1
|
Garcia NS, Du M, Guindani M, McIlvin MR, Moran DM, Saito MA, Martiny AC. Proteome trait regulation of marine Synechococcus elemental stoichiometry under global change. THE ISME JOURNAL 2024; 18:wrae046. [PMID: 38513256 PMCID: PMC11020310 DOI: 10.1093/ismejo/wrae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Recent studies have demonstrated regional differences in marine ecosystem C:N:P with implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient stress explain variability in C:N:P equally well. A reductionistic approach can link changes in individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we quantified effects of temperature and nutrient stress on Synechococcus chemistry using laboratory chemostats, chemical analyses, and data-independent acquisition mass spectrometry proteomics. Nutrient supply accounted for most C:N:Pcell variability and induced tradeoffs between nutrient acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal effects via the "translation-compensation hypothesis" were only seen under P-stress. A Nonparametric Bayesian Local Clustering algorithm suggested that changes in lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P regulation. Physiological responses match field-based trends in ecosystem stoichiometry and suggest a hierarchical environmental regulation of current and future ocean C:N:P.
Collapse
Affiliation(s)
- Nathan S Garcia
- Department of Earth System Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Mingyu Du
- Department of Statistics, University of California, Irvine, Irvine, CA 92697, United States
| | - Michele Guindani
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, Irvine, CA 92697, United States
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, United States
| |
Collapse
|
2
|
Miyauchi H, Ishikawa T, Hirakawa Y, Sudou A, Okada K, Hijikata A, Sato N, Tsuzuki M, Fujiwara S. Cellular response of Parachlorella kessleri to a solid surface culture environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1175080. [PMID: 37342150 PMCID: PMC10277731 DOI: 10.3389/fpls.2023.1175080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
Attached culture allows high biomass productivity and is a promising biomass cultivating system because neither a huge facility area nor a large volume of culture medium are needed. This study investigates photosynthetic and transcriptomic behaviors in Parachlorella kessleri cells on a solid surface after their transfer from liquid culture to elucidate the physiological and gene-expression regulatory mechanisms that underlie their vigorous proliferation. The chlorophyll content shows a decrease at 12 h after the transfer; however, it has fully recovered at 24 h, suggesting temporary decreases in the amounts of light harvesting complexes. On PAM analysis, it is demonstrated that the effective quantum yield of PSII decreases at 0 h right after the transfer, followed by its recovery in the next 24 h. A similar changing pattern is observed for the photochemical quenching, with the PSII maximum quantum yield remaining at an almost unaltered level. Non-photochemical quenching was increased at both 0 h and 12 h after the transfer. These observations suggest that electron transfer downstream of PSII but not PSII itself is only temporarily damaged in solid-surface cells just after the transfer, with light energy in excess being dissipated as heat for PSII protection. It thus seems that the photosynthetic machinery acclimates to high-light and/or dehydration stresses through its temporal size-down and functional regulation that start right after the transfer. Meanwhile, transcriptomic analysis by RNA-Seq demonstrates temporary upregulation at 12 h after the transfer as to the expression levels of many genes for photosynthesis, amino acid synthesis, general stress response, and ribosomal subunit proteins. These findings suggest that cells transferred to a solid surface become stressed immediately after transfer but can recover their high photosynthetic activity through adaptation of photosynthetic machinery and metabolic flow as well as induction of general stress response mechanisms within 24 h.
Collapse
|
3
|
Yadav A, Maertens L, Meese T, Van Nieuwerburgh F, Mysara M, Leys N, Cuypers A, Janssen PJ. Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle. Microorganisms 2021; 9:1626. [PMID: 34442705 PMCID: PMC8400943 DOI: 10.3390/microorganisms9081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h-1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.
