1
|
Ren J, Oh SH, Na D. Untranslated region engineering strategies for gene overexpression, fine-tuning, and dynamic regulation. J Microbiol 2025; 63:e2501033. [PMID: 40195839 DOI: 10.71150/jm.2501033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Precise and tunable gene expression is crucial for various biotechnological applications, including protein overexpression, fine-tuned metabolic pathway engineering, and dynamic gene regulation. Untranslated regions (UTRs) of mRNAs have emerged as key regulatory elements that modulate transcription and translation. In this review, we explore recent advances in UTR engineering strategies for bacterial gene expression optimization. We discuss approaches for enhancing protein expression through AU-rich elements, RG4 structures, and synthetic dual UTRs, as well as ProQC systems that improve translation fidelity. Additionally, we examine strategies for fine-tuning gene expression using UTR libraries and synthetic terminators that balance metabolic flux. Finally, we highlight riboswitches and toehold switches, which enable dynamic gene regulation in response to environmental or metabolic cues. The integration of these UTR-based regulatory tools provides a versatile and modular framework for optimizing bacterial gene expression, enhancing metabolic engineering, and advancing synthetic biology applications.
Collapse
Affiliation(s)
- Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Hee Oh
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Carrier MC, Lalaouna D, Massé E. Hfq protein and GcvB small RNA tailoring of oppA target mRNA to levels allowing translation activation by MicF small RNA in Escherichia coli. RNA Biol 2023; 20:59-76. [PMID: 36860088 PMCID: PMC9988348 DOI: 10.1080/15476286.2023.2179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Lalaouna
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
3
|
Lee HM, Ren J, Kim WY, Vo PNL, Eyun SI, Na D. Introduction of an AU-rich Element into the 5’ UTR of mRNAs Enhances Protein Expression in Escherichia coli by S1 Protein and Hfq Protein. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0348-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Improved Dynamic Range of a Rhamnose-Inducible Promoter for Gene Expression in Burkholderia spp. Appl Environ Microbiol 2021; 87:e0064721. [PMID: 34190606 DOI: 10.1128/aem.00647-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A diverse genetic toolkit is critical for understanding bacterial physiology and genotype-phenotype relationships. Inducible promoter systems are an integral part of this toolkit. In Burkholderia and related species, the l-rhamnose-inducible promoter is among the first choices due to its tight control and the lack of viable alternatives. To improve upon its maximum activity and dynamic range, we explored the effect of promoter system modifications in Burkholderia cenocepacia with a LacZ-based reporter. By combining the bacteriophage T7 gene 10 stem-loop and engineered rhaI transcription factor-binding sites, we obtained a rhamnose-inducible system with a 6.5-fold and 3.0-fold increases in maximum activity and dynamic range, respectively, compared to the native promoter. We then added the modified promoter system to pSCrhaB2 and pSC201, common genetic tools used for plasmid-based and chromosome-based gene expression, respectively, in Burkholderia, creating pSCrhaB2plus and pSC201plus. We demonstrated the utility of pSCrhaB2plus for gene expression in B. thailandensis, B. multivorans, and B. vietnamiensis and used pSC201plus to control highly expressed essential genes from the chromosome of B. cenocepacia. The utility of the modified system was demonstrated as we recovered viable mutants to control ftsZ, rpoBC, and rpsF, whereas the unmodified promoter was unable to control rpsF. The modified expression system allowed control of an essential gene depletion phenotype at lower levels of l-rhamnose, the inducer. pSCRhaB2plus and pSC201plus are expected to be valuable additions to the genetic toolkit for Burkholderia and related species. IMPORTANCE Species of Burkholderia are dually recognized as being of attractive biotechnological potential but also opportunistic pathogens for immunocompromised individuals. Understanding the genotype-phenotype relationship is critical for synthetic biology approaches in Burkholderia to disentangle pathogenic from beneficial traits. A diverse genetic toolkit, including inducible promoters, is the foundation for these investigations. Thus, we sought to improve on the commonly used rhamnose-inducible promoter system. Our modifications resulted in both higher levels of heterologous protein expression and broader control over highly expressed essential genes in B. cenocepacia. The significance of our work is in expanding the genetic toolkit to enable more comprehensive studies into Burkholderia and related bacteria.
