:1550. [PMID: 27757102 PMCID: PMC5047918 DOI: 10.3389/fmicb.2016.01550] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease.
Collapse
Affiliation(s)
- Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Michel Jobin
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Philippe Schmitt
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| |
Collapse
|
8
|
Böhm ME, Krey VM, Jeßberger N, Frenzel E, Scherer S. Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus hbl and nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity. Front Microbiol 2016; 7:768. [PMID: 27252687 PMCID: PMC4877379 DOI: 10.3389/fmicb.2016.00768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022] Open
Abstract
Bacillus cereus is a food contaminant with greatly varying enteropathogenic potential. Almost all known strains harbor the genes for at least one of the three enterotoxins Nhe, Hbl, and CytK. While some strains show no cytotoxicity, others have caused outbreaks, in rare cases even with lethal outcome. The reason for these differences in cytotoxicity is unknown. To gain insight into the origin of enterotoxin expression heterogeneity in different strains, the architecture and role of 5′ intergenic regions (5′ IGRs) upstream of the nhe and hbl operons was investigated. In silico comparison of 142 strains of all seven phylogenetic groups of B. cereus sensu lato proved the presence of long 5′ IGRs upstream of the nheABC and hblCDAB operons, which harbor recognition sites for several transcriptional regulators, including the virulence regulator PlcR, redox regulators ResD and Fnr, the nutrient-sensitive regulator CodY as well as the master regulator for biofilm formation SinR. By determining transcription start sites, unusually long 5′ untranslated regions (5′ UTRs) upstream of the nhe and hbl start codons were identified, which are not present upstream of cytK-1 and cytK-2. Promoter fusions lacking various parts of the nhe and hbl 5′ UTR in B. cereus INRA C3 showed that the entire 331 bp 5′ UTR of nhe is necessary for full promoter activity, while the presence of the complete 606 bp hbl 5′ UTR lowers promoter activity. Repression was caused by a 268 bp sequence directly upstream of the hbl transcription start. Luciferase activity of reporter strains containing nhe and hbl 5′ IGR lux fusions provided evidence that toxin gene transcription is upregulated by the depletion of free amino acids. Electrophoretic mobility shift assays showed that the branched-chain amino acid sensing regulator CodY binds to both nhe and hbl 5′ UTR downstream of the promoter, potentially acting as a nutrient-responsive roadblock repressor of toxin gene transcription. PlcR binding sites are highly conserved among all B. cereus sensu lato strains, indicating that this regulator does not significantly contribute to the heterogeneity in virulence potentials. The CodY recognition sites are far less conserved, perhaps conferring varying strengths of CodY binding, which might modulate toxin synthesis in a strain-specific manner.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Viktoria M Krey
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Nadja Jeßberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim Germany
| | - Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| |
Collapse
|
9
|
Hämmerle H, Amman F, Večerek B, Stülke J, Hofacker I, Bläsi U. Impact of Hfq on the Bacillus subtilis transcriptome. PLoS One 2014; 9:e98661. [PMID: 24932523 PMCID: PMC4059632 DOI: 10.1371/journal.pone.0098661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/05/2014] [Indexed: 01/24/2023] Open
Abstract
The RNA chaperone Hfq acts as a central player in post-transcriptional gene regulation in several Gram-negative Bacteria, whereas comparatively little is known about its role in Gram-positive Bacteria. Here, we studied the function of Hfq in Bacillus subtilis, and show that it confers a survival advantage. A comparative transcriptome analysis revealed mRNAs with a differential abundance that are governed by the ResD-ResE system required for aerobic and anaerobic respiration. Expression of resD was found to be up-regulated in the hfq- strain. Furthermore, several genes of the GerE and ComK regulons were de-regulated in the hfq- background. Surprisingly, only six out of >100 known and predicted small RNAs (sRNAs) showed altered abundance in the absence of Hfq. Moreover, Hfq positively affected the transcript abundance of genes encoding type I toxin-antitoxin systems. Taken the moderate effect on sRNA levels and mRNAs together, it seems rather unlikely that Hfq plays a central role in RNA transactions in Bacillus subtilis.