Collapse
Affiliation(s)
- Anu Yadav
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Laurens Maertens
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Mohamed Mysara
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Natalie Leys
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Paul Jaak Janssen
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| |
Collapse
|
4
|
Abstract
Hsp70 proteins are among the most ubiquitous chaperones and play important roles in maintaining proteostasis and resisting environmental stress. Multiple copies of Hsp70s are widely present in eukaryotic cells with redundant and divergent functions, but they have been less well investigated in prokaryotes. Myxococcus xanthus DK1622 is annotated as having many hsp70 genes. In this study, we performed a bioinformatic analysis of Hsp70 proteins and investigated the functions of six hsp70 genes in DK1622, including two genes that encode proteins with the conserved PRK00290 domain (MXAN_3192 and MXAN_6671) and four genes that encode proteins with the cl35085 or cd10170 domain. We found that only MXAN_3192 is essential for cell survival and heat shock induction. MXAN_3192, compared with the other hsp70 genes, has a high transcriptional level, far exceeding that of any other hsp70 gene, which, however, is not the reason for its essentiality. Deletion of MXAN_6671 (sglK) led to multiple deficiencies in development, social motility, and oxidative resistance, while deletion of each of the other four hsp70 genes decreased sporulation and oxidative resistance. MXAN_3192 or sglK, but not the other genes, restored the growth deficiency of the E. colidnaK mutant. Our results demonstrated that the PRK00290 proteins play a central role in the complex cellular functions of M. xanthus, while the other diverse Hsp70 superfamily homologues probably evolved as helpers with some unknown specific functions. IMPORTANCE Hsp70 proteins are highly conserved chaperones that occur in all kingdoms of life. Multiple copies of Hsp70s are often present in genome-sequenced prokaryotes, especially taxa with complex life cycles, such as myxobacteria. We investigated the functions of six hsp70 genes in Myxococcus xanthus DK1622 and demonstrated that the two Hsp70 proteins with the PRK00290 domain play a central role in complex cellular functions in M. xanthus, while other Hsp70 proteins probably evolved as helpers with some unknown specific functions.
Collapse
|
5
|
Akter T, Nakamoto H. pH-regulated chaperone function of cyanobacterial Hsp90 and Hsp70: Implications for light/dark regulation. J Biochem 2021; 170:463-471. [PMID: 33993259 DOI: 10.1093/jb/mvab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
We have shown that cyanobacterial chaperonins have pH-dependent anti-aggregation activity. The pH in cyanobacterial cytosol increases by one pH unit following a shift from darkness to light. In the present study, we examined whether other major chaperones such as Hsp90 (HtpG) and Hsp70 (DnaK2) from the cyanobacterium Synechococcus elongatus PCC7942 also display pH-dependent activity. Suppressing aggregation of various heat-denatured proteins, especially lactate dehydrogenase, at an equimolar ratio of cyanobacterial Hsp90 to protein substrate was found to be pH-dependent. Hsp90 showed the highest activity at pH 8.5 over the examined pH range of 7.0 to 8.5. pH affected the anti-aggregation activity of DnaK2 in a similar manner to that of Hsp90 in the presence of half equimolar DnaK2 to the protein substrate. The ATPase activity of cyanobacterial Hsp90 was pH-dependent, with a four-fold increase in activity when the pH was raised from 7.0 to 8.5. The ATPase activity of DnaK2 was also regulated by pH in a similar manner. Finally, an increase in pH from 7.0 to 8.5 enhanced activities of both Hsp90 and Hsp70 in protein-folding assistance by two- to three-fold. These results suggest that changes in pH may regulate chaperone function during a light-dark cycle in cyanobacterial cells.
Collapse
Affiliation(s)
- Tahmina Akter
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| |
Collapse
|
6
|
Düppre E, Schneider D. The J- and G/F-domains of the major Synechocystis DnaJ protein Sll0897 are sufficient for cell viability but not for heat resistance. FEBS Open Bio 2020; 10:2343-2349. [PMID: 32965069 PMCID: PMC7609799 DOI: 10.1002/2211-5463.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022] Open
Abstract
Hsp70 proteins and their Hsp40 co‐chaperones are essential components of cellular chaperone networks in both prokaryotes and eukaryotes. Here, we performed a genetic analysis to define the protein domains required for the key functions of the major Hsp40/DnaJ protein Sll0897 of the cyanobacterium Synechocystis sp. PCC6803. The expression of the N‐terminally located J‐ and G/F‐domains is essential and sufficient for the proteins’ fundamental in vivo functions, whereas the presence of the full‐length protein, containing the C‐terminal substrate‐binding domains, is crucial under stress conditions.
