1
|
Schulz V, Galea D, Schleuder G, Strohmeyer P, Große C, Herzberg M, Nies DH. The efflux system CdfX exports zinc that cannot be transported by ZntA in Cupriavidus metallidurans. J Bacteriol 2024; 206:e0029924. [PMID: 39475293 PMCID: PMC11580412 DOI: 10.1128/jb.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Cupriavidus metallidurans is able to survive exposure to high concentrations of transition metals, but is also able to grow under metal starvation conditions. A prerequisite of cellular zinc homeostasis is a flow equilibrium combining zinc uptake and efflux processes. The mutant strain ∆e4 of the parental plasmid-free strain AE104 with a deletion of all four chromosomally encoded genes of previously known efflux systems ZntA, CadA, DmeF, and FieF was still able to efflux zinc in a pulse-chase experiment, indicating the existence of a fifth efflux system. The gene cdfX, encoding a protein of the cation diffusion facilitator (CDF) family, is located in proximity to the cadA gene, encoding a P-type ATPase. Deletion of cdfX in the ∆e4 mutant resulted in a further decrease in zinc resistance. Pulse-chase experiments with radioactive 65Zn(II) and stable-isotope-enriched 67Zn(II) provided evidence that CdfX was responsible for the residual zinc efflux activity of the mutant strain ∆e4. Reporter gene fusions with cdfX-lacZ indicated that the MerR-type regulator ZntR, the main regulator of zntA expression, was responsible for zinc- and cadmium-dependent upregulation of cdfX expression, especially in mutant cells lacking one or both of the previously characterized efflux systems, ZntA and CadA. Expression of zntR also proved to be controlled by ZntR itself as well as by zinc and cadmium availability. These data indicate that the cdfX-cadA region provides C. metallidurans with a backup system for the zinc-cadmium-exporting P-type ATPase ZntA, with CdfX exporting zinc and CadA cadmium.IMPORTANCEBacteria have evolved the ability to supply the important trace element zinc to zinc-dependent proteins, despite external zinc concentrations varying over a wide range. Zinc homeostasis can be understood as adaptive layering of homeostatic systems, allowing coverage from extreme starvation to extreme resistance. Central to zinc homeostasis is a flow equilibrium of zinc comprising uptake and efflux reactions, which adjusts the cytoplasmic zinc content. This report describes what happens when an imbalance in zinc and cadmium concentrations impairs the central inner-membrane zinc efflux system for zinc by competitive inhibition for this exporter. The problem is solved by activation of Cd-exporting CadA or Zn-exporting CdfX as additional efflux systems.
Collapse
Affiliation(s)
- Vladislava Schulz
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Diana Galea
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Grit Schleuder
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Philipp Strohmeyer
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Cornelia Große
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| |
Collapse
|
2
|
Coimbra C, Morais PV, Branco R. Iron homeostasis as a cell detoxification mechanism in Mesorhizobium qingshengii J19 under yttrium exposure. Front Microbiol 2024; 15:1467386. [PMID: 39430103 PMCID: PMC11486727 DOI: 10.3389/fmicb.2024.1467386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Yttrium (Y), an important rare earth element (REE), is increasingly prevalent in the environment due to industrial activities, raising concerns about its toxicity. Understanding the effects of Y on microorganisms is essential for bioremediation and biorecovery processes. This study investigates how Mesorhizobium qingshengii J19, a strain with notable resistance to Y, manages iron homeostasis as a detoxifying mechanism under Y stress. Using comparative genomic and transcriptomic analyses, we explored the gene expression profile of strain J19 to identify the mechanisms underlying its high Y resistance and effective Y removal from the medium. Genome-wide transcriptional profiling revealed 127 significantly differentially expressed genes out of 6,343 under Y stress, with 36.2 % up-regulated and 63.8 % down-regulated. Notably, Y exposure significantly affects cellular iron homeostasis and activates arsenic detoxifying mechanisms. A key finding was the 7.6-fold up-regulation of a TonB transporter gene, indicating its crucial role in Y detoxification. Real-time PCR (RT-PCR) analysis of the selected gene confirmed the accuracy of RNA sequencing results. Further validation showed that iron supplementation mitigates Y-induced growth inhibition, leading to reduced ROS production in strain J19. This study elucidates the molecular mechanisms by which strain M. qingshengii J19 adapts to Y stress, emphasizing the importance of iron in controlling ROS and protecting against Y toxicity. It also highlights critical pathways and adaptive responses involved in the strain's resilience to metal stress.
Collapse
Affiliation(s)
| | - Paula V. Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, Coimbra, Portugal
| | | |
Collapse
|
3
|
Zhu X, Liang Z, Ma J, Huang J, Wang L, Yao H, Wu Z. The cadDX operon contributes to cadmium resistance, oxidative stress resistance, and virulence in zoonotic streptococci. Vet Res 2024; 55:119. [PMID: 39334407 PMCID: PMC11430099 DOI: 10.1186/s13567-024-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Mobile genetic elements (MGEs) enable bacteria to acquire novel genes and traits. However, the functions of cargo genes within MGEs remain poorly understood. The cadmium resistance operon cadDX is present in many gram-positive bacteria. Although cadDX has been reported to be involved in metal detoxification, its regulatory mechanisms and functions in bacterial pathogenesis are poorly understood. This study revealed that cadDX contributes to cadmium resistance, oxidative stress resistance, and virulence in Streptococcus suis, an important zoonotic pathogen in pigs and humans. CadX represses cadD expression by binding to the cadDX promoter. Notably, cadX responds to H2O2 stress through an additional promoter within the cadDX operon, mitigating the harmful effect of excessive cadD expression during oxidative stress. cadDX resides within an 11 K integrative and mobilizable element that can autonomously form circular structures. Moreover, cadDX is found in diverse MGEs, accounting for its widespread distribution across various bacteria, especially among pathogenic streptococci. Transferring cadDX into another zoonotic pathogen, Streptococcus agalactiae, results in similar phenotypes, including resistance to cadmium and oxidative stresses and increased virulence of S. agalactiae in mice. The new functions and regulatory mechanisms of cadDX shed light on the importance of the cadDX system in driving evolutionary adaptations and survival strategies across diverse gram-positive bacteria.
Collapse
Affiliation(s)
- Xinchi Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China.
- Guangdong Provincial Key Laboratory of Research On the Technology of Pig Breeding and Pig Disease Prevention, Guangzhou, 511400, China.
