1
|
Ye F, Deng M, Sun Z, Op den Camp HJM, Wu J, Wang Y, Hong Y. What causes the urban river to look darker? An underestimated source of sulfide production in methanogenic metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136847. [PMID: 39672065 DOI: 10.1016/j.jhazmat.2024.136847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The blackening and increased smelling of waterbodies steadily affect urban aquatic ecology. Sulfide is recognized as the key substance responsible for the darkening of urban rivers. However, the pathway of sulfide production and the underling microbial mechanisms in urban rivers are not fully understood. This study executes a comprehensive approach to investigate mechanism of sulfide production within urban river sediments, integrating field survey, laboratory incubations, and metagenomic sequencing. The results reveal that both sulfide concentrations and sulfidogenic activities in darker river sediments are significantly higher than in lighter rivers. Both the sulfate-reducing bacteria (SRB) and methanogenic communities are closely related to the sulfide content in the sediments. The finding that inhibiting SRB enhanced the potential sulfide production rate suggests the importance of methanogen-derived processes as a sulfide source in sediments. Notably, the abundance of methylated thiol coenzyme M methyltransferase genes increased 53-fold upon after the continuous methionine amendment, confirming that methanogen-derived processes, rather than SRB-derived ones, dominated sulfide production when methylated sulfur compounds are abundant. Overall, this study highlights the potential significance of methanogenesis as a hitherto underestimated sulfide source in urban river sediments, providing valuable insights for optimizing strategies to prevent and mitigate the deterioration of urban aquatic ecosystems.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Minshi Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhaohong Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | | | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Bao J, Somvanshi T, Tian Y, Laird MG, Garcia PS, Schöne C, Rother M, Borrel G, Scheller S. Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans. FEBS J 2025. [PMID: 39887878 DOI: 10.1111/febs.17409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO2-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N5-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F420-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO2 is reduced to one methane with electrons from oxidizing four formate to four CO2, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO2 activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO2-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.
Collapse
Affiliation(s)
- Jichen Bao
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Tejas Somvanshi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Yufang Tian
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Maxime G Laird
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Pierre Simon Garcia
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, UMR CNRS6047, France
| | - Christian Schöne
- Institute of Microbiology, Technische Universität Dresden, Germany
| | - Michael Rother
- Institute of Microbiology, Technische Universität Dresden, Germany
| | - Guillaume Borrel
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, UMR CNRS6047, France
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
3
|
Bechtold EK, Ellenbogen JB, Villa JA, de Melo Ferreira DK, Oliverio AM, Kostka JE, Rich VI, Varner RK, Bansal S, Ward EJ, Bohrer G, Borton MA, Wrighton KC, Wilkins MJ. Metabolic interactions underpinning high methane fluxes across terrestrial freshwater wetlands. Nat Commun 2025; 16:944. [PMID: 39843444 PMCID: PMC11754854 DOI: 10.1038/s41467-025-56133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Current estimates of wetland contributions to the global methane budget carry high uncertainty, particularly in accurately predicting emissions from high methane-emitting wetlands. Microorganisms drive methane cycling, but little is known about their conservation across wetlands. To address this, we integrate 16S rRNA amplicon datasets, metagenomes, metatranscriptomes, and annual methane flux data across 9 wetlands, creating the Multi-Omics for Understanding Climate Change (MUCC) v2.0.0 database. This resource is used to link microbiome composition to function and methane emissions, focusing on methane-cycling microbes and the networks driving carbon decomposition. We identify eight methane-cycling genera shared across wetlands and show wetland-specific metabolic interactions in marshes, revealing low connections between methanogens and methanotrophs in high-emitting wetlands. Methanoregula emerged as a hub methanogen across networks and is a strong predictor of methane flux. In these wetlands it also displays the functional potential for methylotrophic methanogenesis, highlighting the importance of this pathway in these ecosystems. Collectively, our findings illuminate trends between microbial decomposition networks and methane flux while providing an extensive publicly available database to advance future wetland research.
Collapse
Affiliation(s)
- Emily K Bechtold
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jared B Ellenbogen
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jorge A Villa
- School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA, USA
| | | | - Angela M Oliverio
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Ruth K Varner
- Department of Earth Sciences and Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH, USA
| | - Sheel Bansal
- United States Geological Survey, Jamestown, ND, USA
| | - Eric J Ward
- University of Maryland, College Park, MD, USA
| | - Gil Bohrer
- Department of Civil, Environmental & Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Khamespanah E, Asad S, Vanak Z, Mehrshad M. Niche-Aware Metagenomic Screening for Enzyme Methioninase Illuminates Its Contribution to Metabolic Syntrophy. MICROBIAL ECOLOGY 2024; 87:141. [PMID: 39546027 PMCID: PMC11568061 DOI: 10.1007/s00248-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The single-step methioninase-mediated degradation of methionine (as a sulfur containing amino acid) is a reaction at the interface of carbon, nitrogen, sulfur, and methane metabolism in microbes. This enzyme also has therapeutic application due to its role in starving auxotrophic cancer cells. Applying our refined in silico screening pipeline on 33,469 publicly available genome assemblies and 1878 metagenome assembled genomes/single-cell amplified genomes from brackish waters of the Caspian Sea and the Fennoscandian Shield deep groundwater resulted in recovering 1845 methioninases. The majority of recovered methioninases belong to representatives of phyla Proteobacteria (50%), Firmicutes (29%), and Firmicutes_A (13%). Prevalence of methioninase among anaerobic microbes and in the anoxic deep groundwater together with the relevance of its products for energy conservation in anaerobic metabolism highlights such environments as desirable targets for screening novel methioninases and resolving its contribution to microbial metabolism and interactions. Among archaea, majority of detected methioninases are from representatives of Methanosarcina that are able to use methanethiol, the sulfur containing product from methionine degradation, as a precursor for methanogenesis. Branching just outside these archaeal methioninases in the phylogenetic tree, we recovered three methioninases belonging to representatives of Patescibacteria reconstructed from deep groundwater metagenomes. We hypothesize that methioninase in Patescibacteria could contribute to their syntrophic interactions where their methanogenic partners/hosts benefit from the produced 2-oxobutyrate and methanethiol. Our results underscore the significance of accounting for specific ecological niche in screening for enzyme variates with desired characteristics. Finally, complementing of our findings with experimental validation of methioninase activity confirms the potential of our in silico screening in clarifying the peculiar ecological role of methioninase in anoxic environments.