Collapse
|
5
|
Carrier MC, Ng Kwan Lim E, Jeannotte G, Massé E. Trans-Acting Effectors Versus RNA Cis-Elements: A Tightly Knit Regulatory Mesh. Front Microbiol 2021; 11:609237. [PMID: 33384678 PMCID: PMC7769764 DOI: 10.3389/fmicb.2020.609237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic organisms often react instantly to environmental variations to ensure their survival. They can achieve this by rapidly and specifically modulating translation, the critical step of protein synthesis. The translation machinery responds to an array of cis-acting elements, located on the RNA transcript, which dictate the fate of mRNAs. These cis-encoded elements, such as RNA structures or sequence motifs, interact with a variety of regulators, among them small regulatory RNAs. These small regulatory RNAs (sRNAs) are especially effective at modulating translation initiation through their interaction with cis-encoded mRNA elements. Here, through selected examples of canonical and non-canonical regulatory events, we demonstrate the intimate connection between mRNA cis-encoded features and sRNA-dependent translation regulation. We also address how sRNA-based mechanistic studies can drive the discovery of new roles for cis-elements. Finally, we briefly overview the challenges of using translation regulation by synthetic regulators as a tool.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Evelyne Ng Kwan Lim
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Jeannotte
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Romilly C, Lippegaus A, Wagner E. An RNA pseudoknot is essential for standby-mediated translation of the tisB toxin mRNA in Escherichia coli. Nucleic Acids Res 2020; 48:12336-12347. [PMID: 33231643 PMCID: PMC7708055 DOI: 10.1093/nar/gkaa1139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 01/20/2023] Open
Abstract
In response to DNA damage, Escherichia coli cells activate the expression of the toxin gene tisB of the toxin-antitoxin system tisB-istR1. Of three isoforms, only the processed, highly structured +42 tisB mRNA is active. Translation requires a standby site, composed of two essential elements: a single-stranded region located 100 nucleotides upstream of the sequestered RBS, and a structure near the 5'-end of the active mRNA. Here, we propose that this 5'-structure is an RNA pseudoknot which is required for 30S and protein S1-alone binding to the mRNA. Point mutations that prevent formation of this pseudoknot inhibit formation of translation initiation complexes, impair S1 and 30S binding to the mRNA, and render the tisB mRNA non-toxic in vivo. A set of mutations created in either the left or right arm of stem 2 of the pseudoknot entailed loss of toxicity upon overexpression of the corresponding mRNA variants. Combining the matching right-left arm mutations entirely restored toxicity levels to that of the wild-type, active mRNA. Finally, since many pseudoknots have high affinity for S1, we predicted similar pseudoknots in non-homologous type I toxin-antitoxin systems that exhibit features similar to that of tisB-IstR1, suggesting a shared requirement for standby acting at great distances.
Collapse
MESH Headings
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Base Pairing
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Nucleic Acid Conformation
- Point Mutation
- Protein Binding
- Protein Biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Toxin-Antitoxin Systems/genetics
Collapse
Affiliation(s)
- Cédric Romilly
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - Anne Lippegaus
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| |
Collapse
|
7
|
Sterk M, Romilly C, Wagner EGH. Unstructured 5'-tails act through ribosome standby to override inhibitory structure at ribosome binding sites. Nucleic Acids Res 2019; 46:4188-4199. [PMID: 29420821 PMCID: PMC5934652 DOI: 10.1093/nar/gky073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
Initiation is the rate-limiting step in translation. It is well-known that stable structure at a ribosome binding site (RBS) impedes initiation. The ribosome standby model of de Smit and van Duin, based on studies of the MS2 phage coat cistron, proposed how high translation rates can be reconciled with stable, inhibitory structures at an RBS. Here, we revisited the coat protein system and assessed the translation efficiency from its sequestered RBS by introducing standby mutations. Further experiments with gfp reporter constructs assessed the effects of 5′-tails—as standby sites—with respect to length and sequence contributions. In particular, combining in vivo and in vitro assays, we can show that tails of CA-dinucleotide repeats—and to a lesser extent, AU-repeats—dramatically increase translation rates. Tails of increasing length reach maximal rate-enhancing effects at 16–18 nucleotides. These standby tails are single-stranded and do not exert their effect by structure changes in the neighboring RBS stem–loop. In vitro translation and toeprinting assays furthermore demonstrate that standby effects are exerted at the level of translation initiation. Finally, as expected, destabilizing mutations within the coat RBS indicate an interplay with the effects of standby tails.