| |
Collapse
|
4
|
Chen C, Cui S, Guan J, Su Y, Liang X, Tian Y, Xie H. Investigation of the Role of a Zinc Uptake Regulator (Zur) in the Virulence of Pectobacterium odoriferum. Int J Mol Sci 2023; 24:9991. [PMID: 37373138 DOI: 10.3390/ijms24129991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Pectobacterium spp. infect many horticultural crops worldwide and lead to serious crop losses. Zinc-uptake-regulator (Zur) proteins are present widely in prokaryotes and play an important role in pathogenicity. To uncover the role of Zur in P. odoriferum, we constructed mutant (ΔZur) and overexpression [Po (Zur)] strains of a Zur, and a virulence assay showed that the Po (Zur) was of significantly lower virulence, while the ΔZur displayed significantly increased virulence on Chinese cabbage compared to their respective control strains, wild-type P. odoriferum (Po WT) and P. odoriferum harboring an empty vector (Po (EV)) (p < 0.05). The growth curves of the ΔZur and Po (Zur) showed no obvious differences from those of the control strains. Comparative transcriptome analysis showed that Zur overexpression in P. odoriferum induced differentially expressed genes (DEGs) related to flagellum and cell motility, while mutating Zur resulted in DEGs mainly corresponding to divalent-metal-ion transport and membrane transport. Phenotypic experiments on the Po (Zur) showed that flagellum numbers and cell motility were reduced in comparison with the control, while those of the ΔZur did not change. Collectively, these results show that the Zur negatively regulates the virulence of P. odoriferum and might function via a dual mechanism dependent on dose.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shuang Cui
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiantao Guan
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanyan Su
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xucong Liang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Tian
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Xie
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
5
|
Zheng C, Wei M, Qiu J, Jia M, Zhou X, Jiao X. TroR Negatively Regulates the TroABCD System and Is Required for Resistance to Metal Toxicity and Virulence in Streptococcus suis. Appl Environ Microbiol 2021; 87:e0137521. [PMID: 34378993 PMCID: PMC8478451 DOI: 10.1128/aem.01375-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen that causes severe swine and human infections. Metals are essential nutrients for life; however, excess metals are toxic to bacteria. Therefore, maintenance of intracellular metal homeostasis is important for bacterial survival. Here, we characterize a DtxR family metalloregulator, TroR, in S. suis. TroR is located upstream of the troABCD operon, whose expression was found to be significantly downregulated in response to excess manganese (Mn). Deletion of troR resulted in reduced growth when S. suis was cultured in metal-replete medium supplemented with elevated concentrations of zinc (Zn), copper (Cu), or cobalt (Co). Mn supplementation could alleviate the growth defects of the ΔtroR mutant under Zn and Co excess conditions; however, it impaired the growth of the wild-type (WT) and complemented (CΔtroR) strains under Cu excess conditions. The growth of ΔtroR was also inhibited in metal-depleted medium supplemented with elevated concentrations of Mn. Moreover, the ΔtroR mutant accumulated increased levels of intracellular Mn and Co, rather than Zn and Cu. Deletion of troR in S. suis led to significant upregulation of the troABCD operon. Furthermore, troA expression in the WT strain was induced by ferrous iron [Fe(II)] and Co and repressed by Mn and Cu; the repression of troA was mediated by TroR. Finally, TroR is required for S. suis virulence in an intranasal mouse model. Together, these data suggest that TroR is a negative regulator of the TroABCD system and contributes to resistance to metal toxicity and virulence in S. suis. IMPORTANCE Metals are essential nutrients for life; however, the accumulation of excess metals in cells can be toxic to bacteria. In the present study, we identified a metalloregulator, TroR, in Streptococcus suis, which is an emerging zoonotic pathogen. In contrast to the observations in other species that TroR homologs usually contribute to the maintenance of homeostasis of one or two metals, we demonstrated that TroR is required for resistance to the toxicity conferred by multiple metals in S. suis. We also found that deletion of troR resulted in significant upregulation of the troABCD operon, which has been demonstrated to be involved in manganese acquisition in S. suis. Moreover, we demonstrated that TroR is required for the virulence of S. suis in an intranasal mouse model. Collectively, these results suggest that TroR is a negative regulator of the TroABCD system and contributes to resistance to metal toxicity and virulence in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Kandari D, Joshi H, Tanwar N, Munde M, Bhatnagar R. Delineation of the Residues of Bacillus anthracis Zinc Uptake Regulator Protein Directly Involved in Its Interaction with Cognate DNA. Biol Trace Elem Res 2021; 199:3147-3158. [PMID: 33052530 DOI: 10.1007/s12011-020-02427-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Zinc uptake regulator (Zur) is a negative transcriptional regulator of bacteria that belongs to the FUR superfamily of proteins and regulates zinc (Zn) homeostasis under extreme Zn conditions. The Zur protein of Bacillus anthracis (BaZur) was though characterized previously, but the residues of this transcriptional regulator, crucial for binding to the consensus Zur box in the cognate DNA, remain unexplored. In this study, we reveal the essential residues of the protein that govern the specific interaction with the cognate DNA, through mutational and binding studies. In silico predicted model of the BaZur protein with the promoter region of one of the regulon candidates was utilized to identify specific residues of the N-terminal domain (NTD), constituting the DNA-binding recognition helix. Our results suggest that two phenylalanine residues, a non-polar aliphatic leucine and a positively charged arginine residue of NTD, are predominantly involved in DNA binding of BaZur. Among these, the arginine residue (Arg58) is conserved among all the Zur proteins and the two Phe residues, namely Phe53 and Phe63, are conserved in the Zur proteins of Staphylococcus aureus and Listeria monocytogenes. Taken together, the current study represents an in-depth investigation into the key DNA-binding residues involved in the BaZur-DNA interaction.
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neetu Tanwar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
- Banaras Hindu University, Banaras, Uttar Pradesh, 221005, India.
| |
Collapse
|
7
|
Liu F, Su Z, Chen P, Tian X, Wu L, Tang DJ, Li P, Deng H, Ding P, Fu Q, Tang JL, Ming Z. Structural basis for zinc-induced activation of a zinc uptake transcriptional regulator. Nucleic Acids Res 2021; 49:6511-6528. [PMID: 34048589 PMCID: PMC8216289 DOI: 10.1093/nar/gkab432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
The zinc uptake regulator (Zur) is a member of the Fur (ferric uptake regulator) family transcriptional regulators that plays important roles in zinc homeostasis and virulence of bacteria. Upon zinc perception, Zur binds to the promoters of zinc responsive genes and controls their transcription. However, the mechanism underlying zinc-mediated Zur activation remains unclear. Here we report a 2.2-Å crystal structure of apo Zur from the phytopathogen Xanthomonas campestris pv. campestris (XcZur), which reveals the molecular mechanism that XcZur exists in a closed inactive state before regulatory zinc binding. Subsequently, we present a 1.9-Å crystal structure of holo XcZur, which, by contrast, adopts an open state that has enough capacity to bind DNA. Structural comparison and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses uncover that binding of a zinc atom in the regulatory site, formed by the hinge region, the dimerization domain and the DNA binding domain, drives a closed-to-open conformational change that is essential for XcZur activation. Moreover, key residues responsible for DNA recognition are identified by site-directed mutagenesis. This work provides important insights into zinc-induced XcZur activation and valuable discussions on the mechanism of DNA recognition.
Collapse
Affiliation(s)
- Fenmei Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zihui Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Peng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Xiaolin Tian
- Protein Chemistry and Proteomics Facility, Protein Research Technology Center, Tsinghua University, Beijing 100084, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Dong-Jie Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Peifang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Haiteng Deng
- Protein Chemistry and Proteomics Facility, Protein Research Technology Center, Tsinghua University, Beijing 100084, China
| | - Pengfei Ding
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Kandari D, Joshi H, Bhatnagar R. Zur: Zinc-Sensing Transcriptional Regulator in a Diverse Set of Bacterial Species. Pathogens 2021; 10:344. [PMID: 33804265 PMCID: PMC8000910 DOI: 10.3390/pathogens10030344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
Zinc (Zn) is the quintessential d block metal, needed for survival in all living organisms. While Zn is an essential element, its excess is deleterious, therefore, maintenance of its intracellular concentrations is needed for survival. The living organisms, during the course of evolution, developed proteins that can track the limitation or excess of necessary metal ions, thus providing survival benefits under variable environmental conditions. Zinc uptake regulator (Zur) is a regulatory transcriptional factor of the FUR superfamily of proteins, abundant among the bacterial species and known for its intracellular Zn sensing ability. In this study, we highlight the roles played by Zur in maintaining the Zn levels in various bacterial species as well as the fact that in recent years Zur has emerged not only as a Zn homeostatic regulator but also as a protein involved directly or indirectly in virulence of some pathogens. This functional aspect of Zur could be exploited in the ventures for the identification of newer antimicrobial targets. Despite extensive research on Zur, the insights into its overall regulon and its moonlighting functions in various pathogens yet remain to be explored. Here in this review, we aim to summarise the disparate functional aspects of Zur proteins present in various bacterial species.
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
- Banaras Hindu University, Banaras 221005, India
| |
Collapse
|
9
|
Sevilla E, Bes MT, Peleato ML, Fillat MF. Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Arch Biochem Biophys 2021; 701:108770. [PMID: 33524404 DOI: 10.1016/j.abb.2021.108770] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
10
|
Jia M, Wei M, Zhang Y, Zheng C. Transcriptomic Analysis of Streptococcus suis in Response to Ferrous Iron and Cobalt Toxicity. Genes (Basel) 2020; 11:genes11091035. [PMID: 32887434 PMCID: PMC7563783 DOI: 10.3390/genes11091035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen causing serious infections in swine and humans. Although metals are essential for life, excess amounts of metals are toxic to bacteria. Transcriptome-level data of the mechanisms for resistance to metal toxicity in S. suis are available for no metals other than zinc. Herein, we explored the transcriptome-level changes in S. suis in response to ferrous iron and cobalt toxicity by RNA sequencing. Many genes were differentially expressed in the presence of excess ferrous iron and cobalt. Most genes in response to cobalt toxicity showed the same expression trends as those in response to ferrous iron toxicity. qRT-PCR analysis of the selected genes confirmed the accuracy of RNA sequencing results. Bioinformatic analysis of the differentially expressed genes indicated that ferrous iron and cobalt have similar effects on the cellular processes of S. suis. Ferrous iron treatment resulted in down-regulation of several oxidative stress tolerance-related genes and up-regulation of the genes in an amino acid ABC transporter operon. Expression of several genes in the arginine deiminase system was down-regulated after ferrous iron and cobalt treatment. Collectively, our results suggested that S. suis alters the expression of multiple genes to respond to ferrous iron and cobalt toxicity.