Collapse
Affiliation(s)
- Eva Düppre
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
7
|
Saito M, Watanabe S, Nimura-Matsune K, Yoshikawa H, Nakamoto H. Regulation of the groESL1 transcription by the HrcA repressor and a novel transcription factor Orf7.5 in the cyanobacterium Synechococcus elongatus PCC7942. J GEN APPL MICROBIOL 2020; 66:85-92. [PMID: 32281544 DOI: 10.2323/jgam.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The CIRCE/HrcA system is highly conserved in cyanobacterial genomes. We have shown that heat-shock induction of the groESL1 operon in the cyanobacterium Synechocystis sp. PCC6803 is negatively regulated by the CIRCE/HrcA system. In Synechococcus elongatus PCC7942, a novel heat shock protein, Orf7.5, is involved in positive regulation of the groESL1 transcription. However, Orf7.5 is not conserved in some cyanobacteria, including Synechocystis sp. PCC6803. The purpose of this study is to evaluate the functional conservation of the CIRCE/HrcA system in S. elongatus PCC7942 and to understand the interplay between the CIRCE/HrcA system and the Orf7.5 regulatory system. We constructed single and double mutants of S. elongatus orf7.5, hrcA and orf7.5/hrcA and heat induction of the groESL1 transcription in these mutants was analyzed. Unexpectedly, derepression of the groESL1 transcription in an hrcA mutant was not observed. In all these mutants, the transcription was greatly suppressed under both normal and heat stress conditions, indicating that both HrcA and Orf7.5 are involved in regulation of the groESL1 transcription in a positive way. Consistent with the decrease in the groESL1 mRNA level, all the single and double mutants showed a great loss of acquired thermotolerance. Heat induction of the orf7.5 promoter activity was totally diminished in the orf7.5 mutant, indicating that Orf7.5 activates its own transcription. Yeast two hybrid analysis showed that the principle sigma factor RpoD1 interacts with Orf7.5. These results indicate that Orf7.5 enhances the transcription of groESL1 and orf7.5 by interacting with RpoD1.
Collapse
Affiliation(s)
- Masakazu Saito
- Department of Bioscience, Tokyo University of Agriculture.,Molecular Biology Course, Graduate School of Science and Engineering, Saitama University
| | | | | | | | - Hitoshi Nakamoto
- Molecular Biology Course, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
8
|
Barriot R, Latour J, Castanié-Cornet MP, Fichant G, Genevaux P. J-Domain Proteins in Bacteria and Their Viruses. J Mol Biol 2020; 432:3771-3789. [DOI: 10.1016/j.jmb.2020.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
|
9
|
Siebenaller C, Junglas B, Schneider D. Functional Implications of Multiple IM30 Oligomeric States. FRONTIERS IN PLANT SCIENCE 2019; 10:1500. [PMID: 31824532 PMCID: PMC6882379 DOI: 10.3389/fpls.2019.01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
The inner membrane-associated protein of 30 kDa (IM30), also known as the vesicle-inducing protein in plastids 1 (Vipp1), is essential for photo-autotrophic growth of cyanobacteria, algae and higher plants. While its exact function still remains largely elusive, it is commonly accepted that IM30 is crucially involved in thylakoid membrane biogenesis, stabilization and/or maintenance. A characteristic feature of IM30 is its intrinsic propensity to form large homo-oligomeric protein complexes. 15 years ago, it has been reported that these supercomplexes have a ring-shaped structure. However, the in vivo significance of these ring structures is not finally resolved yet and the formation of more complex assemblies has been reported. We here present and discuss research on IM30 conducted within the past 25 years with a special emphasis on the question of why we potentially need IM30 supercomplexes in vivo.