Collapse
Affiliation(s)
- Hermann Hämmerle
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Branislav Večerek
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
10
|
Abstract
The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes. During adaptation, oxygen depletion is sensed by the [4Fe-4S](2+) cluster containing Fnr and the two-component regulatory system ResDE consisting of the membrane-bound histidine kinase ResE and the cytoplasmic ResD regulator. Nitric oxide is the signal recognized by NsrR. Acetate formation and decreasing pH are measured via AlsR. Finally, Rex is responding to changes in the cellular NAD(+)/NADH ration. The fine-tuned interplay of these regulators at approximately 400 target gene promoters ensures efficient adaptation of the B. subtilis physiology.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| | | |
Collapse
|
11
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
12
|
Abstract
The NO-sensitive NsrR repressor of Bacillus subtilis, which carries a [4Fe-4S] cluster, controls transcription of nasD and hmp (class I regulation) under anaerobic conditions. Here, we describe another class of NsrR regulation (class II regulation) that controls a more diverse collection of genes. Base substitution analysis showed that [4Fe-4S]-NsrR recognizes a partial dyad symmetry within the class I cis-acting sites, whereas NO-insensitive interaction of NsrR with an A+T-rich class II regulatory site showed relaxed sequence specificity. Genome-wide transcriptome studies identified genes that are under the control of the class II NsrR regulation. The class II NsrR regulon includes genes controlled by both AbrB and Rok repressors, which also recognize A+T-rich sequences, and by the Fur repressor. Transcription of class II genes was elevated in an nsrR mutant during anaerobic fermentative growth with pyruvate. Although NsrR binding to the class II regulatory sites was NO insensitive in vitro, transcription of class II genes was moderately induced by NO, which involved reversal of NsrR-dependent repression, suggesting that class II repression is also NO sensitive. In all NsrR-repressed genes tested, the loss of NsrR repressor activity was not sufficient to induce transcription as induction required the ResD response regulator. The ResD-ResE signal transduction system is essential for activation of genes involved in aerobic and anaerobic respiration. This study indicated coordinated regulation between ResD and NsrR and uncovered a new role of ResD and NsrR in transcriptional regulation during anaerobiosis of B. subtilis.
Collapse
|
13
|
Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis. Appl Microbiol Biotechnol 2011; 93:2051-62. [PMID: 22120623 DOI: 10.1007/s00253-011-3719-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/26/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
Abstract
Listeria monocytogenes is a ubiquitous food-borne pathogen, whose distribution and survival in food-processing environments are associated with the ability to form biofilms. The process of biofilm formation is complex and its molecular mechanism is relatively poorly understood in L. monocytogenes. To better understand the genetics of this process, a mariner-based transposon mutagenesis strategy was used to identify genes involved in biofilm formation of L. monocytogenes. A library of 6,500 mutant colonies was screened for reduced biofilm formation using a microtiter plate biofilm assay. Forty biofilm-deficient mutants of L. monocytogenes were identified based on DNA sequences of the transposon-flanking regions and Southern hybridization with a transposon-based probe. The insertions harbored by these mutants led to the identification of 24 distinct loci, 18 of which, to our knowledge, have not been previously reported to function in the biofilm formation in L. monocytogenes. Genetic complementation confirmed the importance of lmo1386, a gene encoding a putative DNA translocase, for biofilm formation. Molecular analyses of mutants indicated that the majority of the 24 identified genes are related to flagella motility, gene regulation, and cell surface structures.