Collapse
Affiliation(s)
- Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-1520-527-9658
| |
Collapse
|
11
|
Zheng C, Jia M, Gao M, Lu T, Li L, Zhou P. PmtA functions as a ferrous iron and cobalt efflux pump in Streptococcus suis. Emerg Microbes Infect 2020; 8:1254-1264. [PMID: 31469035 PMCID: PMC7012047 DOI: 10.1080/22221751.2019.1660233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metals are nutrients essential for life. However, an excess of metals can be toxic to cells, and host-imposed metal toxicity is an important mechanism for controlling bacterial infection. Accordingly, bacteria have evolved metal efflux systems to maintain metal homeostasis. Here, we established that PmtA functions as a ferrous iron [Fe(II)] and cobalt [Co(II)] efflux pump in Streptococcus suis, an emerging zoonotic pathogen responsible for severe infections in both humans and pigs. pmtA expression is induced by Fe(II), Co(II), and nickel [Ni(II)], whereas PmtA protects S. suis against Fe(II) and ferric iron [Fe(III)]-induced bactericidal effect, as well as Co(II) and zinc [Zn(II)]-induced bacteriostatic effect. In the presence of elevated concentrations of Fe(II) and Co(II), ΔpmtA accumulates high levels of intracellular iron and cobalt, respectively. ΔpmtA is also more sensitive to streptonigrin, a Fe(II)-activated antibiotic. Furthermore, growth defects of ΔpmtA under Fe(II) or Co(II) excess conditions can be alleviated by manganese [Mn(II)] supplementation. Finally, PmtA plays a role in tolerance to H2O2-induced oxidative stress, yet is not involved in the virulence of S. suis in mice. Together, these data demonstrate that S. suis PmtA acts as a Fe(II) and Co(II) efflux pump, and contributes to oxidative stress resistance.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Miaomiao Gao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Tianyu Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Lingzhi Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| |
Collapse
|
12
|
Śmiga M, Bielecki M, Olczak M, Olczak T. Porphyromonas gingivalis PgFur Is a Member of a Novel Fur Subfamily With Non-canonical Function. Front Cell Infect Microbiol 2019; 9:233. [PMID: 31312617 PMCID: PMC6613475 DOI: 10.3389/fcimb.2019.00233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis, a keystone pathogen of chronic periodontitis, uses ferric uptake regulator homolog (PgFur) to regulate production of virulence factors. This study aimed to characterize PgFur protein in regard to its structure-function relationship. We experimentally identified the 5′ mRNA sequence encoding the 171-amino-acid-long PgFur protein in the A7436 strain and examined this PgFur version as a full-length protein. PgFur protein did not bind to the canonical Escherichia coli Fur box, but the wild-type phenotype of the mutant Δpgfur strain was restored partially when expression of the ecfur gene was induced from the native pgfur promoter. The full-length PgFur protein contained one zinc atom per protein monomer, but did not bind iron, manganese, or heme. Single cysteine substitutions of CXXC motifs resulted in phenotypes similar to the mutant Δpgfur strain. The modified proteins were produced in E. coli at significantly lower levels, were highly unstable, and did not bind zinc. The pgfur gene was expressed at the highest levels in bacteria cultured for 24 h in the absence of iron and heme or at higher levels in bacteria cultured for 10 h in the presence of protoporphyrin IX source. No influence of high availability of Fe2+, Zn2+, or Mn2+ on pgfur gene expression was observed. Two chromosomal mutant strains producing protein lacking 4 (pgfurΔ4aa) or 13 (pgfurΔ13aa) C-terminal amino acid residues were examined in regard to importance of the C-terminal lysine-rich region. The pgfurΔ13aa strain showed a phenotype typical for the mutant Δpgfur strain, but both the wild-type PgFur protein and its truncated version bound zinc with similar ability. The Δpgfur mutant strain produced higher amounts of HmuY protein compared with the wild-type strain, suggesting compromised regulation of its expression. Potential PgFur ligands, Fe2+, Mn2+, Zn2+, PPIX, or serum components, did not influence HmuY production in the Δpgfur mutant strain. The mutant pgfurΔ4aa and pgfurΔ13aa strains exhibited affected HmuY protein production. PgFur, regardless of the presence of the C-terminal lysine-rich region, bound to the hmu operon promoter. Our data suggest that cooperation of PgFur with partners/cofactors and/or protein/DNA modifications would be required to accomplish its role played in an in vivo multilayer regulatory network.
Collapse
Affiliation(s)
- Michał Śmiga
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Marcin Bielecki
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Mariusz Olczak
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Teresa Olczak
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
13
|
Kandari D, Gopalani M, Gupta M, Joshi H, Bhatnagar S, Bhatnagar R. Identification, Functional Characterization, and Regulon Prediction of the Zinc Uptake Regulator ( zur) of Bacillus anthracis - An Insight Into the Zinc Homeostasis of the Pathogen. Front Microbiol 2019; 9:3314. [PMID: 30687290 PMCID: PMC6336718 DOI: 10.3389/fmicb.2018.03314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022] Open
Abstract
Zinc has an abounding occurrence in the prokaryotes and plays paramount roles including catalytic, structural, and regulatory. Zinc uptake regulator (Zur), a Fur family transcriptional regulator, is connoted in maintaining zinc homeostasis in the pathogenic bacteria by binding to zinc and regulating the genes involved in zinc uptake and mobilization. Zinc homeostasis has been marginally scrutinized in Bacillus anthracis, the top-rated bio-terror agent, with no decipherment of the role of Zur. Of the three Fur family regulators in B. anthracis, BAS4181 is annotated as a zinc-specific transcriptional regulator. This annotation was further substantiated by our stringent computational and experimental analyses. The residues critical for zinc and DNA binding were delineated by homology modeling and sequence/structure analysis. ba zur existed as a part of a three-gene operon. Purified BaZur prodigiously existed in the dimeric form, indicated by size exclusion chromatography and blue native-polyacrylamide gel electrophoresis (PAGE). Computational and manual strategies were employed to decipher the putative regulon of ba zur, comprising of 11 genes, controlled by six promoters, each harboring at least one Zur box. The DNA binding capability of the purified BaZur to the upstream regions of the ba zur operon, yciC, rpmG, znuA, and genes encoding a GTPase cobalamine synthesis protein and a permease was ascertained by electrophoretic mobility shift assays. The regulon genes, implicated in zinc uptake and mobilization, were mostly negatively regulated by BaZur. The ba zur expression was downregulated upon exposure of cells to an excess of zinc. Conversely, it exhibited a marked upregulation under N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) mediated zinc-depleted environment, adding credence to its negative autoregulation. Moreover, an increase in the transcript levels of the regulon genes znuA, rpmG, and yciC upon exposure of cells to TPEN connoted their role in combating hypo-zincemic conditions by bringing about zinc uptake and mobilization. Thus, this study functionally characterizes Zur of B. anthracis and elucidates its role in maintaining zinc homeostasis.
Collapse
Affiliation(s)
- Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manish Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
Bacterial zinc uptake regulator proteins and their regulons. Biochem Soc Trans 2018; 46:983-1001. [PMID: 30065104 PMCID: PMC6103462 DOI: 10.1042/bst20170228] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
All organisms must regulate the cellular uptake, efflux, and intracellular trafficking of essential elements, including d-block metal ions. In bacteria, such regulation is achieved by the action of metal-responsive transcriptional regulators. Among several families of zinc-responsive transcription factors, the ‘zinc uptake regulator’ Zur is the most widespread. Zur normally represses transcription in its zinc-bound form, in which DNA-binding affinity is enhanced allosterically. Experimental and bioinformatic searches for Zur-regulated genes have revealed that in many cases, Zur proteins govern zinc homeostasis in a much more profound way than merely through the expression of uptake systems. Zur regulons also comprise biosynthetic clusters for metallophore synthesis, ribosomal proteins, enzymes, and virulence factors. In recognition of the importance of zinc homeostasis at the host–pathogen interface, studying Zur regulons of pathogenic bacteria is a particularly active current research area.
Collapse
|
15
|
Velasco E, Wang S, Sanet M, Fernández-Vázquez J, Jové D, Glaría E, Valledor AF, O'Halloran TV, Balsalobre C. A new role for Zinc limitation in bacterial pathogenicity: modulation of α-hemolysin from uropathogenic Escherichia coli. Sci Rep 2018; 8:6535. [PMID: 29695842 PMCID: PMC5916954 DOI: 10.1038/s41598-018-24964-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/09/2018] [Indexed: 11/30/2022] Open
Abstract
Metal limitation is a common situation during infection and can have profound effects on the pathogen’s success. In this report, we examine the role of zinc limitation in the expression of a virulence factor in uropathogenic Escherichia coli. The pyelonephritis isolate J96 carries two hlyCABD operons that encode the RTX toxin α-hemolysin. While the coding regions of both operons are largely conserved, the upstream sequences, including the promoters, are unrelated. We show here that the two hlyCABD operons are differently regulated. The hlyII operon is efficiently silenced in the presence of zinc and highly expressed when zinc is limited. In contrast, the hlyI operon does not respond to zinc limitation. Genetic studies reveal that zinc-responsive regulation of the hlyII operon is controlled by the Zur metalloregulatory protein. A Zur binding site was identified in the promoter sequence of the hlyII operon, and we observe direct binding of Zur to this promoter region. Moreover, we find that Zur regulation of the hlyII operon modulates the ability of E. coli J96 to induce a cytotoxic response in host cell lines in culture. Our report constitutes the first description of the involvement of the zinc-sensing protein Zur in directly modulating the expression of a virulence factor in bacteria.