Collapse
Affiliation(s)
| | | | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Cordara A, Manfredi M, van Alphen P, Marengo E, Pirone R, Saracco G, Branco Dos Santos F, Hellingwerf KJ, Pagliano C. Response of the thylakoid proteome of Synechocystis sp. PCC 6803 to photohinibitory intensities of orange-red light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:524-534. [PMID: 30316162 DOI: 10.1016/j.plaphy.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Photoautotrophic growth of Synechocystis sp. PCC 6803 in a flat-panel photobioreactor, run in turbidostat mode under increasing intensities of orange-red light (636 nm), showed a maximal growth rate (0.12 h-1) at 300 μmolphotons m-2 s-1, whereas first signs of photoinhibition were detected above 800 μmolphotons m-2 s-1. To investigate the dynamic modulation of the thylakoid proteome in response to photoinhibitory light intensities, quantitative proteomics analyses by SWATH mass spectrometry were performed by comparing thylakoid membranes extracted from Synechocystis grown under low-intensity illumination (i.e. 50 μmolphotons m-2 s-1) with samples isolated from cells subjected to photoinhibitory light regimes (800, 950 and 1460 μmolphotons m-2 s-1). We identified and quantified 126 proteins with altered abundance in all three photoinhibitory illumination regimes. These data reveal the strategies by which Synechocystis responds to photoinibitory growth irradiances of orange-red light. The accumulation of core proteins of Photosystem II and reduction of oxygen-evolving-complex subunits in photoinhibited cells revealed a different turnover and repair rates of the integral and extrinsic Photosystem II subunits with variation of light intensity. Furthermore, Synechocystis displayed a differentiated response to photoinhibitory regimes also regarding Photosystem I: the amount of PsaD, PsaE, PsaJ and PsaM subunits decreased, while there was an increased abundance of the PsaA, PsaB, Psak2 and PsaL proteins. Photoinhibition with 636 nm light also elicited an increased capacity for cyclic electron transport, a lowering of the amount of phycobilisomes and an increase of the orange carotenoid protein content, all presumably as a photoprotective mechanism against the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Alessandro Cordara
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy; Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Pascal van Alphen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Emilio Marengo
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Raffaele Pirone
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Guido Saracco
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy.
| |
Collapse
|
11
|
Nakamoto H, Kojima K. Non-housekeeping, non-essential GroEL (chaperonin) has acquired novel structure and function beneficial under stress in cyanobacteria. PHYSIOLOGIA PLANTARUM 2017; 161:296-310. [PMID: 28597961 DOI: 10.1111/ppl.12595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
GroELs which are prokaryotic members of the chaperonin (Cpn)/Hsp60 family are molecular chaperones of which Escherichia coli GroEL is a model for subsequent research. The majority of bacterial species including E. coli and Bacillus subtilis have only one essential groEL gene that forms an operon with the co-chaperone groES gene. In contrast to these model bacteria, two or three groEL genes exist in cyanobacterial genomes. One of them, groEL2, does not form an operon with the groES gene, whereas the other(s) does. In the case of cyanobacteria containing two GroEL homologs, one of the GroELs, GroEL1, substitutes for the native GroEL in an E. coli cell, but GroEL2 does not. Unlike the E. coli GroEL, GroEL2 is not essential, but it plays an important role which is not substitutable by GroEL1 under stress. Regulation of expression and biochemical properties of GroEL2 are different/diversified from GroEL1 and E. coli GroEL in many aspects. We postulate that the groEL2 gene has acquired a novel, beneficial function especially under stresses and become preserved by natural selection, with the groEL1 gene retaining the original, house-keeping function. In this review, we will focus on difference between the two GroELs in cyanobacteria, and divergence of GroEL2 from the E. coli GroEL. We will also compare cyanobacterial GroELs with the chloroplast Cpns (60α and 60β) which are thought to be evolved from the cyanobacterial GroEL1. Chloroplast Cpns appear to follow the different path from cyanobacterial GroELs in the evolution after gene duplication of the corresponding ancestral groEL gene.
Collapse
Affiliation(s)
- Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kouji Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Peng X, Yang J, Gao Y. Proteomic Analyses of Changes in Synechococcus sp. PCC7942 Following UV-C Stress. Photochem Photobiol 2017; 93:1073-1080. [PMID: 28120393 DOI: 10.1111/php.12726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
UV-C's effects on the physiological and biochemical processes of cyanobacteria have been well characterized. However, the molecular mechanisms of cyanobacteria's tolerance to UV-C still need further investigation. This research attempts to decode the variation in protein abundances in cyanobacteria after UV-C stress. Different expression levels of proteins in the cytoplasm of Synechococcus sp. PCC7942 under UV-C stress were investigated using a comparative proteomic approach. In total, 47 UV-C-regulated proteins were identified by MALDI-TOF analysis and classified by Gene Ontology (GO). After studying their pathways, the proteins were mainly enriched in the groups of protein folding, inorganic ion transport and energy production. By focusing on these areas, this study reveals the correlation between UV-C stress-responsive proteins and the physiological changes of Synechococcus sp. PCC7942 under UV-C radiation. These findings may open up new areas for further exploration in the homeostatic mechanisms associated with cyanobacteria responses to UV-C radiation.