Collapse
|
14
|
Kommineni S, Yukl E, Hayashi T, Delepine J, Geng H, Moënne-Loccoz P, Nakano MM. Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter. Mol Microbiol 2010; 78:1280-93. [PMID: 21091510 DOI: 10.1111/j.1365-2958.2010.07407.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NsrR is a nitric oxide (NO)-sensitive transcription repressor that controls NO metabolism in a wide range of bacteria. In Bacillus subtilis, NsrR represses transcription of the nitrite reductase (nasDEF) genes that are under positive control of the ResD-ResE two-component signal transduction system. Derepression is achieved by reaction of NO with NsrR. Unlike some NsrR orthologues that were shown to contain a NO-sensitive [2Fe-2S] cluster, B. subtilis NsrR, when purified anaerobically either from aerobic or from anaerobic Escherichia coli and B. subtilis cultures, contains a [4Fe-4S] cluster. [4Fe-4S]-NsrR binds around the -35 element of the nasD promoter with much higher affinity than apo-NsrR and binding of [4Fe-4S]-NsrR, but not apo-protein, is sensitive to NO. RNA polymerase and phosphorylated ResD make a ternary complex at the nasD promoter and NsrR dissociates the preformed ternary complex. In addition to the -35 region, NsrR binds to two distinct sites of the upstream regulatory region where ResD also binds. These interactions, unlike the high-affinity site binding, do not depend on the NsrR [4Fe-4S] cluster and binding is not sensitive to NO, suggesting a role for apo-NsrR in transcriptional regulation.
Collapse
Affiliation(s)
- Sushma Kommineni
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, 20000 NW Walker Road, Beaverton, OR 97006, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Identification of the sequences recognized by the Bacillus subtilis response regulator YclJ. Arch Microbiol 2010; 192:569-80. [PMID: 20512483 DOI: 10.1007/s00203-010-0586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
The Bacillus subtilis yclJ gene encodes an OmpR-type response regulator of a two-component regulatory system with unknown function. A previous DNA microarray experiment suggested that multicopy yclJ greatly enhances the expression of several operons in a cognate kinase (YclK)-deficient strain. To confirm this, lacZ fusion analysis was performed in the yclK background with overexpressed yclJ. As a result, yclHI, ykcBC, and yngABC were indeed positively regulated by YclJ. Gel retardation and DNase I footprint analyses revealed that YclJ binds to the promoter regions of yclHI, ykcBC, and yngABC. Nucleotide sequence analysis of the binding regions suggested that YclJ recognizes a direct repeat of the consensus sequence TTCATANTTT, the upstream half of which has close similarity to the consensus binding sequence of the other OmpR family response regulator PhoP. LacZ fusion analysis of the control region of yngA with deletion or point mutation confirmed that the YclJ-binding sequence is required for the YclJ-mediated activation of yngA. Furthermore, we identified two more YclJ-regulated genes, yycA and yfjR, using bioinformatic analysis of the B. subtilis genome, and it was shown that YclJ binds to those promoters and controls the expression of those genes.
Collapse
|
16
|
Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV. Stress sensors and signal transducers in cyanobacteria. SENSORS (BASEL, SWITZERLAND) 2010; 10:2386-415. [PMID: 22294932 PMCID: PMC3264485 DOI: 10.3390/s100302386] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/15/2010] [Accepted: 03/03/2010] [Indexed: 11/17/2022]
Abstract
In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks), 12 genes for serine-threonine protein kinases (Spks), 42 genes for response regulators (Rres), seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress.
Collapse
Affiliation(s)
- Dmitry A. Los
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Anna Zorina
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Maria Sinetova
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Sergey Kryazhov
- Department of Genetics, Faculty of Biology, Moscow State University, Moscow, Russia; E-Mails: (S.K.); (V.V.Z.)
| | - Kirill Mironov
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Vladislav V. Zinchenko
- Department of Genetics, Faculty of Biology, Moscow State University, Moscow, Russia; E-Mails: (S.K.); (V.V.Z.)