Collapse
Affiliation(s)
- Elsa Velasco
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Suning Wang
- Chemistry of Life Process Institute, and Department of Chemistry, Northwestern University, Evanston, Illinois, 60208-3113, United States of America
| | - Marianna Sanet
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Jorge Fernández-Vázquez
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Daniel Jové
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Estibaliz Glaría
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Annabel F Valledor
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Thomas V O'Halloran
- Chemistry of Life Process Institute, and Department of Chemistry, Northwestern University, Evanston, Illinois, 60208-3113, United States of America
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain.
| |
Collapse
|
16
|
The Components of the Unique Zur Regulon of Cupriavidus metallidurans Mediate Cytoplasmic Zinc Handling. J Bacteriol 2017; 199:JB.00372-17. [PMID: 28808127 DOI: 10.1128/jb.00372-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element, yet it is toxic at high concentrations. In the betaproteobacterium Cupriavidus metallidurans, the highly efficient removal of surplus zinc from the periplasm is responsible for the outstanding metal resistance of the organism. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans has the secondary zinc importer ZupT of the zinc-regulated transporter, iron-regulated transporter (ZRT/IRT)-like protein (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes with exposure to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δzur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region by use of a truncation assay. The motif was used to predict possible Zur boxes upstream of Zur regulon members. The binding of Zur to these boxes was confirmed. Two Zur boxes upstream of the cobW 1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW 1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW 2, cobW 3, and zupT permitted both low expression levels of these genes and their upregulation under conditions of zinc starvation. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans, where the periplasm is responsible for the removal of surplus zinc, cytoplasmic components are responsible for the management of zinc as an essential cofactor, and the two compartments are connected by ZupT.IMPORTANCE Elucidating zinc homeostasis is necessary for understanding both host-pathogen interactions and the performance of free-living bacteria in their natural environments. Escherichia coli acquires zinc under conditions of low zinc concentrations via the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy-metal-resistant bacterium C. metallidurans achieves high tolerance to zinc through sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by the management of zinc by cytoplasmic zinc chaperones, whose synthesis is controlled by the Zur regulator. This demonstrates a new mechanism, involving compartmentalization, for organizing zinc homeostasis.
Collapse
|
17
|
Xu J, Zheng C, Cao M, Zeng T, Zhao X, Shi G, Chen H, Bei W. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Feng L, Zhu J, Chang H, Gao X, Gao C, Wei X, Yuan F, Bei W. The CodY regulator is essential for virulence in Streptococcus suis serotype 2. Sci Rep 2016; 6:21241. [PMID: 26883762 PMCID: PMC4756307 DOI: 10.1038/srep21241] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023] Open
Abstract
The main role of CodY, a global regulatory protein in most low G + C gram-positive bacteria, is in transcriptional repression. To study the functions of CodY in Streptococcus suis serotype 2 (S. suis 2), a mutant codY clone named ∆codY was constructed to explore the phenotypic variation between ∆codY and the wild-type strain. The result showed that the codY mutation significantly inhibited cell growth, adherence and invasion ability of S. suis 2 to HEp-2 cells. The codY mutation led to decreased binding of the pathogen to the host cells, easier clearance by RAW264.7 macrophages and decreased growth ability in fresh blood of Cavia porcellus. The codY mutation also attenuated the virulence of S. suis 2 in BALB/c mice. Morphological analysis revealed that the codY mutation decreased the thickness of the capsule of S. suis 2 and changed the surface structures analylized by SDS-PAGE. Finally, the codY mutation altered the expressions of many virulence related genes, including sialic acid synthesis genes, leading to a decreased sialic acid content in capsule. Overall, mutation of codY modulated bacterial virulence by affecting the growth and colonization of S. suis 2, and at least via regulating sialic acid synthesis and capsule thickness.
Collapse
Affiliation(s)
- Liping Feng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Jiawen Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Chang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Gao
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Xiaofeng Wei
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Fangyan Yuan
- Hubei key laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
19
|
Zhang H, Ravcheev DA, Hu D, Zhang F, Gong X, Hao L, Cao M, Rodionov DA, Wang C, Feng Y. Two novel regulators of N-acetyl-galactosamine utilization pathway and distinct roles in bacterial infections. Microbiologyopen 2015; 4:983-1000. [PMID: 26540018 PMCID: PMC4694137 DOI: 10.1002/mbo3.307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/21/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
Bacterial pathogens can exploit metabolic pathways to facilitate their successful infection cycles, but little is known about roles of d‐galactosamine (GalN)/N‐acetyl‐d‐galactosamine (GalNAc) catabolism pathway in bacterial pathogenesis. Here, we report the genomic reconstruction of GalN/GalNAc utilization pathway in Streptococci and the diversified aga regulons. We delineated two new paralogous AgaR regulators for the GalN/GalNAc catabolism pathway. The electrophoretic mobility shift assays experiment demonstrated that AgaR2 (AgaR1) binds the predicted palindromes, and the combined in vivo data from reverse transcription quantitative polymerase chain reaction and RNA‐seq suggested that AgaR2 (not AgaR1) can effectively repress the transcription of the target genes. Removal of agaR2 (not agaR1) from Streptococcus suis 05ZYH33 augments significantly the abilities of both adherence to Hep‐2 cells and anti‐phagocytosis against RAW264.7 macrophage. As anticipated, the dysfunction in AgaR2‐mediated regulation of S. suis impairs its pathogenicity in experimental models of both mice and piglets. Our finding discovered two novel regulators specific for GalN/GalNAc catabolism and assigned them distinct roles into bacterial infections. To the best of our knowledge, it might represent a first paradigm that links the GalN/GalNAc catabolism pathway to bacterial pathogenesis.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4360, Luxembourg
| | - Dan Hu
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Fengyu Zhang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Xiufang Gong
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Lina Hao
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Min Cao
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Dmitry A Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Changjun Wang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Youjun Feng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
20
|
Hatrongjit R, Kerdsin A, Gottschalk M, Takeuchi D, Hamada S, Oishi K, Akeda Y. First human case report of sepsis due to infection with Streptococcus suis serotype 31 in Thailand. BMC Infect Dis 2015; 15:392. [PMID: 26420029 PMCID: PMC4588491 DOI: 10.1186/s12879-015-1136-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/21/2015] [Indexed: 01/11/2023] Open
Abstract
Background Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. It has been reported that S. suis infection in humans is mostly caused by serotype 2. However, human cases caused by other serotypes have rarely been reported. This is the first report of a human case of infection with S. suis serotype 31 in Thailand. Case presentation A 55-year-old male alcohol misuser with liver cirrhosis was admitted with sepsis to a hospital in the Central Region of Thailand. He had consumed a homemade, raw pork product prior to the onset of illness. He was alive after treatment with ceftriaxone and no complication occurred. An isolate from blood culture at the hospital was suspected as viridans group Streptococcus. It was confirmed at a reference laboratory as S. suis serotype 31 by biochemical tests, 16S rDNA sequencing, and multiplex polymerase chain reaction for serotyping, but it was untypable by the co-agglutination test with antisera against recognized S. suis serotypes, suggesting loss of capsular material. The absence of a capsule was confirmed by transmission electron microscopy. The isolate was confirmed to be sequence type 221, with 13 putative virulence genes that are usually found in serotype 2 strains. Conclusion We should be aware of the emergence of S. suis infections caused by uncommon serotypes in patients with predisposing conditions. Laboratory capacity to identify S. suis in the hospital is needed in developing countries, which can contribute to enhanced surveillance, epidemiological control, and prevention strategies in the prevalent area. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1136-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Muang, Sakon Nakhon Province, 47000, Thailand.
| | - Anusak Kerdsin
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Muang, Nonthaburi Province, 11000, Thailand. .,Present address: Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| | | | - Dan Takeuchi
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shigeyuki Hamada
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi Province, Thailand.