Collapse
Affiliation(s)
- Erfan Khamespanah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Zeynab Vanak
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
5
|
Buan NR, Metcalf WW. Transcriptional response of Methanosarcina acetivorans to repression of the energy-conserving methanophenazine: CoM-CoB heterodisulfide reductase enzyme HdrED. Microbiol Spectr 2024; 12:e0095724. [PMID: 39472004 PMCID: PMC11619418 DOI: 10.1128/spectrum.00957-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/10/2024] [Indexed: 12/08/2024] Open
Abstract
Methane-producing archaea are key organisms in the anaerobic carbon cycle. These organisms, also called methanogens, grow by converting substrate to methane gas in a process called methanogenesis. Previous research showed that the reduction of the terminal electron acceptor is the rate-limiting step in methanogenesis by Methanosarcina acetivorans. In order to gain insight into how the cells sense and respond to the availability of the terminal electron acceptor, we designed an experiment to deplete cells of the essential terminal oxidase enzyme, HdrED. We found that the depletion of HdrED in vivo results in a higher abundance of transcripts for methyltransferases (mtaC2, mtaB3, mtaC3), coenzyme B biosynthesis, C1 metabolism, and pyrimidine compounds. In most cases, these changes were distinct from transcript abundance changes observed during the transition from exponential growth to stationary phase cultures. These data implicate the methylotrophic methanogenesis regulator MsrC (MA4383) in CoM-S-S-CoB heterodisulfide sensing and indicate cells have a specific mechanism to sense intracellular ratio of CoM-S-S-CoB, coenzyme M, and coenzyme B thiols and further suggest transcripts encoding translation and methanogenesis functions are controlled by feed-forward regulation depending on substrate availability.IMPORTANCEMethanosarcina is an emerging model archaeon and synthetic biology platform for the production of renewable energy and sustainable chemicals to reduce dependence on petroleum. Research into metabolic networks and gene regulation in this organism and other methanogens will inform genome-scale metabolic modeling and microbial function prediction in uncultured or non-model anaerobes and archaea. This study suggests methanogens use unknown mechanisms to efficiently couple methanogenesis to gene regulation via CoM-S-S-CoB and ATP availability.
Collapse
Affiliation(s)
- Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - William W. Metcalf
- Department of Microbiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Tsola SL, Prevodnik AA, Sinclair LF, Sanders IA, Economou CK, Eyice Ö. Methanomethylovorans are the dominant dimethylsulfide-degrading methanogens in gravel and sandy river sediment microcosms. ENVIRONMENTAL MICROBIOME 2024; 19:51. [PMID: 39033282 PMCID: PMC11264916 DOI: 10.1186/s40793-024-00591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Rivers and streams are important components of the global carbon cycle and methane budget. However, our understanding of the microbial diversity and the metabolic pathways underpinning methylotrophic methane production in river sediments is limited. Dimethylsulfide is an important methylated compound, found in freshwater sediments. Yet, the magnitude of DMS-dependent methanogenesis nor the methanogens carrying out this process in river sediments have been explored before. This study addressed this knowledge gap in DMS-dependent methanogenesis in gravel and sandy river sediments. RESULTS Significant methane production via DMS degradation was found in all sediment microcosms. Sandy, less permeable river sediments had higher methane yields (83 and 92%) than gravel, permeable sediments (40 and 48%). There was no significant difference between the methanogen diversity in DMS-amended gravel and sandy sediment microcosms, which Methanomethylovorans dominated. Metagenomics data analysis also showed the dominance of Methanomethylovorans and Methanosarcina. DMS-specific methyltransferase genes (mts) were found in very low relative abundances whilst the methanol-, trimethylamine- and dimethylamine-specific methyltransferase genes (mtaA, mttB and mtbB) had the highest relative abundances, suggesting their involvement in DMS-dependent methanogenesis. CONCLUSIONS This is the first study demonstrating a significant potential for DMS-dependent methanogenesis in river sediments with contrasting geologies. Methanomethylovorans were the dominant methylotrophic methanogen in all river sediment microcosms. Methyltransferases specific to methylotrophic substrates other than DMS are likely key enzymes in DMS-dependent methanogenesis, highlighting their versatility and importance in the methane cycle in freshwater sediments, which would warrant further study.