| |
Collapse
|
17
|
ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: evidence for multiple modes of binding for ResD and interaction with Fnr. J Bacteriol 2009; 191:4419-26. [PMID: 19395489 DOI: 10.1128/jb.00321-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the food-borne pathogen Bacillus cereus F4430/73, the production of major virulence factors hemolysin BL (Hbl) and nonhemolytic enterotoxin (Nhe) is regulated through complex mechanisms. The two-component regulatory system ResDE is involved in the activation of hbl and nhe transcription. Here, the response regulator ResD and the sensor kinase ResE were overexpressed and purified, and autophosphorylation of ResE and transphosphorylation of ResD by ResE were demonstrated in vitro. ResD is mainly monomeric in solution, regardless of its phosphorylation state. ResD was shown to interact directly with promoter regions (p) of the enterotoxin regulator genes resDE, fnr, and plcR and the enterotoxin structural genes nhe and hbl, but with different affinities. Binding of ResD to pplcR, pnhe, and phbl was not dependent on the ResD phosphorylation status. In contrast, ResD phosphorylation significantly increased interactions between ResD and presDE and pfnr. Taken together, these results showed that phosphorylation of ResD results in a different target expression pattern. Furthermore, ResD and the redox activator Fnr were found to physically interact and simultaneously bind their target DNAs. We propose that unphosphorylated ResD acts as an antiactivator of Fnr, while phosphorylated ResD acts as a coactivator of Fnr. Finally, our findings represent the first molecular evidence of the role of ResDE as a sentinel system capable of sensing redox changes and coordinating a response that modulates B. cereus virulence.
Collapse
|
18
|
Seino Y, Takahashi T, Hihara Y. The response regulator RpaB binds to the upstream element of photosystem I genes to work for positive regulation under low-light conditions in Synechocystis sp. Strain PCC 6803. J Bacteriol 2009; 191:1581-6. [PMID: 19074384 PMCID: PMC2648220 DOI: 10.1128/jb.01588-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 12/05/2008] [Indexed: 11/20/2022] Open
Abstract
The coordinated high-light response of genes encoding subunits of photosystem I (PSI) is achieved by the AT-rich region located just upstream of the core promoter in Synechocystis sp. strain PCC 6803. The upstream element enhances the basal promoter activity under low-light conditions, whereas this positive regulation is lost immediately after the shift to high-light conditions. In this study, we focused on a high-light regulatory 1 (HLR1) sequence included in the upstream element of every PSI gene examined. A gel mobility shift assay revealed that a response regulator RpaB binds to the HLR1 sequence in PSI promoters. Base substitution in the HLR1 sequence or decrease in copy number of the rpaB gene resulted in decrease in the promoter activity of PSI genes under low-light conditions. These observations suggest that RpaB acts as a transcriptional activator for PSI genes. It is likely that RpaB binds to the HLR1 sequence under low-light conditions and works for positive regulation of PSI genes and for negative regulation of high-light-inducible genes depending on the location of the HLR1 sequence within target promoters.
Collapse
Affiliation(s)
- Yurie Seino
- Department of Biochemistry and Molecular Biology, Saitama University, Japan
| | | | | |
Collapse
|
19
|
de Been M, Bart MJ, Abee T, Siezen RJ, Francke C. The identification of response regulator-specific binding sites reveals new roles of two-component systems in Bacillus cereus and closely related low-GC Gram-positives. Environ Microbiol 2008; 10:2796-809. [PMID: 18662309 DOI: 10.1111/j.1462-2920.2008.01700.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In bacteria, environmental challenges are often translated into a transcriptional response via the cognate response regulators (RRs) of specialized two-component systems (TCSs). A phylogenetic footprinting/shadowing approach was designed and used to identify many novel RR-specific operators for species of the Bacillus cereus group and related Gram-positives. Analysis of the operator sequences revealed characteristic traits for each RR subfamily. For instance, operators related to the largest subfamily (OmpR) typically consisted of direct repeats (e.g. TTAAGA-N5-TTAAGA), whereas operators related to the second largest family (NarL) consisted of inverted repeats (e.g. ATGACA-N2-TGTCAT). This difference indicates a fundamentally different organization of the bound RR dimers between the two subfamilies. Moreover, the identification of the specific operator motifs allowed relating several RRs to a minimal regulon and thereby to a characteristic transcriptional response. Mostly, these regulons comprised genes encoding transport systems, suggesting a direct coupling of stimulus perception to the transport of target compounds. New biological roles could be attributed to various TCSs, including roles in cytochrome c biogenesis (HssRS), transport of carbohydrates, peptides and/or amino acids (YkoGH, LytSR), and resistance to toxic ions (LiaSR), antimicrobial peptides (BceRS) and beta-lactam antibiotics (BacRS, YcbLM). As more and more bacterial genome sequences are becoming available, the use of comparative analyses such as the approach applied in this study will further increase our knowledge of bacterial signal transduction mechanisms and provide directions for the assessment of their role in bacterial performance and survival strategies.