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Shinjyuku, Tokyo, Japan.
| | - Yukihiro Akeda
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Huang K, Yuan Z, Li J, Zhang Q, Xu Z, Yan S, Zhang A, Jin M. Identification and characterisation a surface-associated arginine peptidase in Streptococcus suis serotype 2. Microbiol Res 2015; 170:168-76. [DOI: 10.1016/j.micres.2014.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/27/2014] [Accepted: 08/09/2014] [Indexed: 11/26/2022]
|
22
|
A new glimpse of FadR-DNA crosstalk revealed by deep dissection of the E. coli FadR regulatory protein. Protein Cell 2014; 5:928-39. [PMID: 25311842 PMCID: PMC4259882 DOI: 10.1007/s13238-014-0107-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/29/2014] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli (E. coli) FadR regulator plays dual roles in fatty acid metabolism, which not only represses the fatty acid degradation (fad) system, but also activates the unsaturated fatty acid synthesis pathway. Earlier structural and biochemical studies of FadR protein have provided insights into interplay between FadR protein with its DNA target and/or ligand, while the missing knowledge gap (esp. residues with indirect roles in DNA binding) remains unclear. Here we report this case through deep mapping of old E. coli fadR mutants accumulated. Molecular dissection of E. coli K113 strain, a fadR mutant that can grow on decanoic acid (C10) as sole carbon sources unexpectedly revealed a single point mutation of T178G in fadR locus (W60G in FadRk113). We also observed that a single genetically-recessive mutation of W60G in FadR regulatory protein can lead to loss of its DNA-binding activity, and thereby impair all the regulatory roles in fatty acid metabolisms. Structural analyses of FadR protein indicated that the hydrophobic interaction amongst the three amino acids (W60, F74 and W75) is critical for its DNA-binding ability by maintaining the configuration of its neighboring two β-sheets. Further site-directed mutagenesis analyses demonstrated that the FadR mutants (F74G and/or W75G) do not exhibit the detected DNA-binding activity, validating above structural reasoning.
Collapse
|
23
|
Two Spx regulators modulate stress tolerance and virulence in Streptococcus suis serotype 2. PLoS One 2014; 9:e108197. [PMID: 25264876 PMCID: PMC4180751 DOI: 10.1371/journal.pone.0108197] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/18/2014] [Indexed: 01/08/2023] Open
Abstract
Streptococcus suis serotype 2 is an important zoonotic pathogen causing severe infections in pigs and humans. The pathogenesis of S. suis 2 infections, however, is still poorly understood. Spx proteins are a group of global regulators involved in stress tolerance and virulence. In this study, we characterized two orthologs of the Spx regulator, SpxA1 and SpxA2 in S. suis 2. Two mutant strains (ΔspxA1 and ΔspxA2) lacking the spx genes were constructed. The ΔspxA1 and ΔspxA2 mutants displayed different phenotypes. ΔspxA1 exhibited impaired growth in the presence of hydrogen peroxide, while ΔspxA2 exhibited impaired growth in the presence of SDS and NaCl. Both mutants were defective in medium lacking newborn bovine serum. Using a murine infection model, we demonstrated that the abilities of the mutant strains to colonize the tissues were significantly reduced compared to that of the wild-type strain. The mutant strains also showed a decreased level of survival in pig blood. Microarray analysis revealed a global regulatory role for SpxA1 and SpxA2. Furthermore, we demonstrated for the first time that Spx is involved in triggering the host inflammatory response. Collectively, our data suggest that SpxA1 and SpxA2 are global regulators that are implicated in stress tolerance and virulence in S. suis 2.
Collapse
|
24
|
Bhubhanil S, Sittipo P, Chaoprasid P, Nookabkaew S, Sukchawalit R, Mongkolsuk S. Control of zinc homeostasis in Agrobacterium tumefaciens via zur and the zinc uptake genes znuABC and zinT. MICROBIOLOGY-SGM 2014; 160:2452-2463. [PMID: 25227896 DOI: 10.1099/mic.0.082446-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Agrobacterium tumefaciens zinc uptake regulator (Zur) was shown to negatively regulate the zinc uptake genes znuABC, encoding a zinc transport system belonging to the ATP-binding cassette (ABC) transporter family, and zinT, which encodes a periplasmic zinc-binding protein. The expression of znuABC and zinT was inducible when cells were grown in medium containing a metal chelator (EDTA), and this induction was shown to be specific for zinc depletion. The expression of znuABC was reduced in response to increased zinc in a dose-dependent manner, and zinT had a less pronounced but similar pattern of zinc-regulated expression. The inactivation of zur led to constitutively high expression of znuABC and zinT. In addition, a zur mutant had an increased total zinc content compared to the WT NTL4 strain, whereas the inactivation of zinT caused a reduction in the total zinc content. The zinT gene is shown to play a dominant role and to be more important than znuA and znuB for A. tumefaciens survival under zinc deprivation. ZinT can function even when ZnuABC is inactivated. However, mutations in zur, znuA, znuB or zinT did not affect the virulence of A. tumefaciens.
Collapse
Affiliation(s)
- Sakkarin Bhubhanil
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Panida Sittipo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.,Environmental Toxicology, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Paweena Chaoprasid
- Laboratory of Pharmacology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.,Environmental Toxicology, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Sumontha Nookabkaew
- Laboratory of Pharmacology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
25
|
Choi S, Bird AJ. Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics 2014; 6:1198-215. [PMID: 24722954 DOI: 10.1039/c4mt00064a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Zinc-responsive transcription factors are found in all kingdoms of life and include the transcriptional activators ZntR, SczA, Zap1, bZip19, bZip23, and MTF-1, and transcriptional repressors Zur, AdcR, Loz1, and SmtB. These factors have two defining features; their activity is regulated by zinc and they all play a central role in zinc homeostasis by controlling the expression of genes that directly affect zinc levels or its availability. This review summarizes what is known about the mechanisms by which each of these factors sense changes in intracellular zinc levels and how they control zinc homeostasis through target gene regulation. Other factors that influence zinc ion sensing are also discussed.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
26
|
Shi Z, Xuan C, Han H, Cheng X, Wang J, Feng Y, Srinivas S, Lu G, Gao GF. Gluconate 5-dehydrogenase (Ga5DH) participates in Streptococcus suis cell division. Protein Cell 2014; 5:761-9. [PMID: 24916441 PMCID: PMC4180457 DOI: 10.1007/s13238-014-0074-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/04/2014] [Indexed: 02/05/2023] Open
Abstract
Bacterial cell division is strictly regulated in the formation of equal daughter cells. This process is governed by a series of spatial and temporal regulators, and several new factors of interest to the field have recently been identified. Here, we report the requirement of gluconate 5-dehydrogenase (Ga5DH) in cell division of the zoonotic pathogen Streptococcus suis. Ga5DH catalyzes the reversible reduction of 5-ketogluconate to D-gluconate and was localized to the site of cell division. The deletion of Ga5DH in S. suis resulted in a plump morphology with aberrant septa joining the progeny. A significant increase was also observed in cell length. These defects were determined to be the consequence of Ga5DH deprivation in S. suis causing FtsZ delocalization. In addition, the interaction of FtsZ with Ga5DH in vitro was confirmed by protein interaction assays. These results indicate that Ga5DH may function to prevent the formation of ectopic Z rings during S. suis cell division.
Collapse
Affiliation(s)
- Zhongyu Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence 2014; 5:477-97. [PMID: 24667807 PMCID: PMC4063810 DOI: 10.4161/viru.28595] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis.
Collapse
Affiliation(s)
- Youjun Feng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases & State Key Laboratory for Diagnosis and Treatment of Infectious Disease; First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, Zhejiang, PR China; Department of Medical Microbiology and Parasitology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, PR China
| | - Huimin Zhang
- University of Illinois at Urbana-Champaign (UIUC); Urbana, IL USA
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine; Iowa State University; Ames, IA USA
| | - Shihua Wang
- College of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou, Fujian, PR China
| | - Min Cao
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| | - Dan Hu
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| | - Changjun Wang
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| |
Collapse
|
28
|
The β-galactosidase (BgaC) of the zoonotic pathogen Streptococcus suis is a surface protein without the involvement of bacterial virulence. Sci Rep 2014; 4:4140. [PMID: 24556915 PMCID: PMC3931136 DOI: 10.1038/srep04140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/30/2014] [Indexed: 12/27/2022] Open
Abstract
Streptococcal pathogens have evolved to express exoglycosidases, one of which is BgaC β-galactosidase, to deglycosidate host surface glycolconjucates with exposure of the polysaccharide receptor for bacterial adherence. The paradigm BgaC protein is the bgaC product of Streptococcus, a bacterial surface-exposed β-galactosidase. Here we report the functional definition of the BgaC homologue from an epidemic Chinese strain 05ZYH33 of the zoonotic pathogen Streptococcus suis. Bioinformatics analyses revealed that S. suis BgaC shared the conserved active sites (W240, W243 and Y454). The recombinant BgaC protein of S. suis was purified to homogeneity. Enzymatic assays confirmed its activity of β-galactosidase. Also, the hydrolysis activity was found to be region-specific and sugar-specific for the Gal β-1,3-GlcNAc moiety of oligosaccharides. Flow cytometry analyses combined with immune electron microscopy demonstrated that S. suis BgaC is an atypical surface-anchored protein in that it lacks the “LPXTG” motif for typical surface proteins. Integrative evidence from cell lines and mice-based experiments showed that an inactivation of bgaC does not significantly impair the ability of neither adherence nor anti-phagocytosis, and consequently failed to attenuate bacterial virulence, which is somewhat similar to the scenario seen with S. pneumoniae. Therefore we concluded that S. suis BgaC is an atypical surface-exposed protein without the involvement of bacterial virulence.