Collapse
Affiliation(s)
- S L Tsola
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - A A Prevodnik
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - L F Sinclair
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - I A Sanders
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - C K Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ö Eyice
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Zhang S, Chen Y, Wang S, Yang Q, Leng H, Zhao P, Guo L, Dai L, Bai L, Cha G. The novel regulator HdrR controls the transcription of the heterodisulfide reductase operon hdrBCA in Methanosarcina barkeri. Appl Environ Microbiol 2024; 90:e0069124. [PMID: 38809047 PMCID: PMC11218639 DOI: 10.1128/aem.00691-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Methanogenic archaea play a key role in the global carbon cycle because these microorganisms remineralize organic compounds in various anaerobic environments. The microorganism Methanosarcina barkeri is a metabolically versatile methanogen, which can utilize acetate, methanol, and H2/CO2 to synthesize methane. However, the regulatory mechanisms underlying methanogenesis for different substrates remain unknown. In this study, RNA-seq analysis was used to investigate M. barkeri growth and gene transcription under different substrate regimes. According to the results, M. barkeri showed the best growth under methanol, followed by H2/CO2 and acetate, and these findings corresponded well with the observed variations in genes transcription abundance for different substrates. In addition, we identified a novel regulator, MSBRM_RS03855 (designated as HdrR), which specifically activates the transcription of the heterodisulfide reductase hdrBCA operon in M. barkeri. HdrR was able to bind to the hdrBCA operon promoter to regulate transcription. Furthermore, the structural model analyses revealed a helix-turn-helix domain, which is likely involved in DNA binding. Taken together, HdrR serves as a model to reveal how certain regulatory factors control the expression of key enzymes in the methanogenic pathway.IMPORTANCEThe microorganism Methanosarcina barkeri has a pivotal role in the global carbon cycle and contributes to global temperature homeostasis. The consequences of biological methanogenesis are far-reaching, including impacts on atmospheric methane and CO2 concentrations, agriculture, energy production, waste treatment, and human health. As such, reducing methane emissions is crucial to meeting set climate goals. The methanogenic activity of certain microorganisms can be drastically reduced by inhibiting the transcription of the hdrBCA operon, which encodes heterodisulfide reductases. Here, we provide novel insight into the mechanisms regulating hdrBCA operon transcription in the model methanogen M. barkeri. The results clarified that HdrR serves as a regulator of heterodisulfide reductase hdrBCA operon transcription during methanogenesis, which expands our understanding of the unique regulatory mechanisms that govern methanogenesis. The findings presented in this study can further our understanding of how genetic regulation can effectively reduce the methane emissions caused by methanogens.
Collapse
Affiliation(s)
- Sicheng Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yi Chen
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Shuxin Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qing Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Huan Leng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Pengyan Zhao
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Leizhou Guo
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lirong Dai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Guihong Cha
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
8
|
Richter M, Sattler C, Schöne C, Rother M. Pyruvate-dependent growth of Methanosarcina acetivorans. J Bacteriol 2024; 206:e0036323. [PMID: 38305193 PMCID: PMC10882976 DOI: 10.1128/jb.00363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Methanogenesis is a key step during anaerobic biomass degradation. Methanogenic archaea (methanogens) are the only organisms coupling methanogenic substrate conversion to energy conservation. The range of substrates utilized by methanogens is limited, with acetate and H2+CO2 being the ecologically most relevant. The only single methanogenic energy substrate containing more carbon-carbon bonds than acetate is pyruvate. Only the aggregate-forming, freshwater methanogen Methanosarcina barkeri Fusaro was shown to grow on this compound. Here, the pyruvate-utilizing capabilities of the single-celled, marine Methanosarcina acetivorans were addressed. Robust pyruvate-dependent, methanogenic, growth could be established by omitting CO2 from the growth medium. Growth rates which were independent of the pyruvate concentration indicated that M. acetivorans actively translocates pyruvate across the cytoplasmic membrane. When 2-bromoethanesulfonate (BES) inhibited methanogenesis to more than 99%, pyruvate-dependent growth was acetogenic and sustained. However, when methanogenesis was completely inhibited M. acetivorans did not grow on pyruvate. Analysis of metabolites showed that acetogenesis is used by BES-inhibited M. acetivorans as a sink for electrons derived from pyruvate oxidation and that other, thus far unidentified, metabolites are produced.IMPORTANCEThe known range of methanogenic growth substrates is very limited and M. acetivorans is only the second methanogenic species for which growth on pyruvate is demonstrated. Besides some commonalities, analysis of M. acetivorans highlights differences in pyruvate metabolism among Methanosarcina species. The observation that M. acetivorans probably imports pyruvate actively indicates that the capabilities for heterotrophic catabolism in methanogens may be underestimated. The mostly acetogenic growth of M. acetivorans on pyruvate with concomitant inhibition of methanogenesis confirms that energy conservation of methanogenic archaea can be independent of methane formation.
Collapse
Affiliation(s)
- Marcus Richter
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | | | - Christian Schöne
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Ellenbogen JB, Borton MA, McGivern BB, Cronin DR, Hoyt DW, Freire-Zapata V, McCalley CK, Varner RK, Crill PM, Wehr RA, Chanton JP, Woodcroft BJ, Tfaily MM, Tyson GW, Rich VI, Wrighton KC. Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost. mSystems 2024; 9:e0069823. [PMID: 38063415 PMCID: PMC10805028 DOI: 10.1128/msystems.00698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/24/2023] [Indexed: 01/24/2024] Open
Abstract
While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site's methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.IMPORTANCEWetlands are the biggest natural source of atmospheric methane (CH4) emissions, yet we have an incomplete understanding of the suite of microbial metabolism that results in CH4 formation. Specifically, methanogenesis from methylated compounds is excluded from all ecosystem models used to predict wetland contributions to the global CH4 budget. Though recent studies have shown methylotrophic methanogenesis to be active across wetlands, the broad climatic importance of the metabolism remains critically understudied. Further, some methylotrophic bacteria are known to produce methanogenic by-products like acetate, increasing the complexity of the microbial methylotrophic metabolic network. Prior studies of Stordalen Mire have suggested that methylotrophic methanogenesis is irrelevant in situ and have not emphasized the bacterial capacity for metabolism, both of which we countered in this study. The importance of our findings lies in the significant advancement toward unraveling the broader impact of methylotrophs in wetland methanogenesis and, consequently, their contribution to the terrestrial global carbon cycle.