Collapse
Affiliation(s)
- Mark de Been
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Geng H, Zuber P, Nakano MM. Regulation of respiratory genes by ResD-ResE signal transduction system in Bacillus subtilis. Methods Enzymol 2008; 422:448-64. [PMID: 17628154 DOI: 10.1016/s0076-6879(06)22023-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Successful respiration in Bacillus subtilis using oxygen or nitrate as the terminal electron acceptor requires the ResD-ResE signal transduction system. Although transcription of ResDE-controlled genes is induced at the stationary phase of aerobic growth, it is induced to a higher extent upon oxygen limitation. Furthermore, maximal transcriptional activation requires not only oxygen limitation, but also nitric oxide (NO). Oxygen limitation likely results in conversion of the ResE sensor kinase activity from a phosphatase-dominant to a kinase-dominant mode. In addition, low oxygen levels promote the production and maintenance of NO during nitrate respiration, which leads to elimination of the repression exerted by the NO-sensitive transcriptional regulator NsrR. ResD, after undergoing ResE-mediated phosphorylation, interacts with the C-terminal domain of the alpha subunit of RNA polymerase to activate transcription initiation at ResDE-controlled promoters.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental System, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | |
Collapse
|
21
|
Puri-Taneja A, Schau M, Chen Y, Hulett FM. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. J Bacteriol 2007; 189:3348-58. [PMID: 17322317 PMCID: PMC1855890 DOI: 10.1128/jb.00050-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cydABCD operon of Bacillus subtilis encodes products required for the production of cytochrome bd oxidase. Previous work has shown that one regulatory protein, YdiH (Rex), is involved in the repression of this operon. The work reported here confirms the role of Rex in the negative regulation of the cydABCD operon. Two additional regulatory proteins for the cydABCD operon were identified, namely, ResD, a response regulator involved in the regulation of respiration genes, and CcpA, the carbon catabolite regulator protein. ResD, but not ResE, was required for full expression of the cydA promoter in vivo. ResD binding to the cydA promoter between positions -58 and -107, a region which includes ResD consensus binding sequences, was not enhanced by phosphorylation. A ccpA mutant had increased expression from the full-length cydA promoter during stationary growth compared to the wild-type strain. Maximal expression in a ccpA mutant was observed from a 3'-deleted cydA promoter fusion that lacked the Rex binding region, suggesting that the effect of the two repressors, Rex and CcpA, was cumulative. CcpA binds directly to the cydA promoter, protecting the region from positions -4 to -33, which contains sequences similar to the CcpA consensus binding sequence, the cre box. CcpA binding was enhanced upon addition of glucose-6-phosphate, a putative cofactor for CcpA. Mutation of a conserved residue in the cre box reduced CcpA binding 10-fold in vitro and increased cydA expression in vivo. Thus, CcpA and ResD, along with the previously identified cydA regulator Rex (YdiH), affect the expression of the cydABCD operon. Low-level induction of the cydA promoter was observed in vivo in the absence of its regulatory proteins, Rex, CcpA, and ResD. This complex regulation suggests that the cydA promoter is tightly regulated to allow its expression only at the appropriate time and under the appropriate conditions.
Collapse
Affiliation(s)
- Ankita Puri-Taneja
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (M/C 567), Chicago, IL 60607, USA
| | | | | | | |
Collapse
|