Collapse
Affiliation(s)
- Xi Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Jie Yang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yang Gao
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Kobayashi I, Watanabe S, Kanesaki Y, Shimada T, Yoshikawa H, Tanaka K. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942. Mol Microbiol 2017; 104:260-277. [PMID: 28106321 DOI: 10.1111/mmi.13624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 11/28/2022]
Abstract
Bacteria and other organisms, including cyanobacteria, employ two-component signal transducing modules comprising histidine kinases and response regulators to acclimate to changing environments. While the number and composition of these modules differ among cyanobacteria, two response regulators that contain DNA binding domains, RpaB and Rre1, are conserved in all sequenced cyanobacterial genomes and are essential for viability. Although RpaB negatively or positively regulates high light and other stress-responsive gene expression, little is known about the function of Rre1. Here, they investigated the direct regulatory targets of Rre1 in the cyanobacterium Synechococcus elongatus PCC 7942. Chromatin immunoprecipitation and high-density tiling array analysis were used to map Rre1 binding sites. The sites included promoter regions for chaperone genes such as dnaK2, groESL-1, groEL-2, hspA and htpG, as well as the group 2 sigma factor gene rpoD2. In vivo and in vitro analyses revealed that Rre1 phosphorylation level, DNA binding activity and adjacent gene transcription increased in response to heat stress. These responses were much diminished in a knock-out mutant of Hik34, a previously identified heat shock regulator. Based on our results, we propose Hik34-Rre1 is the heat shock-responsive signaling module that positively regulates major chaperone and other genes in cyanobacteria.
Collapse
Affiliation(s)
- Ikki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Graduate School of Interdisciplinary Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-29, Midori-ku, Yokohama, 226-8503, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tomohiro Shimada
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| |
Collapse
|
14
|
Gaber A, Hassan MM, El-Awady MA. The overproduction of Synechocystissp. PCC 6803 heat-shock protein (Sll0170) protects Escherichia coliagainst high-temperature stress. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1074056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Watanabe S, Ohbayashi R, Kanesaki Y, Saito N, Chibazakura T, Soga T, Yoshikawa H. Intensive DNA Replication and Metabolism during the Lag Phase in Cyanobacteria. PLoS One 2015; 10:e0136800. [PMID: 26331851 PMCID: PMC4558043 DOI: 10.1371/journal.pone.0136800] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryudo Ohbayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Yu Kanesaki
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Natsumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
- * E-mail:
| |
Collapse
|
16
|
Comparative Biochemical Characterization of Two GroEL Homologs from the CyanobacteriumSynechococcus elongatusPCC 7942. Biosci Biotechnol Biochem 2014; 74:2273-80. [DOI: 10.1271/bbb.100493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Exploration of a Possible Partnership among Orphan Two-Component System Proteins in CyanobacteriumSynechococcus elongatusPCC 7942. Biosci Biotechnol Biochem 2014; 76:1484-91. [DOI: 10.1271/bbb.120172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Rajaram H, Chaurasia AK, Apte SK. Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology (Reading) 2014; 160:647-658. [DOI: 10.1099/mic.0.073478-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria constitute a morphologically diverse group of oxygenic photoautotrophic microbes which range from unicellular to multicellular, and non-nitrogen-fixing to nitrogen-fixing types. Sustained long-term exposure to changing environmental conditions, during their three billion years of evolution, has presumably led to their adaptation to diverse ecological niches. The ability to maintain protein conformational homeostasis (folding–misfolding–refolding or aggregation–degradation) by molecular chaperones holds the key to the stress adaptability of cyanobacteria. Although cyanobacteria possess several genes encoding DnaK and DnaJ family proteins, these are not the most abundant heat-shock proteins (Hsps), as is the case in other bacteria. Instead, the Hsp60 family of proteins, comprising two phylogenetically conserved proteins, and small Hsps are more abundant during heat stress. The contribution of the Hsp100 (ClpB) family of proteins and of small Hsps in the unicellular cyanobacteria (Synechocystis and Synechococcus) as well as that of Hsp60 proteins in the filamentous cyanobacteria (Anabaena) to thermotolerance has been elucidated. The regulation of chaperone genes by several cis-elements and trans-acting factors has also been well documented. Recent studies have demonstrated novel transcriptional and translational (mRNA secondary structure) regulatory mechanisms in unicellular cyanobacteria. This article provides an insight into the heat-shock response: its organization, and ecophysiological regulation and role of molecular chaperones, in unicellular and filamentous nitrogen-fixing cyanobacterial strains.