Collapse
Affiliation(s)
- Jared B. Ellenbogen
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, USA
| | - Bridget B. McGivern
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, USA
| | - Dylan R. Cronin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David W. Hoyt
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Carmody K. McCalley
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Ruth K. Varner
- Department of Earth Sciences and Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, USA
| | - Patrick M. Crill
- Department of Geological Sciences, Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
| | - Richard A. Wehr
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Jeffrey P. Chanton
- Earth Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida, USA
| | - Ben J. Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Malak M. Tfaily
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Gene W. Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Virginia I. Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
10
|
Tsola SL, Zhu Y, Chen Y, Sanders IA, Economou CK, Brüchert V, Eyice Ö. Methanolobus use unspecific methyltransferases to produce methane from dimethylsulphide in Baltic Sea sediments. MICROBIOME 2024; 12:3. [PMID: 38172958 PMCID: PMC10762971 DOI: 10.1186/s40168-023-01720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In anoxic coastal and marine sediments, degradation of methylated compounds is the major route to the production of methane, a powerful greenhouse gas. Dimethylsulphide (DMS) is the most abundant biogenic organic sulphur compound in the environment and an abundant methylated compound leading to methane production in anoxic sediments. However, understanding of the microbial diversity driving DMS-dependent methanogenesis is limited, and the metabolic pathways underlying this process in the environment remain unexplored. To address this, we used anoxic incubations, amplicon sequencing, genome-centric metagenomics and metatranscriptomics of brackish sediments collected along the depth profile of the Baltic Sea with varying sulphate concentrations. RESULTS We identified Methanolobus as the dominant methylotrophic methanogens in all our DMS-amended sediment incubations (61-99%) regardless of their sulphate concentrations. We also showed that the mtt and mta genes (trimethylamine- and methanol-methyltransferases) from Methanolobus were highly expressed when the sediment samples were incubated with DMS. Furthermore, we did not find mtsA and mtsB (methylsulphide-methyltransferases) in metatranscriptomes, metagenomes or in the Methanolobus MAGs, whilst mtsD and mtsF were found 2-3 orders of magnitude lower in selected samples. CONCLUSIONS Our study demonstrated that the Methanolobus genus is likely the key player in anaerobic DMS degradation in brackish Baltic Sea sediments. This is also the first study analysing the metabolic pathways of anaerobic DMS degradation in the environment and showing that methylotrophic methane production from DMS may not require a substrate-specific methyltransferase as was previously accepted. This highlights the versatility of the key enzymes in methane production in anoxic sediments, which would have significant implications for the global greenhouse gas budget and the methane cycle. Video Abstract.
Collapse
Affiliation(s)
- S L Tsola
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Y Zhu
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Y Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - I A Sanders
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - C K Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - V Brüchert
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Ö Eyice
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
11
|
Tebbe DA, Gruender C, Dlugosch L, Lõhmus K, Rolfes S, Könneke M, Chen Y, Engelen B, Schäfer H. Microbial drivers of DMSO reduction and DMS-dependent methanogenesis in saltmarsh sediments. THE ISME JOURNAL 2023; 17:2340-2351. [PMID: 37880542 PMCID: PMC10689795 DOI: 10.1038/s41396-023-01539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Saltmarshes are highly productive environments, exhibiting high abundances of organosulfur compounds. Dimethylsulfoniopropionate (DMSP) is produced in large quantities by algae, plants, and bacteria and is a potential precursor for dimethylsulfoxide (DMSO) and dimethylsulfide (DMS). DMSO serves as electron acceptor for anaerobic respiration leading to DMS formation, which is either emitted or can be degraded by methylotrophic prokaryotes. Major products of these reactions are trace gases with positive (CO2, CH4) or negative (DMS) radiative forcing with contrasting effects on the global climate. Here, we investigated organic sulfur cycling in saltmarsh sediments and followed DMSO reduction in anoxic batch experiments. Compared to previous measurements from marine waters, DMSO concentrations in the saltmarsh sediments were up to ~300 fold higher. In batch experiments, DMSO was reduced to DMS and subsequently consumed with concomitant CH4 production. Changes in prokaryotic communities and DMSO reductase gene counts indicated a dominance of organisms containing the Dms-type DMSO reductases (e.g., Desulfobulbales, Enterobacterales). In contrast, when sulfate reduction was inhibited by molybdate, Tor-type DMSO reductases (e.g., Rhodobacterales) increased. Vibrionales increased in relative abundance in both treatments, and metagenome assembled genomes (MAGs) affiliated to Vibrio had all genes encoding the subunits of DMSO reductases. Molar conversion ratios of <1.3 CH4 per added DMSO were accompanied by a predominance of the methylotrophic methanogens Methanosarcinales. Enrichment of mtsDH genes, encoding for DMS methyl transferases in metagenomes of batch incubations indicate their role in DMS-dependent methanogenesis. MAGs affiliated to Methanolobus carried the complete set of genes encoding for the enzymes in methylotrophic methanogenesis.