Collapse
Affiliation(s)
- Maaike Sterk
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| | - Cédric Romilly
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| |
Collapse
|
8
|
Li T, Weng Y, Ma X, Tian B, Dai S, Jin Y, Liu M, Li J, Yu J, Hua Y. Deinococcus radiodurans Toxin-Antitoxin MazEF-dr Mediates Cell Death in Response to DNA Damage Stress. Front Microbiol 2017; 8:1427. [PMID: 28798741 PMCID: PMC5526972 DOI: 10.3389/fmicb.2017.01427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/14/2017] [Indexed: 01/30/2023] Open
Abstract
Here we identified a functional MazEF-dr system in the exceptionally stress-resistant bacterium D. radiodurans. We showed that overexpression of the toxin MazF-dr inhibited the growth of Escherichia coli. The toxic effect of MazF-dr was due to its sequence-specific endoribonuclease activity on RNAs containing a consensus 5′ACA3′, and it could be neutralized by MazE-dr. The MazF-dr showed a special cleavage preference for the nucleotide present before the ACA sequence with the order by U>A>G>C. MazEF-dr mediated the death of D. radiodurans cells under sub-lethal dose of stresses. The characteristics of programmed cell death (PCD) including membrane blebbing, loss of membrane integrity and cytoplasm condensation occurred in a fraction of the wild-type population at sub-lethal concentration of the DNA damaging agent mitomycin C (MMC); however, a MazEF-dr mutation relieved the cell death, suggesting that MazEF-dr mediated cell death through its endoribonuclease activity in response to DNA damage stress. The MazEF-dr-mediated cell death of a fraction of the population might serve as a survival strategy for the remaining population of D. radiodurans under DNA damage stress.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Yulan Weng
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Xiaoqiong Ma
- Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| | - Bing Tian
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Shang Dai
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Ye Jin
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Mengjia Liu
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Jiulong Li
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Jiangliu Yu
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Yuejin Hua
- Key Laboratory of Nuclear Agricultural Science of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
9
|
Arbel-Goren R, Tal A, Parasar B, Dym A, Costantino N, Muñoz-García J, Court DL, Stavans J. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli. Nucleic Acids Res 2016; 44:6707-20. [PMID: 27085802 PMCID: PMC5001584 DOI: 10.1093/nar/gkw273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli. In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts’ threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation.
Collapse
Affiliation(s)
- Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaf Tal
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bibudha Parasar
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alvah Dym
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Costantino
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Javier Muñoz-García
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel Departamento de Matemáticas and GISC, Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Donald L Court
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Aseev LV, Bylinkina NS, Boni IV. Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria. RNA (NEW YORK, N.Y.) 2015; 21:851-61. [PMID: 25749694 PMCID: PMC4408793 DOI: 10.1261/rna.047381.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/22/2014] [Indexed: 05/09/2023]
Abstract
Ribosomal protein (r-protein) L25 is one of the three r-proteins (L25, L5, L18) that interact with 5S rRNA in eubacteria. Specific binding of L25 with a certain domain of 5S r-RNA, a so-called loop E, has been studied in detail, but information about regulation of L25 synthesis has remained totally lacking. In contrast to the rplE (L5) and rplR (L18) genes that belong to the polycistronic spc-operon and are regulated at the translation level by r-protein S8, the rplY (L25) gene forms an independent transcription unit. The main goal of this work was to study the regulation of the rplY expression in vivo. We show that the rplY promoter is down-regulated by ppGpp and its cofactor DksA in response to amino acid starvation. At the level of translation, the rplY expression is subjected to the negative feedback control. The 5'-untranslated region of the rplY mRNA comprises specific sequence/structure features, including an atypical SD-like sequence, which are highly conserved in a subset of gamma-proteobacterial families. Despite the lack of a canonical SD element, the rplY'-'lacZ single-copy reporter showed unusually high translation efficiency. Expression of the rplY gene in trans decreased the translation yield, indicating the mechanism of autogenous repression. Site-directed mutagenesis of the rplY 5' UTR revealed an important role of the conserved elements in the translation control. Thus, the rplY expression regulation represents one more example of regulatory pathways that control ribosome biogenesis in Escherichia coli and related bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Natalia S Bylinkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia Moscow Institute of Physics and Technology, 141700, Moscow Region, Dolgoprudny, Russia
| | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| |
Collapse
|
11
|
Benjamin JAM, Massé E. The iron-sensing aconitase B binds its own mRNA to prevent sRNA-induced mRNA cleavage. Nucleic Acids Res 2014; 42:10023-36. [PMID: 25092924 PMCID: PMC4150767 DOI: 10.1093/nar/gku649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aconitase is an iron–sulfur protein and a major enzyme of the TCA cycle that catalyzes the conversion of citrate to isocitrate under iron-rich conditions. In Escherichia coli, aconitase B (AcnB) is a typical moonlighting protein that can switch to its apo form (apo-AcnB) which favors binding its own mRNA 3′UTR and stabilize it when intracellular iron become scarce. The small regulatory RNA (sRNA) RyhB has previously been shown to promote RNase E-dependent degradation of acnB mRNA when it was expressed from an ectopic arabinose-dependent promoter, independently of intracellular iron levels. In marked contrast, we report here that expression of RyhB under low-iron conditions did not result in acnB mRNA degradation even when RyhB was bound to acnB ribosome binding site (RBS). Genetic and biochemical evidence suggested that, under low-iron conditions, apo-AcnB bound to acnB 3′UTR close to a RNase E cleavage site that is essential for RyhB-induced acnB mRNA degradation. Whereas RyhB can block acnB translation initiation, RNase E-dependent degradation of acnB was prevented by apo-AcnB binding close to the cleavage site. This previously uncharacterized regulation suggests an intricate post-transcriptional mechanism that represses protein expression while insuring mRNA stability.
Collapse
Affiliation(s)
- Julie-Anna M Benjamin
- Department of Biochemistry, RNA Group, University of Sherbrooke, 3201 Jean Mignault Street, Sherbrooke, Quebec J1E 4K8, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, University of Sherbrooke, 3201 Jean Mignault Street, Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|
12
|
Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. EMBO J 2013; 32:2764-78. [PMID: 24065131 DOI: 10.1038/emboj.2013.205] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022] Open
Abstract
The RNA chaperone Hfq is a key regulator of the function of small RNAs (sRNAs). Hfq has been shown to facilitate sRNAs binding to target mRNAs and to directly regulate translation through the action of sRNAs. Here, we present evidence that Hfq acts as the repressor of cirA mRNA translation in the absence of sRNA. Hfq binding to cirA prevents translation initiation, which correlates with cirA mRNA instability. In contrast, RyhB pairing to cirA mRNA promotes changes in RNA structure that displace Hfq, thereby allowing efficient translation as well as mRNA stabilization. Because CirA is a receptor for the antibiotic colicin Ia, in addition to acting as an Fur (Ferric Uptake Regulator)-regulated siderophore transporter, translational activation of cirA mRNA by RyhB promotes colicin sensitivity under conditions of iron starvation. Altogether, these results indicate that Fur and RyhB modulate an unexpected feed-forward loop mechanism related to iron physiology and colicin sensitivity.
Collapse
|
13
|
Fu L, Lu C. A novel dual vector coexpressing PhiX174 lysis E gene and staphylococcal nuclease A gene on the basis of lambda promoter pR and pL, respectively. Mol Biotechnol 2013; 54:436-44. [PMID: 22782703 DOI: 10.1007/s12033-012-9581-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacterial ghost is a novel vaccine platform, and its safe and efficient production depends largely upon a suitable and functional vector. In this study, a series of temperature-inducible plasmids, carrying Phix174 lysis gene E and/or staphylococcal nuclease A (SNA) gene, were constructed and evaluated in Escherichia coli. The results showed that the direct product of SNA (pBV220-SNA) could degrade the plasmid and genomic DNA of E. coli while the fusion product of gene E and partial Cro gene (pKF396M-2) lost the ability to lyse the host strain. The insertion of enhancer T7g10 elements and Shine-Dalgarno box (ESD) between them (pKF396M-3) could resume the function of gene E. Using plasmid pKF396M-4 with gene E and SNA, respectively, under the immediate control of promoter pR and pL, the remnant plasmids and genomic DNA of E. coli were eliminated, and the rates of inactivation increased by two orders of magnitude over that obtained with the exclusive use of E-mediated lysis plasmid. By substituting these two genes with customized multiple cloning sites sequences, the plasmid could be modified to a dual expression vector (pKF396M-5).