Collapse
|
29
|
Fillat MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014; 546:41-52. [PMID: 24513162 DOI: 10.1016/j.abb.2014.01.029] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
Abstract
Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.
Collapse
Affiliation(s)
- María F Fillat
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
30
|
Bersch B, Bougault C, Roux L, Favier A, Vernet T, Durmort C. New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII. PLoS One 2013; 8:e81168. [PMID: 24312273 PMCID: PMC3842936 DOI: 10.1371/journal.pone.0081168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/09/2013] [Indexed: 12/18/2022] Open
Abstract
Zinc (Zn2+) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn2+ homeostasis. The phtD gene, coding for a Zn2+-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn2+ transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn2+ transfer from the Zn2+-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn2+ is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn2+-t-PhtD shows that the loss of Zn2+ leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn2+ scavenger for later release to the surface transporter AdcAII, leading to Zn2+ uptake.
Collapse
Affiliation(s)
- Beate Bersch
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France ; Institut de Biologie Structurale, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique, Grenoble, France
| | | | | | | | | | | |
Collapse
|
31
|
Fléchard M, Gilot P, Héry-Arnaud G, Mereghetti L, Rosenau A. Analysis and identification of IS1548insertion targets inStreptococcus agalactiae. FEMS Microbiol Lett 2013; 340:65-72. [DOI: 10.1111/1574-6968.12076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 01/27/2023] Open
Affiliation(s)
- Maud Fléchard
- Université de Tours; UMR1282 Infectiologie et Santé Publique; Équipe “Bactéries et Risque Materno-Foetal”; Tours; France
| | | | | | | | - Agnès Rosenau
- Université de Tours; UMR1282 Infectiologie et Santé Publique; Équipe “Bactéries et Risque Materno-Foetal”; Tours; France
| |
Collapse
|
32
|
Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture. Sci Rep 2012; 2:710. [PMID: 23050094 PMCID: PMC3464449 DOI: 10.1038/srep00710] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023] Open
Abstract
NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibility to pH, and cps2B inactivation resulted in complete absence of capsular polysaccharides. These two mutants both exhibited increased adhesion and invasion to Hep-2 cells and improved sensibility to phagocytosis. Not only do they retain the capability of inducing the release of host pro-inflammatory cytokines, but also result in the faster secretion of IL-8. Easier cleaning up of the mutant strains in whole blood is consistent with virulence attenuation seen with experimental infections of both mice and SPF-piglets. Therefore we concluded that altered architecture of S. suis surface attenuates its virulence.
Collapse
|
33
|
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259-79. [PMID: 22324994 DOI: 10.2217/fmb.11.149] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc & Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, CP5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | | | |
Collapse
|
34
|
Zhang T, Ding Y, Li T, Wan Y, Li W, Chen H, Zhou R. A Fur-like protein PerR regulates two oxidative stress response related operons dpr and metQIN in Streptococcus suis. BMC Microbiol 2012; 12:85. [PMID: 22646062 PMCID: PMC3458967 DOI: 10.1186/1471-2180-12-85] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/02/2012] [Indexed: 01/16/2023] Open
Abstract
Background Metal ions are important micronutrients in cellular metabolism, but excess ions that cause toxic reactive oxygen species are harmful to cells. In bacteria, Fur family proteins such as Fur, Zur and PerR manage the iron and zinc uptake and oxidative stress responses, respectively. The single Fur-like protein (annotated as PerR) in Streptococcus suis has been demonstrated to be involved in zinc and iron uptake in previous studies, but the reports on oxidative stress response and gene regulation are limited. Results In the present study, the perR gene deletion mutant ΔperR was constructed in Streptococcus suis serotype 2 strain SC-19, and the mutant strain ΔperR exhibited less sensitivity to H2O2 stress compared to the wild-type. The dpr and metQIN were found to be upregulated in the ΔperR strain compared with SC-19. Electrophoretic mobility shift assays showed that the promoters of dpr and metQIN could be bound by the PerR protein. These results suggest that dpr and metQIN are members of the PerR regulon of S. suis. dpr encodes a Dps-like peroxide resistance protein, and the dpr knockout strains (Δdpr and ΔdprΔperR) were highly sensitive to H2O2. MetQIN is a methionine transporter, and the increased utilization of methionine in the ΔperR strain indirectly affected the peroxide resistance. Using a promoter–EGFP gene fusion reporting system, we found that the PerR regulon was induced by H2O2, and the induction was modulated by metal ions. Finally, we found that the pathogenicity of the perR mutant was attenuated and easily cleared by mice. Conclusions These data strongly suggest that the Fur-like protein PerR directly regulates dpr and metQIN and plays a crucial role in oxidative stress response in S. suis.
Collapse
Affiliation(s)
- Tengfei Zhang
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2012; 194:2426-36. [PMID: 22389488 DOI: 10.1128/jb.00090-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium.
Collapse
|
36
|
Cao M, Feng Y, Wang C, Zheng F, Li M, Liao H, Mao Y, Pan X, Wang J, Hu D, Hu F, Tang J. Functional definition of LuxS, an autoinducer-2 (AI-2) synthase and its role in full virulence of Streptococcus suis serotype 2. J Microbiol 2011; 49:1000-11. [PMID: 22203565 DOI: 10.1007/s12275-011-1523-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022]
Abstract
Quorum sensing is a widespread chemical communication in response to fluctuation of bacterial population density, and has been implicated into bacterial biofilm formation and regulation of expression of virulence factors. The luxS gene product, S-ribosylhomocysteinase, catalizes the last committed step in biosynthetic pathway of autoinducer 2 (AI-2), a signaling molecule for inter-species quorum sensing. We found a luxS homologue in 05ZYH33, an epidemic strain of Streptococcus suis serotype 2 (SS2) in China. A luxS null mutant (ΔluxS) of 05ZYH33 strain was obtained using an approach of homologous recombination. LuxS was determined to be required for AI-2 production in 05ZYH33 strain of S. suis 2. Inactivation of luxS gene led to a wide range of phenotypic changes including thinner capsular walls, increased tolerance to H(2)O(2), reduced adherence capacity to epithelial cells, etc. In particular, loss of LuxS impaired dramatically its full virulence of SS2 in experimental model of piglets, and functional complementation restored it nearly to the level of parent strain. Genome-wide transcriptome analyses suggested that some known virulence factors such as CPS are down-regulated in the ΔluxS mutant, which might in part explain virulence attenuation by luxS deletion. Similarly, 29 of 71 genes with different expression level were proposed to be targets candidate regulated by LuxS/AI-2-dependent quorum sensing.
Collapse
Affiliation(s)
- Min Cao
- Department of Microbiology, Third Military Medical University, Chongqing, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Peng H, Feng Y, Zhu X, Lan X, Tang M, Wang J, Dong H, Chen B. MoDUO1, a Duo1-like gene, is required for full virulence of the rice blast fungus Magnaporthe oryzae. Curr Genet 2011; 57:409-20. [DOI: 10.1007/s00294-011-0355-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/04/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022]
|
38
|
Insight into the interaction of metal ions with TroA from Streptococcus suis. PLoS One 2011; 6:e19510. [PMID: 21611125 PMCID: PMC3097204 DOI: 10.1371/journal.pone.0019510] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/31/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn(2+) and Mn(2+). Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn(2+) and Mn(2+) induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn(2+)/Mn(2+) bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein. CONCLUSIONS/SIGNIFICANCE Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport.
