1
|
Gao H, Ye J, Zhao R, Zhan M, Yang G, Yu R. Pluripotency of endogenous AHL-mediated quorum sensing in adaptation and recovery of biological nitrogen removal system under ZnO nanoparticle long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156911. [PMID: 35753480 DOI: 10.1016/j.scitotenv.2022.156911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The impacts of quorum sensing (QS) on nanoparticle (NP)-stressed biological nitrogen removal (BNR) system have seldom been addressed yet. In this study, the contributions of endogenous N-acyl-homoserine lactone (AHL)-based QS regulation to the BNR system's adaptation to the zinc oxide (ZnO) NP stress and its recovery potential were systematically investigated. Although 1 mg/L ZnO NPs exerted little impact on the BNR system, chronic exposure to 10 mg/L ones depressed the system's BNR performance which irreversibly impaired the nitrification process even when the system entered the recovery period with no NP added anymore. Meanwhile, ZnO NPs exhibited hormesis effects on the production of AHLs and extracellular polymeric substance (EPS), and activities of superoxide dismutase and catalase. During the ZnO NP exposure period, C4-HSL, C6-HSL, and C10-HSL were discovered to be positively associated with nitrogen removal efficiency, tightly-bound EPS production, and antioxidase activities. Besides, the shifts of Nitrospira, Dechloromonas, Aeromonas, Acinetobacter, Delftia, and Bosea were expected to determine the AHL's dynamic distribution. During the system's recovery stage, Dechloromonas replaced Candidatus_Competibacter as the dominant denitrification-related genus. Dechloromonas abundance elevated with the increased contents of C4-HSL in the aqueous and EPS phases and C10-HSL in EPS and sludge phases, and were expected to promote the activities of BNR-related and antioxidant enzymes, and the EPS production to assist in the recovery of the impaired system's BNR performance. The QS-related BNR genera exhibited higher resilience to ZnO NPs than quorum quenching-related ones, indicating their critical role in nitrogen removal in the restored system. This work provided an insight into the potential pluripotency of AHL-based QS regulation on the ZnO NP-stressed BNR system's adaptation and recovery.
Collapse
Affiliation(s)
- Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China
| | - Guangping Yang
- Chinair Envir. Sci-Tech Co., Ltd., Nanjing, Jiangsu 210019, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
2
|
How KY, Hong KW, Sam CK, Koh CL, Yin WF, Chan KG. Unravelling the genome of long chain N-acylhomoserine lactone-producing Acinetobacter sp. strain GG2 and identification of its quorum sensing synthase gene. Front Microbiol 2015; 6:240. [PMID: 25926817 PMCID: PMC4396500 DOI: 10.3389/fmicb.2015.00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/11/2015] [Indexed: 12/22/2022] Open
Abstract
Myriad proteobacteria use N-acyl homoserine lactone (AHL) molecules as quorum sensing (QS) signals to regulate different physiological functions, including virulence, antibiotic production, and biofilm formation. Many of these proteobacteria possess LuxI/LuxR system as the QS mechanism. Recently, we reported the 3.89 Mb genome of Acinetobacter sp. strain GG2. In this work, the genome of this long chain AHL-producing bacterium was unravelled which led to the molecular characterization of luxI homologue, designated as aciI. This 552 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was ∼20.5 kDa and is highly similar to several autoinducer proteins of LuxI family among Acinetobacter species. To verify the AHL synthesis activity of this protein, high-resolution liquid chromatography–mass spectrometry analysis revealed the production of 3-oxo-dodecanoyl-homoserine lactone and 3-hydroxy-dodecanoyl-homoserine lactone from induced E. coli harboring the recombinant AciI. Our data show for the first time, the cloning and characterization of the luxI homologue from Acinetobacter sp. strain GG2, and confirmation of its AHLs production. These data are of great significance as the annotated genome of strain GG2 has provided a valuable insight in the study of autoinducer molecules and its roles in QS mechanism of the bacterium.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Kar-Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Choon-Kook Sam
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Chong-Lek Koh
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Draft Genome Sequence of Aeromonas caviae Strain L12, a Quorum-Sensing Strain Isolated from a Freshwater Lake in Malaysia. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00079-15. [PMID: 25745006 PMCID: PMC4358393 DOI: 10.1128/genomea.00079-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we present the draft genome sequence of Aeromonas caviae strain L12, which shows quorum-sensing activity. The availability of this genome sequence is important to the research of the quorum-sensing regulatory system in this isolate.