Collapse
Affiliation(s)
- Dennis Alexander Tebbe
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | | | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Kertu Lõhmus
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Sönke Rolfes
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Martin Könneke
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Yin Chen
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
12
|
Kountz DJ, Balskus EP. A diversified, widespread microbial gene cluster encodes homologs of methyltransferases involved in methanogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551370. [PMID: 37577662 PMCID: PMC10418091 DOI: 10.1101/2023.07.31.551370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Analyses of microbial genomes have revealed unexpectedly wide distributions of enzymes from specialized metabolism, including methanogenesis, providing exciting opportunities for discovery. Here, we identify a family of gene clusters (the type 1 mlp gene clusters (MGCs)) that encodes homologs of the soluble coenzyme M methyltransferases (SCMTs) involved in methylotrophic methanogenesis and is widespread in bacteria and archaea. Type 1 MGCs are expressed and regulated in medically, environmentally, and industrially important organisms, making them likely to be physiologically relevant. Enzyme annotation, analysis of genomic context, and biochemical experiments suggests these gene clusters play a role in methyl-sulfur and/or methyl-selenide metabolism in numerous anoxic environments, including the human gut microbiome, potentially impacting sulfur and selenium cycling in diverse, anoxic environments.
Collapse
Affiliation(s)
- Duncan J. Kountz
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
13
|
Schöne C, Poehlein A, Rother M. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans. Appl Environ Microbiol 2023; 89:e0216122. [PMID: 37347168 PMCID: PMC10370330 DOI: 10.1128/aem.02161-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Methanogenesis is a unique energy metabolism carried out by members of the domain Archaea. Unlike most other methanogens, which reduce CO2 to methane with hydrogen as the electron donor, Methanosarcina acetivorans is able to grow on methylated compounds, on acetate, and on carbon monoxide (CO). These substrates are metabolized via distinct yet overlapping pathways. For the use of any single methanogenic substrate, the membrane-integral, energy-converting N5-methyl-tetrahydrosarcinapterin (H4SPT):coenzyme M (HS-CoM) methyltransferase (Mtr) is required. It was proposed that M. acetivorans can bypass the methyl transfer catalyzed by Mtr via cytoplasmic activities. To address this issue, conversion of different energy substrates by an mtr deletion mutant was analyzed. No significant methyl transfer from H4SPT to HS-CoM could be detected with CO as the electron donor. In contrast, formation of methane and CO2 in the presence of methanol or trimethylamine was indicative of an Mtr bypass in the oxidative direction. As methane thiol and dimethyl sulfide were transiently produced during methylotrophic methanogenesis in the mtr mutant, involvement in this process of methyl sulfide-dependent methyltransferases (Mts) was analyzed in a strain lacking both the Mts system and Mtr. It could be unequivocally demonstrated that the Mts system is not involved in bypassing Mtr, thereby ruling out previous proposals. Conversion of [13C]methanol indicated that in the absence of Mtr M. acetivorans provides the reducing equivalents for methyl-S-CoM reduction to methane by oxidizing (an) intracellular compound(s) to CO2 rather than disproportioning the source of methyl groups. Thus, no in vivo Mtr bypass appears to exist in M. acetivorans. IMPORTANCE Methanogenic archaea possess only a limited number of chemiosmotic coupling sites in their respiratory chains. Among them, N5-methyl-H4SPT:HS-CoM methyltransferase (Mtr) is the most widely distributed. Previous observations led to the conclusion that Methanosarcina acetivorans is able to bypass this reaction via methyl sulfide-dependent methyltransferases (Mts). However, strains lacking Mtr are not able to produce methane from CO. Also, these strains are unable to oxidize methylated substrates to CO2, in contrast to observations in the close relative Methanosarcina barkeri. The results also highlight the sole function of the Mts system in methyl sulfide metabolism. Thus, no in vivo Mtr bypass appears to exist in M. acetivorans.
Collapse
Affiliation(s)
- Christian Schöne
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Bueno de Mesquita CP, Wu D, Tringe SG. Methyl-Based Methanogenesis: an Ecological and Genomic Review. Microbiol Mol Biol Rev 2023; 87:e0002422. [PMID: 36692297 PMCID: PMC10029344 DOI: 10.1128/mmbr.00024-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Methyl-based methanogenesis is one of three broad categories of archaeal anaerobic methanogenesis, including both the methyl dismutation (methylotrophic) pathway and the methyl-reducing (also known as hydrogen-dependent methylotrophic) pathway. Methyl-based methanogenesis is increasingly recognized as an important source of methane in a variety of environments. Here, we provide an overview of methyl-based methanogenesis research, including the conditions under which methyl-based methanogenesis can be a dominant source of methane emissions, experimental methods for distinguishing different pathways of methane production, molecular details of the biochemical pathways involved, and the genes and organisms involved in these processes. We also identify the current gaps in knowledge and present a genomic and metagenomic survey of methyl-based methanogenesis genes, highlighting the diversity of methyl-based methanogens at multiple taxonomic levels and the widespread distribution of known methyl-based methanogenesis genes and families across different environments.