Collapse
|
39
|
Horng YT, Chien CC, Wei YH, Chen SY, Lan JW, Sun YM, Soo PC. Functional cis-expression of phaCAB genes for poly(3-hydroxybutyrate) production by Escherichia coli. Lett Appl Microbiol 2011; 52:475-83. [DOI: 10.1111/j.1472-765x.2011.03029.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Feng Y, Cronan JE. Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters. Mol Microbiol 2011; 80:195-218. [PMID: 21276098 DOI: 10.1111/j.1365-2958.2011.07564.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two transcriptional regulators, the FadR activator and the FabR repressor, control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was blocked in the absence of exogenous unsaturated fatty acids in a ΔfadR strain and found that the rates of transcription of fabA and fabB were unaffected by the lack of unsaturated thioesters. To examine the discrepancy between our in vivo results and the prior in vitro results we obtained active, natively folded forms of the E. coli and Vibrio cholerae FabRs by use of an in vitro transcription-translation system. We report that FabR bound the intact promoter regions of both fabA and fabB in the absence of unsaturated acyl thioesters, but bound the two promoters differently. Native FabR bound the fabA promoter region provided that the canonical FabR binding site is extended by inclusion of flanking sequences that overlap the neighbouring FadR binding site. In contrast, although binding to the fabB operator also required a flanking sequence, a non-specific sequence could suffice. However, unsaturated thioesters did allow FabR binding to the minimal FabR operator sites of both promoters which otherwise were not bound. Thus unsaturated thioester ligands were not essential for FabR/target DNA interaction, but acted to enhance binding. The gel mobility shift data plus in vivo expression data indicate that despite the remarkably similar arrangements of promoter elements, FadR predominately regulates fabA expression whereas FabR is the dominant regulator of fabB expression. We also report that E. coli fabR expression is not autoregulated. Complementation, qRT-PCR and fatty acid composition analyses demonstrated that V. cholerae FabR was a functional repressor of unsaturated fatty acid synthesis. However, in contrast to E. coli, gel mobility shift assays indicated that neither E. coli nor V. cholerae FabRs bound the V. cholerae fabB promoter, although both proteins efficiently bound the V. cholerae fabA promoter. This asymmetry was shown to be due to the lack of a FabR binding site within the V. cholerae fabB promoter region.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
41
|
Contribution of the Rgg transcription regulator to metabolism and virulence of Streptococcus suis serotype 2. Infect Immun 2010; 79:1319-28. [PMID: 21149588 DOI: 10.1128/iai.00193-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rgg-like regulators, a family of transcription factors commonly found in many Gram-positive bacteria, play multiple roles, especially in the control of pathogen virulence. Here, we report an rgg homologue from a Chinese isolate, 05ZYH33, of Streptococcus suis serotype 2 (SS2). Deletion of the rgg gene in SS2 increased its adhesion to Hep-2 cells and hemolytic activity in vitro. Significantly, inactivation of the rgg gene attenuated SS2 virulence in an experimental piglet infection model. Using DNA microarrays and quantitative reverse transcription-PCR, we found that the Rgg regulator affects the transcriptional profile of 15.87% (n = 345) of all of the annotated chromosomal genes, including those involved in nonglucose carbohydrate metabolism, DNA recombination, protein biosynthesis, bacterial defense mechanisms, and others. It was experimentally verified that the deletion of rgg in SS2 reduced the utilization of nonglucose carbohydrates, such as lactose and maltose. In addition, the rgg gene was found to be associated with changes in the bacterial microscopic phenotype and growth curve. These data suggested that Rgg in SS2 is a global transcriptional regulator that plays an important role in promoting SS2 bacterial survival during pathogen-host interaction.
Collapse
|
42
|
Reyes-Caballero H, Guerra AJ, Jacobsen FE, Kazmierczak KM, Cowart D, Koppolu UMK, Scott RA, Winkler ME, Giedroc DP. The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor. J Mol Biol 2010; 403:197-216. [PMID: 20804771 DOI: 10.1016/j.jmb.2010.08.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/14/2010] [Accepted: 08/16/2010] [Indexed: 12/11/2022]
Abstract
Streptococcus pneumoniae D39 AdcR (adhesin competence repressor) is the first metal-sensing member of the MarR (multiple antibiotic resistance repressor) family to be characterized. Expression profiling with a ΔadcR strain grown in liquid culture (brain-heart infusion) under microaerobic conditions revealed upregulation of 13 genes, including adcR and adcCBA, encoding a high-affinity ABC uptake system for zinc, and genes encoding cell-surface zinc-binding pneumococcal histidine triad (Pht) proteins and AdcAII (Lmb, laminin binding). The ΔadcR, H108Q and H112Q adcR mutant allelic strains grown in 0.2 mM Zn(II) exhibit a slow-growth phenotype and an approximately twofold increase in cell-associated Zn(II). Apo- and Zn(II)-bound AdcR are homodimers in solution and binding to a 28-mer DNA containing an adc operator is strongly stimulated by Zn(II) with K(DNA-Zn)=2.4 × 10(8) M(-1) (pH 6.0, 0.2 M NaCl, 25 °C). AdcR binds two Zn(II) per dimer, with stepwise Zn(II) affinities K(Zn1) and K(Zn2) of ≥10(9) M(-1) at pH 6.0 and ≥10(12) M(-1) at pH 8.0, and one to three lower affinity Zn(II) depending on the pH. X-ray absorption spectroscopy of the high-affinity site reveals a pentacoordinate N/O complex and no cysteine coordination, the latter finding corroborated by wild type-like functional properties of C30A AdcR. Alanine substitution of conserved residues His42 in the DNA-binding domain, and His108 and His112 in the C-terminal regulatory domain, abolish high-affinity Zn(II) binding and greatly reduce Zn(II)-activated binding to DNA. NMR studies reveal that these mutants adopt the same folded conformation as dimeric wild type apo-AdcR, but fail to conformationally switch upon Zn(II) binding. These studies implicate His42, His108 and H112 as metalloregulatory zinc ligands in S. pneumoniae AdcR.
Collapse
|
43
|
Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA. J Bacteriol 2010; 192:4289-99. [PMID: 20622065 DOI: 10.1128/jb.00516-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli fadH encodes a 2,4-dienoyl reductase that plays an auxiliary role in beta-oxidation of certain unsaturated fatty acids. In the 2 decades since its discovery, FadH biochemistry has been studied extensively. However, the genetic regulation of FadH has been explored only partially. Here we report mapping of the fadH promoter and document its complex regulation by three independent regulators, the fatty acid degradation FadR repressor, the oxygen-responsive ArcA-ArcB two-component system, and the cyclic AMP receptor protein-cyclic AMP (CRP-cAMP) complex. Electrophoretic mobility shift assays demonstrated that FadR binds to the fadH promoter region and that this binding can be specifically reversed by long-chain acyl-coenzyme A (CoA) thioesters. In vivo data combining transcriptional lacZ fusion and real-time quantitative PCR (qPCR) analyses indicated that fadH is strongly repressed by FadR, in agreement with induction of fadH by long-chain fatty acids. Inactivation of arcA increased fadH transcription by >3-fold under anaerobic conditions. Moreover, fadH expression was increased 8- to 10-fold under anaerobic conditions upon deletion of both the fadR and the arcA gene, indicating that anaerobic expression is additively repressed by FadR and ArcA-ArcB. Unlike fadM, a newly reported member of the E. coli fad regulon that encodes another auxiliary beta-oxidation enzyme, fadH was activated by the CRP-cAMP complex in a manner similar to those of the prototypical fad genes. In the absence of the CRP-cAMP complex, repression of fadH expression by both FadR and ArcA-ArcB was very weak, suggesting a possible interplay with other DNA binding proteins.
Collapse
|
44
|
Feng Y, Zhang H, Ma Y, Gao GF. Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol 2010; 18:124-31. [PMID: 20071175 DOI: 10.1016/j.tim.2009.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 01/31/2023]
Abstract
Streptococcus suis is recognized as a major swine pathogen and an emerging zoonotic agent. Two large-scale outbreaks of severe S. suis epidemics occurred in China in 1998 and 2005 that posed serious concerns to public health and challenged the conventional conception that opportunistic infections of S. suis serotype 2 (SS2) in humans were only sporadic cases. An extensive, collaborative study on Chinese SS2 variants, which exhibit strong invasiveness and high pathogenicity, has resulted in the description of a new disease form of streptococcal toxic shock syndrome (STSS) and a putative pathogenicity island (termed 89K). The abbreviation of STSS is used for the severe disease caused by both Staphylococci and Streptococci. The main virulence factors involved in STSS caused by either Staphylococcus aureus or Streptococcus pyogenes consist of so-called superantigens or molecules that trigger a nonspecific, uncontrolled activation of T cells and massive cytokine release. However, although a collection of new virulence factors have been described, no superantigen candidates have been found for SS2 strains, implying that a different mechanism could be involved in the STSS form caused by SS2 variants.