Collapse
|
4
|
Whole-Genome Sequence of Quorum-Sensing Vibrio tubiashii Strain T33. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01362-14. [PMID: 25555738 PMCID: PMC4293625 DOI: 10.1128/genomea.01362-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio tubiashii strain T33 was isolated from the coastal waters of Morib, Malaysia, and was shown to possess quorum-sensing activity similar to that of its famous relative Vibrio fischeri. Here, the assembly and annotation of its genome are presented.
Collapse
|
5
|
Chan KG. Expression ofKlebsiellasp. lactonaseahlKgene is growth-phase, cell-population density andN-acylhomoserine lactone independent. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.833141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Chen JW, Chin S, Tee KK, Yin WF, Choo YM, Chan KG. N-acyl homoserine lactone-producing Pseudomonas putida strain T2-2 from human tongue surface. SENSORS 2013; 13:13192-203. [PMID: 24084113 PMCID: PMC3859058 DOI: 10.3390/s131013192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/28/2013] [Accepted: 09/22/2013] [Indexed: 01/30/2023]
Abstract
Bacterial cell-to-cell communication (quorum sensing) refers to the regulation of bacterial gene expression in response to changes in microbial population density. Quorum sensing bacteria produce, release and respond to chemical signal molecules called autoinducers. Bacteria use two types of autoinducers, namely autoinducer-1 (AI-1) and autoinducer-2 (AI-2) where the former are N-acylhomoserine lactones and the latter is a product of the luxS gene. Most of the reported literatures show that the majority of oral bacteria use AI-2 for quorum sensing but rarely the AI-1 system. Here we report the isolation of Pseudomonas putida strain T2-2 from the oral cavity. Using high resolution mass spectrometry, it is shown that this isolate produced N-octanoylhomoserine lactone (C8-HSL) and N-dodecanoylhomoserine lactone (C12-HSL) molecules. This is the first report of the finding of quorum sensing of P. putida strain T2-2 isolated from the human tongue surface and their quorum sensing molecules were identified.
Collapse
Affiliation(s)
- Jian-Woon Chen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (J.-W.C.); (S.C.); (W.-F.Y.)
| | - Shenyang Chin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (J.-W.C.); (S.C.); (W.-F.Y.)
| | - Kok Keng Tee
- Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mail:
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (J.-W.C.); (S.C.); (W.-F.Y.)
| | - Yeun Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mail:
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (J.-W.C.); (S.C.); (W.-F.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-7967-5162; Fax: +603-7967-4509
| |
Collapse
|
7
|
Wong CS, Koh CL, Sam CK, Chen JW, Chong YM, Yin WF, Chan KG. Degradation of bacterial quorum sensing signaling molecules by the microscopic yeast Trichosporon loubieri isolated from tropical wetland waters. SENSORS 2013; 13:12943-57. [PMID: 24072030 PMCID: PMC3859043 DOI: 10.3390/s131012943] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/08/2013] [Accepted: 09/12/2013] [Indexed: 11/16/2022]
Abstract
Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.
Collapse
Affiliation(s)
- Cheng-Siang Wong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
| | - Chong-Lek Koh
- Natural Sciences and Science Education AG, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; E-Mails: (C.-L.K.); (C.-K.S.)
| | - Choon-Kook Sam
- Natural Sciences and Science Education AG, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; E-Mails: (C.-L.K.); (C.-K.S.)
| | - Jian Woon Chen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
| | - Yee Meng Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-7967-5162; Fax: +603-7967-4509
| |
Collapse
|