Collapse
Affiliation(s)
| | - Dongying Wu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
15
|
Downing BE, Gupta D, Nayak DD. The dual role of a multi-heme cytochrome in methanogenesis: MmcA is important for energy conservation and carbon metabolism in Methanosarcina acetivorans. Mol Microbiol 2023; 119:350-363. [PMID: 36660820 DOI: 10.1111/mmi.15029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea belonging to the Order Methanosarcinales conserve energy using an electron transport chain (ETC). In the genetically tractable strain Methanosarcina acetivorans, ferredoxin donates electrons to the ETC via the Rnf (Rhodobacter nitrogen fixation) complex. The Rnf complex in M. acetivorans, unlike its counterpart in Bacteria, contains a multiheme c-type cytochrome (MHC) subunit called MmcA. Early studies hypothesized MmcA is a critical component of Rnf, however recent work posits that the primary role of MmcA is facilitating extracellular electron transport. To explore the physiological role of MmcA, we characterized M. acetivorans mutants lacking either the entire Rnf complex (∆mmcA-rnf) or just the MmcA subunit (∆mmcA). Our data show that MmcA is essential for growth during acetoclastic methanogenesis but neither Rnf nor MmcA is required for methanogenic growth on methylated compounds. On methylated compounds, the absence of MmcA alone leads to a more severe growth defect compared to a Rnf deletion likely due to different strategies for ferredoxin oxidation that arise in each strain. Transcriptomic data suggest that the ∆mmcA mutant might oxidize ferredoxin by upregulating the cytosolic Wood-Ljundahl pathway for acetyl-CoA synthesis, whereas the ∆mmcA-rnf mutant may repurpose the F420 dehydrogenase complex (Fpo) to oxidize ferredoxin coupled to proton translocation. Beyond energy conservation, the deletion of rnf or mmcA leads to global transcriptional changes of genes involved in methanogenesis, carbon assimilation and regulation. Overall, our study provides systems-level insights into the non-overlapping roles of the Rnf bioenergetic complex and the associated MHC, MmcA.
Collapse
Affiliation(s)
- Blake E Downing
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Dinesh Gupta
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Dipti D Nayak
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
16
|
Sorokin DY, Merkel AY, Abbas B. Ecology of Methanonatronarchaeia. Environ Microbiol 2022; 24:5217-5229. [PMID: 35726892 PMCID: PMC9796771 DOI: 10.1111/1462-2920.16108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/19/2022] [Indexed: 01/07/2023]
Abstract
Methanonatronarchaeia represents a deep-branching phylogenetic lineage of extremely halo(alkali)philic and moderately thermophilic methyl-reducing methanogens belonging to the phylum Halobacteriota. It includes two genera, the alkaliphilic Methanonatronarchaeum and the neutrophilic Ca. Methanohalarchaeum. The former is represented by multiple closely related pure culture isolates from hypersaline soda lakes, while the knowledge about the latter is limited to a few mixed cultures with anaerobic haloarchaea. To get more insight into the distribution and ecophysiology of this enigmatic group of extremophilic methanogens, potential activity tests and enrichment cultivation with different substrates and at different conditions were performed with anaerobic sediment slurries from various hypersaline lakes in Russia. Methanonatronarchaeum proliferated exclusively in hypersaline soda lake samples mostly at elevated temperature, while at mesophilic conditions it coexisted with the extremely salt-tolerant methylotroph Methanosalsum natronophilum. Methanonatronarchaeum was also able to serve as a methylotrophic or hydrogenotrophic partner in several thermophilic enrichment cultures with fermentative bacteria. Ca. Methanohalarchaeum did not proliferate at mesophilic conditions and at thermophilic conditions it competed with extremely halophilic and moderately thermophilic methylotroph Methanohalobium, which it outcompeted at a combination of elevated temperature and methyl-reducing conditions. Overall, the results demonstrated that Methanonatronarchaeia are specialized extremophiles specifically proliferating in conditions of elevated temperature coupled with extreme salinity and simultaneous availability of a wide range of C1 -methylated compounds and H2 /formate.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of BiotechnologyRussian Academy of SciencesMoscowRussia
- Department of BiotechnologyDelft University of BiotechnologyDelftThe Netherlands
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Research Centre of BiotechnologyRussian Academy of SciencesMoscowRussia
| | - Ben Abbas
- Department of BiotechnologyDelft University of BiotechnologyDelftThe Netherlands
| |
Collapse
|
17
|
Djemai K, Drancourt M, Tidjani Alou M. Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions. MICROBIAL ECOLOGY 2022; 83:536-554. [PMID: 34169332 DOI: 10.1007/s00248-021-01796-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Methanogens are microorganisms belonging to the Archaea domain and represent the primary source of biotic methane. Methanogens encode a series of enzymes which can convert secondary substrates into methane following three major methanogenesis pathways. Initially recognized as environmental microorganisms, methanogens have more recently been acknowledged as host-associated microorganisms after their detection and initial isolation in ruminants in the 1950s. Methanogens have also been co-detected with bacteria in various pathological situations, bringing their role as pathogens into question. Here, we review reported associations between methanogens and bacteria in physiological and pathological situations in order to understand the metabolic interactions explaining these associations. To do so, we describe the origin of the metabolites used for methanogenesis and highlight the central role of methanogens in the syntrophic process during carbon cycling. We then focus on the metabolic abilities of co-detected bacterial species described in the literature and infer from their genomes the probable mechanisms of their association with methanogens. The syntrophic interactions between bacteria and methanogens are paramount to gut homeostasis. Therefore, any dysbiosis affecting methanogens might impact human health. Thus, the monitoring of methanogens may be used as a bio-indicator of dysbiosis. Moreover, new therapeutic approaches can be developed based on their administration as probiotics. We thus insist on the importance of investigating methanogens in clinical microbiology.