Collapse
Affiliation(s)
- Lixia Fu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
14
|
Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie 2012; 94:1544-53. [DOI: 10.1016/j.biochi.2012.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 01/16/2023]
|
15
|
Desnoyers G, Massé E. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev 2012; 26:726-39. [PMID: 22474262 DOI: 10.1101/gad.182493.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The RNA chaperone Hfq is mostly known to help small regulatory RNAs (sRNAs) interact with target mRNAs to block initiating ribosomes. In this model, whereas the sRNA is directly competing with initiating 30S ribosomal subunits, Hfq plays only an indirect role, allowing optimal sRNA-mRNA pairing. Here we report that Hfq is recruited by a sRNA, Spot42, to bind to a precise AU-rich region in the vicinity of the translation initiation region (TIR) of sdhC mRNA and competes directly with 30S ribosomal subunits. We show that the sRNA Spot42 binds sdhC too far upstream of the TIR to directly repress translation initiation in vitro and in vivo. Contrary to the canonical model of sRNA regulation, this suggests a new mechanism where Hfq is directly involved in the translational repression of the target mRNA and where the sRNA acts only as a recruitment factor.
Collapse
Affiliation(s)
- Guillaume Desnoyers
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | |
Collapse
|
16
|
Robust translation of the nucleoid protein Fis requires a remote upstream AU element and is enhanced by RNA secondary structure. J Bacteriol 2012; 194:2458-69. [PMID: 22389479 DOI: 10.1128/jb.00053-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of the Fis nucleoid protein rapidly increases in response to nutrient upshifts, and Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions. Previous work has shown that control of Fis synthesis occurs at transcription initiation of the dusB-fis operon. We show here that while translation of the dihydrouridine synthase gene dusB is low, unusual mechanisms operate to enable robust translation of fis. At least two RNA sequence elements located within the dusB coding region are responsible for high fis translation. The most important is an AU element centered 35 nucleotides (nt) upstream of the fis AUG, which may function as a binding site for ribosomal protein S1. In addition, a 44-nt segment located upstream of the AU element and predicted to form a stem-loop secondary structure plays a prominent role in enhancing fis translation. On the other hand, mutations close to the AUG, including over a potential Shine-Dalgarno sequence, have little effect on Fis protein levels. The AU element and stem-loop regions are phylogenetically conserved within dusB-fis operons of representative enteric bacteria.
Collapse
|
17
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
18
|
Alipour M, Gargari SLM, Rasooli I. Cloning, expression and immunogenicity of ferric enterobactin binding protein Fep B from Escherichia coli O157:H7. Indian J Microbiol 2009; 49:266-70. [PMID: 23100780 DOI: 10.1007/s12088-009-0044-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 09/09/2008] [Indexed: 01/04/2023] Open
Abstract
The gene coding for ferric enterobactin binding protein from E. coli O157:H7 was amplifi ed. This gene was cloned and expressed as C-terminal His (6)-tagged protein. The SDS-PAGE analysis of the total protein revealed only two distinct bands, with molecular masses of 31kDa and 34kDa. The Ni-NTA chromatography purifi ed FepB and the osmotically shocked periplasmic fraction of IPTG induced cells showed only a single band of 31 kDa. Polyclonal mouse antibody was raised against the recombinant protein during 4 weeks after immunization. Western blot analysis of the recombinant FepB with mouse antiserum revealeda single band of 31 kDa. Identification and purification of FepB helped reveal its appropriate molecular mass. Polyclonal antibody raised against the recombinant protein reacted with bacterial FepB. The recombinant protein FepB could have a protective effect against E. coli O157:H7 and might be useful as an effective vaccine.
Collapse
Affiliation(s)
- Majid Alipour
- Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | | |
Collapse
|