Collapse
Affiliation(s)
- Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - Akhilesh Kumar Chaurasia
- Samsung Biomedical Research Institute, School of Medicine, SKKU, Suwon, 440-746 Republic of Korea
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| |
Collapse
|
19
|
Synechocystis PCC6803 and PCC6906 dnaK2 expression confers salt and oxidative stress tolerance in Arabidopsis via reduction of hydrogen peroxide accumulation. Mol Biol Rep 2014; 41:1091-101. [DOI: 10.1007/s11033-013-2955-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 12/20/2013] [Indexed: 12/22/2022]
|
20
|
Castanié-Cornet MP, Bruel N, Genevaux P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1442-56. [PMID: 24269840 DOI: 10.1016/j.bbamcr.2013.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Nascent polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytosolic, integral membrane or exported proteins. Extensive genetic and biochemical analyses have significantly expanded our knowledge of chaperone tasking throughout this process. In bacteria, it is known that the folding of newly-synthesized cytosolic proteins is mainly orchestrated by three highly conserved molecular chaperones, namely Trigger Factor (TF), DnaK (HSP70) and GroEL (HSP60). Yet, it has been reported that these major chaperones are strongly involved in protein translocation pathways as well. This review describes such essential molecular chaperone functions, with emphasis on both the biogenesis of inner membrane proteins and the post-translational targeting of presecretory proteins to the Sec and the twin-arginine translocation (Tat) pathways. Critical interplay between TF, DnaK, GroEL and other molecular chaperones and targeting factors, including SecB, SecA, the signal recognition particle (SRP) and the redox enzyme maturation proteins (REMPs) is also discussed. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Nicolas Bruel
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
21
|
Wang Y, Zhang WY, Zhang Z, Li J, Li ZF, Tan ZG, Zhang TT, Wu ZH, Liu H, Li YZ. Mechanisms involved in the functional divergence of duplicated GroEL chaperonins in Myxococcus xanthus DK1622. PLoS Genet 2013; 9:e1003306. [PMID: 23437010 PMCID: PMC3578752 DOI: 10.1371/journal.pgen.1003306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/20/2012] [Indexed: 12/24/2022] Open
Abstract
The gene encoding the GroEL chaperonin is duplicated in nearly 30% of bacterial genomes; and although duplicated groEL genes have been comprehensively determined to have distinct physiological functions in different species, the mechanisms involved have not been characterized to date. Myxococcus xanthus DK1622 has two copies of the groEL gene, each of which can be deleted without affecting cell viability; however, the deletion of either gene does result in distinct defects in the cellular heat-shock response, predation, and development. In this study, we show that, from the expression levels of different groELs, the distinct functions of groEL1 and groEL2 in predation and development are probably the result of the substrate selectivity of the paralogous GroEL chaperonins, whereas the lethal effect of heat shock due to the deletion of groEL1 is caused by a decrease in the total groEL expression level. Following a bioinformatics analysis of the composition characteristics of GroELs from different bacteria, we performed region-swapping assays in M. xanthus, demonstrating that the differences in the apical and the C-terminal equatorial regions determine the substrate specificity of the two GroELs. Site-directed mutagenesis experiments indicated that the GGM repeat sequence at the C-terminus of GroEL1 plays an important role in functional divergence. Divergent functions of duplicated GroELs, which have similar patterns of variation in different bacterial species, have thus evolved mainly via alteration of the apical and the C-terminal equatorial regions. We identified the specific substrates of strain DK1622's GroEL1 and GroEL2 using immunoprecipitation and mass spectrometry techniques. Although 68 proteins bound to both GroEL1 and GroEL2, 83 and 46 proteins bound exclusively to GroEL1 or GroEL2, respectively. The GroEL-specific substrates exhibited distinct molecular sizes and secondary structures, providing an encouraging indication for GroEL evolution for functional divergence.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Wen-yan Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Jian Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Zai-gao Tan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Tian-tian Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Zhi-hong Wu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Hong Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