Collapse
Affiliation(s)
- Kenza Djemai
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
| | - Maryam Tidjani Alou
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
18
|
Ci M, Yang W, Jin H, Hu L, Fang C, Shen D, Long Y. Evolution of sulfate reduction behavior in leachate saturated zones in landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:52-62. [PMID: 35093856 DOI: 10.1016/j.wasman.2022.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The sulfate reduction behavior of the landfill leachate saturated zone under different temperatures was investigated. The results showed that temperature had significant effects on sulfate reduction behavior. The sulfate reduction efficiency was the highest at high temperatures (55 °C and 45 °C), followed by mesophilic temperature (35 °C). Normal temperature 25 °C was far less effective than 55 °C, 45 °C and 35 °C. High abundances of aprA and dsrA genes were distributed under high temperatures. Through indicator species analysis and functional comparison, some key taxa were identified as putative key genera for sulfate reduction. Under high temperature, Paenibacillus could effectively degrade dimethyl sulfide. DsrAB is present in the genome of Tissierella. Gordonia, Syntrophomonas, and Lysinibacillus under mesophilic temperature indicates the potential of these organisms to degrade heterogenous biomass, environmental pollutants or other natural polymers with slow biodegradation. This microbial function is similar to that of the putative key genera under normal (25 °C) temperature. Most of the putative key genera belong to Firmicutes, Proteobacteria and Myxococcota. This study provides theoretical support for the control of hydrogen sulfide release from landfills.
Collapse
Affiliation(s)
- Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Wenyi Yang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Haihong Jin
- Zhejiang Hongyi Environmental Protection Technology Co. Ltd, Hangzhou 310000, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China.
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
19
|
Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C, Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson GW, Wegener G, Boetius A, Orphan VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol 2022; 20:e3001508. [PMID: 34986141 PMCID: PMC9012536 DOI: 10.1371/journal.pbio.3001508] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor. A comparative genomics study of anaerobic methanotrophic (ANME) archaea reveals the genetic "parts list" associated with the repeated evolutionary transition between methanogenic and methanotrophic metabolism in the archaeal domain of life.
Collapse
Affiliation(s)
- Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andy O. Leu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daan R. Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Danielle Goudeau
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex Malmstrom
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, University of British Columbia, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, British Columbia, Canada
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| |
Collapse
|
20
|
Price MN, Deutschbauer AM, Arkin AP. Four families of folate-independent methionine synthases. PLoS Genet 2021; 17:e1009342. [PMID: 33534785 PMCID: PMC7857596 DOI: 10.1371/journal.pgen.1009342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Although most organisms synthesize methionine from homocysteine and methyl folates, some have “core” methionine synthases that lack folate-binding domains and use other methyl donors. In vitro, the characterized core synthases use methylcobalamin as a methyl donor, but in vivo, they probably rely on corrinoid (vitamin B12-binding) proteins. We identified four families of core methionine synthases that are distantly related to each other (under 30% pairwise amino acid identity). From the characterized enzymes, we identified the families MesA, which is found in methanogens, and MesB, which is found in anaerobic bacteria and archaea with the Wood-Ljungdahl pathway. A third uncharacterized family, MesC, is found in anaerobic archaea that have the Wood-Ljungdahl pathway and lack known forms of methionine synthase. We predict that most members of the MesB and MesC families accept methyl groups from the iron-sulfur corrinoid protein of that pathway. The fourth family, MesD, is found only in aerobic bacteria. Using transposon mutants and complementation, we show that MesD does not require 5-methyltetrahydrofolate or cobalamin. Instead, MesD requires an uncharacterized protein family (DUF1852) and oxygen for activity. Methionine is one of the amino acids that make up proteins, and the final step in methionine synthesis is the transfer of a methyl group. In most organisms, the methyl group is obtained from methyl folates, but some anaerobic bacteria and archaea are thought to use corrinoid (vitamin B12-binding) proteins instead. By analyzing the sequences of the potential methionine synthases across the genomes of diverse bacteria and archaea, we identified four families of folate-independent methionine synthases. For three of these families, we can use co-occurrence with corrinoid proteins to predict their likely partners. We show that the fourth family does not require vitamin B12; instead, it obtains methyl groups from an oxygen-dependent partner protein. Our results will help us understand the growth requirements of diverse bacteria and archaea.
Collapse
Affiliation(s)
- Morgan N. Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- * E-mail: (MNP); (APA)
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail: (MNP); (APA)
| |
Collapse
|
21
|
Kurth JM, Op den Camp HJM, Welte CU. Several ways one goal-methanogenesis from unconventional substrates. Appl Microbiol Biotechnol 2020; 104:6839-6854. [PMID: 32542472 PMCID: PMC7374477 DOI: 10.1007/s00253-020-10724-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Abstract Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H2 and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages (Methanosphaera, Methanimicrococcus, Methanomassiliicoccus, Methanonatronarchaeum) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching Methanonatronarchaeum revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of Methanosarcinales strains. Moreover, recently it has been shown that the methanogen Methermicoccus shengliensis can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline (N,N,N-trimethylethanolamine) or betaine (N,N,N-trimethylglycine) have been described as substrates for methane production in Methanococcoides and Methanolobus strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways. Key points • Newly discovered methanogenic substrates and pathways are reviewed for the first time. • The review provides an in-depth analysis of unusual methanogenesis pathways. • The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.