Collapse
Affiliation(s)
- Youjun Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
45
|
Schröder J, Jochmann N, Rodionov DA, Tauch A. The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 2010; 11:12. [PMID: 20055984 PMCID: PMC2823685 DOI: 10.1186/1471-2164-11-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 01/07/2010] [Indexed: 12/30/2022] Open
Abstract
Background Zinc is considered as an essential element for all living organisms, but it can be toxic at large concentrations. Bacteria therefore tightly regulate zinc metabolism. The Cg2502 protein of Corynebacterium glutamicum was a candidate to control zinc metabolism in this species, since it was classified as metalloregulator of the zinc uptake regulator (Zur) subgroup of the ferric uptake regulator (Fur) family of DNA-binding transcription regulators. Results The cg2502 (zur) gene was deleted in the chromosome of C. glutamicum ATCC 13032 by an allelic exchange procedure to generate the zur-deficient mutant C. glutamicum JS2502. Whole-genome DNA microarray hybridizations and real-time RT-PCR assays comparing the gene expression in C. glutamicum JS2502 with that of the wild-type strain detected 18 genes with enhanced expression in the zur mutant. The expression data were combined with results from cross-genome comparisons of shared regulatory sites, revealing the presence of candidate Zur-binding sites in the mapped promoter regions of five transcription units encoding components of potential zinc ABC-type transporters (cg0041-cg0042/cg0043; cg2911-cg2912-cg2913), a putative secreted protein (cg0040), a putative oxidoreductase (cg0795), and a putative P-loop GTPase of the COG0523 protein family (cg0794). Enhanced transcript levels of the respective genes in C. glutamicum JS2502 were verified by real-time RT-PCR, and complementation of the mutant with a wild-type zur gene reversed the effect of differential gene expression. The zinc-dependent expression of the putative cg0042 and cg2911 operons was detected in vivo with a gfp reporter system. Moreover, the zinc-dependent binding of purified Zur protein to double-stranded 40-mer oligonucleotides containing candidate Zur-binding sites was demonstrated in vitro by DNA band shift assays. Conclusion Whole-genome expression profiling and DNA band shift assays demonstrated that Zur directly represses in a zinc-dependent manner the expression of nine genes organized in five transcription units. Accordingly, the Zur (Cg2502) protein is the key transcription regulator for genes involved in zinc homeostasis in C. glutamicum.
Collapse
Affiliation(s)
- Jasmin Schröder
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
46
|
Feng Y, Shi X, Zhang H, Zhang S, Ma Y, Zheng B, Han H, Lan Q, Tang J, Cheng J, Gao GF, Hu Q. Recurrence of HumanStreptococcus suisInfections in 2007: Three Cases of Meningitis and Implications that HeterogeneousS. suis2 Circulates in China. Zoonoses Public Health 2009; 56:506-14. [DOI: 10.1111/j.1863-2378.2008.01225.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Feng Y, Cronan JE. Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 2009; 284:29526-35. [PMID: 19679654 PMCID: PMC2785586 DOI: 10.1074/jbc.m109.023440] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/06/2009] [Indexed: 11/06/2022] Open
Abstract
Although the unsaturated fatty acid (UFA) synthetic pathway of Escherichia coli is the prototype of such pathways, several unresolved issues have accumulated over the years. The key players are the fabA and fabB genes. Earlier studies of fabA transcription showed that the gene was transcribed from two promoters, with one being positively regulated by the FadR protein. The other weaker promoter (which could not be mapped with the technology then available) was considered constitutive because its function was independent of FadR. However, the FabR negative regulator was recently shown to represses fabA transcription. We report that the weak promoter overlaps the FadR-dependent promoter and is regulated by FabR. This promoter is strictly conserved in all E. coli and Salmonella enterica genomes sequenced to date and is thought to provide insurance against inappropriate regulation of fabA transcription by exogenous saturated fatty acids. Also, the fabAup promoter, a mutant promoter previously isolated by selection for increased FabA activity, was shown to be a promoter created de novo by a four-base deletion within the gene located immediately upstream of fabA. Demonstration of the key UFA synthetic reaction catalyzed by FabB has been elusive, although it was known to catalyze an elongation reaction. Strains lacking FabB are UFA auxotrophs indicating that the enzyme catalyzes an essential step in UFA synthesis. Using thioesterases specific for hydrolysis of short chain acyl-ACPs, the intermediates of the UFA synthetic pathway have been followed in vivo for the first time. These experiments showed that a fabB mutant strain accumulated less cis-5-dodecenoic acid than the parental wild-type strain. These data indicate that the key reaction in UFA synthesis catalyzed by FabB is elongation of the cis-3-decenoyl-ACP produced by FabA.
Collapse
Affiliation(s)
| | - John E. Cronan
- From the Departments of Microbiology and
- Biochemistry, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
48
|
Feng Y, Cronan JE. A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW). J Bacteriol 2009; 191:6320-8. [PMID: 19684132 PMCID: PMC2753046 DOI: 10.1128/jb.00835-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/09/2009] [Indexed: 11/20/2022] Open
Abstract
Recently, Nie and coworkers (L. Nie, Y. Ren, A. Janakiraman, S. Smith, and H. Schulz, Biochemistry 47:9618-9626, 2008) reported a new Escherichia coli thioesterase encoded by the ybaW gene that cleaves the thioester bonds of inhibitory acyl-coenzyme A (CoA) by-products generated during beta-oxidation of certain unsaturated fatty acids. These authors suggested that ybaW expression might be regulated by FadR, the repressor of the fad (fatty acid degradation) regulon. We report mapping of the ybaW promoter and show that ybaW transcription responded to FadR in vivo. Moreover, purified FadR bound to a DNA sequence similar to the canonical FadR binding site located upstream of the ybaW coding sequence and was released from the promoter upon the addition of long-chain acyl-CoA thioesters. We therefore propose the designation fadM in place of ybaW. Although FadR regulation of fadM expression had the pattern typical of fad regulon genes, its modulation by the cyclic AMP (cAMP) receptor protein-cAMP complex (CRP-cAMP) global regulator was the opposite of that normally observed. CRP-cAMP generally acts as an activator of fad gene expression, consistent with the low status of fatty acids as carbon sources. However, glucose growth stimulated fadM expression relative to acetate growth, as did inactivation of CRP-cAMP, indicating that the complex acts as a negative regulator of this gene. The stimulation of fadM expression seen upon deletion of the gene encoding adenylate cyclase (Deltacya) was reversed by supplementation of the growth medium with cAMP. Nie and coworkers also reported that growth on a conjugated linoleic acid isomer yields much higher levels of FadM thioesterase activity than does growth on oleic acid. In contrast, we found that the conjugated linoleic acid isomer was only a weak inducer of fadM expression. Although the gene is not essential for growth, the high basal level of fadM expression under diverse growth conditions suggests that the encoded thioesterase has functions in addition to beta-oxidation.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
49
|
Ge J, Feng Y, Ji H, Zhang H, Zheng F, Wang C, Yin Z, Pan X, Tang J. Inactivation of dipeptidyl peptidase IV attenuates the virulence of Streptococcus suis serotype 2 that causes streptococcal toxic shock syndrome. Curr Microbiol 2009; 59:248-55. [PMID: 19484301 DOI: 10.1007/s00284-009-9425-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 11/30/2022]
Abstract
Di-peptidyl peptidase IV (DPP IV), originally recognized as CD26 in eukaryotic cells, is distributed widely in microbial pathogens, including Streptococcus suis (S. suis), an emerging zoonotic agent. However, the role of DPP IV in S. suis virulence remains unclear. Here, we identified a dpp IV homologue from highly invasive isolate of S. suis 2 (SS2) causing streptococcal toxic shock syndrome (STSS). Enzymatic assays reproduced its enzymatic activity of dpp IV protein product as a functional DPP IV, and ELISA analysis demonstrated that SS2 DPP IV can interact with human fibronectin. An isogenic SS2 mutant of dpp IV, Delta dpp IV, was obtained by homologous recombination. Experimental animal infection suggested that an inactivation of dpp IV attenuates greatly its high virulence of Chinese virulent strains of SS2. Functional complementation can restore this defect in SS2 pathogenicity. To our knowledge, it may confirm, for the first time, that DPP IV contributes to SS2 virulence.
Collapse
Affiliation(s)
- Junchao Ge
- The College of Life Science, Nanjing Normal University, 210046, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 2009; 73:233-48. [PMID: 19487727 DOI: 10.1128/mmbr.00005-09] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria live in environments that are subject to rapid changes in the availability of the nutrients that are necessary to provide energy and biosynthetic intermediates for the synthesis of macromolecules. Consequently, bacterial survival depends on the ability of bacteria to regulate the expression of genes coding for enzymes required for growth in the altered environment. In pathogenic bacteria, adaptation to an altered environment often includes activating the transcription of virulence genes; hence, many virulence genes are regulated by environmental and nutritional signals. Consistent with this observation, the regulation of most, if not all, virulence determinants in staphylococci is mediated by environmental and nutritional signals. Some of these external signals can be directly transduced into a regulatory response by two-component regulators such as SrrAB; however, other external signals require transduction into intracellular signals. Many of the external environmental and nutritional signals that regulate virulence determinant expression can also alter bacterial metabolic status (e.g., iron limitation). Altering the metabolic status results in the transduction of external signals into intracellular metabolic signals that can be "sensed" by regulatory proteins (e.g., CodY, Rex, and GlnR). This review uses information derived primarily using Bacillus subtilis and Escherichia coli to articulate how gram-positive pathogens, with emphasis on Staphylococcus aureus and Staphylococcus epidermidis, regulate virulence determinant expression in response to a changing environment.
Collapse
|