22
|
Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L. Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 2012; 51:208-20. [PMID: 22484828 DOI: 10.1016/j.plipres.2012.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/29/2022]
Abstract
The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing evidence has shown that many stress events cause HSP induction without commensurate protein denaturation. This has led to the membrane sensor hypothesis where the membrane's physical and structural properties play an initiating role in the heat shock response. In this review, we discuss heat-induced modulation of the membrane's physical state and changes to these properties which can be brought about by interaction with HSPs. Heat stress also leads to changes in lipid-based signaling cascades and alterations in calcium transport and availability. Such observations emphasize the importance of membranes and their lipids in the heat shock response and provide a new perspective for guiding further studies into the mechanisms that mediate cellular and organismal responses to heat stress.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biol. Res. Centre, Hungarian Acad. Sci., Temesvári krt. 62, H-6734 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vothknecht UC, Otters S, Hennig R, Schneider D. Vipp1: a very important protein in plastids?! JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1699-712. [PMID: 22131161 DOI: 10.1093/jxb/err357] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a key feature in oxygenic photosynthesis, thylakoid membranes play an essential role in the physiology of plants, algae, and cyanobacteria. Despite their importance in the process of oxygenic photosynthesis, their biogenesis has remained a mystery to the present day. A decade ago, vesicle-inducing protein in plastids 1 (Vipp1) was described to be involved in thylakoid membrane formation in chloroplasts and cyanobacteria. Most follow-up studies clearly linked Vipp1 to membranes and Vipp1 interactions as well as the defects observed after Vipp1 depletion in chloroplasts and cyanobacteria indicate that Vipp1 directly binds to membranes, locally stabilizes bilayer structures, and thereby retains membrane integrity. Here current knowledge about the structure and function of Vipp1 is summarized with a special focus on its relationship to the bacterial phage shock protein A (PspA), as both proteins share a common origin and appear to have retained many similarities in structure and function.
Collapse
Affiliation(s)
- Ute C Vothknecht
- Department of Biology I, LMU Munich, D-82152 Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
24
|
Differential regulation of groESL operon expression in response to heat and light in Anabaena. Arch Microbiol 2010; 192:729-38. [DOI: 10.1007/s00203-010-0601-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
|
25
|
Abstract
A significant proportion of bacteria express two or more chaperonin genes. Chaperonins are a group of molecular chaperones, defined by sequence similarity, required for the folding of some cellular proteins. Chaperonin monomers have a mass of c. 60 kDa, and are typically found as large protein complexes containing 14 subunits arranged in two rings. The mechanism of action of the Escherichia coli GroEL protein has been studied in great detail. It acts by binding to unfolded proteins and enabling them to fold in a protected environment where they do not interact with any other proteins. GroEL can assist the folding of many proteins of different sizes, sequences, and structures, and homologues from many different bacteria can functionally replace GroEL in E. coli. What then are the functions of multiple chaperonins? Do they provide a mechanism for cells to increase their general chaperoning ability, or have they become specialized to take on specific novel cellular roles? Here I will review the genetic, biochemical, and phylogenetic evidence that has a bearing on this question, and show that there is good evidence for at least some specificity of function in multiple chaperonin genes.
Collapse
Affiliation(s)
- Peter A Lund
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
26
|
Sato S, Ikeuchi M, Nakamoto H. Expression and function of agroELparalog in the thermophilic cyanobacteriumThermosynechococcuselongatusunder heat and cold stress. FEBS Lett 2008; 582:3389-95. [DOI: 10.1016/j.febslet.2008.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|