Collapse
Affiliation(s)
- Julia M Kurth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands. .,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Biochemical Characterization of the Methylmercaptopropionate:Cob(I)alamin Methyltransferase from Methanosarcina acetivorans. J Bacteriol 2019; 201:JB.00130-19. [PMID: 30936368 DOI: 10.1128/jb.00130-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
Methanogenesis from methylated substrates is initiated by substrate-specific methyltransferases that generate the central metabolic intermediate methyl-coenzyme M. This reaction involves a methyl-corrinoid protein intermediate and one or two cognate methyltransferases. Based on genetic data, the Methanosarcina acetivorans MtpC (corrinoid protein) and MtpA (methyltransferase) proteins were suggested to catalyze the methylmercaptopropionate (MMPA):coenzyme M (CoM) methyl transfer reaction without a second methyltransferase. To test this, MtpA was purified after overexpression in its native host and characterized biochemically. MtpA catalyzes a robust methyl transfer reaction using free methylcob(III)alamin as the donor and mercaptopropionate (MPA) as the acceptor, with k cat of 0.315 s-1 and apparent Km for MPA of 12 μM. CoM did not serve as a methyl acceptor; thus, a second unidentified methyltransferase is required to catalyze the full MMPA:CoM methyl transfer reaction. The physiologically relevant methylation of cob(I)alamin with MMPA, which is thermodynamically unfavorable, was also demonstrated, but only at high substrate concentrations. Methylation of cob(I)alamin with methanol, dimethylsulfide, dimethylamine, and methyl-CoM was not observed, even at high substrate concentrations. Although the corrinoid protein MtpC was poorly expressed alone, a stable MtpA/MtpC complex was obtained when both proteins were coexpressed. Biochemical characterization of this complex was not feasible, because the corrinoid cofactor of this complex was in the inactive Co(II) state and was not reactivated by incubation with strong reductants. The MtsF protein, composed of both corrinoid and methyltransferase domains, copurifies with the MtpA/MtpC, suggesting that it may be involved in MMPA metabolism.IMPORTANCE Methylmercaptopropionate (MMPA) is an environmentally significant molecule produced by degradation of the abundant marine metabolite dimethylsulfoniopropionate, which plays a significant role in the biogeochemical cycles of both carbon and sulfur, with ramifications for ecosystem productivity and climate homeostasis. Detailed knowledge of the mechanisms for MMPA production and consumption is key to understanding steady-state levels of this compound in the biosphere. Unfortunately, the biochemistry required for MMPA catabolism under anoxic conditions is poorly characterized. The data reported here validate the suggestion that the MtpA protein catalyzes the first step in the methanogenic catabolism of MMPA. However, the enzyme does not catalyze a proposed second step required to produce the key intermediate, methyl coenzyme M. Therefore, the additional enzymes required for methanogenic MMPA catabolism await discovery.
Collapse
|
23
|
Fiege K, Frankenberg‐Dinkel N. Thiol‐based redox sensing in the methyltransferase associated sensor kinase RdmS in
Methanosarcina acetivorans. Environ Microbiol 2019; 21:1597-1610. [DOI: 10.1111/1462-2920.14541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kerstin Fiege
- Technische Universität Kaiserslautern, Fachbereich BiologieAbteilung Mikrobiologie Paul‐Ehrlich‐Str. 23, 67663, Kaiserslautern Germany
| | - Nicole Frankenberg‐Dinkel
- Technische Universität Kaiserslautern, Fachbereich BiologieAbteilung Mikrobiologie Paul‐Ehrlich‐Str. 23, 67663, Kaiserslautern Germany
| |
Collapse
|
24
|
Genetic, Biochemical, and Molecular Characterization of Methanosarcina barkeri Mutants Lacking Three Distinct Classes of Hydrogenase. J Bacteriol 2018; 200:JB.00342-18. [PMID: 30012731 DOI: 10.1128/jb.00342-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/11/2018] [Indexed: 11/20/2022] Open
Abstract
The methanogenic archaeon Methanosarcina barkeri encodes three distinct types of hydrogenase, whose functions vary depending on the growth substrate. These include the F420-dependent (Frh), methanophenazine-dependent (Vht), and ferredoxin-dependent (Ech) hydrogenases. To investigate their physiological roles, we characterized a series of mutants lacking each hydrogenase in various combinations. Mutants lacking Frh, Vht, or Ech in any combination failed to grow on H2-CO2, whereas only Vht and Ech were essential for growth on acetate. In contrast, a mutant lacking all three grew on methanol with a final growth yield similar to that of the wild type and produced methane and CO2 in the expected 3:1 ratio but had a ca. 33% lower growth rate. Thus, hydrogenases play a significant, but nonessential, role during growth on this substrate. As previously observed, mutants lacking Ech failed to grow on methanol-H2 unless they were supplemented with biosynthetic precursors. Interestingly, this phenotype was abolished in the Δech Δfrh and Δech Δfrh Δvht mutants, consistent with the idea that hydrogenases inhibit methanol oxidation in the presence of H2, which prevents production of the reducing equivalents needed for biosynthesis. Quantification of the methane and CO2 produced from methanol by resting cell suspensions of various mutants supported this conclusion. On the basis of the global transcriptional profiles, none of the hydrogenases were upregulated to compensate for the loss of the others. However, the transcript levels of the F420 dehydrogenase operon were significantly higher in all strains lacking frh, suggesting a mechanism to sense the redox state of F420 The roles of the hydrogenases in energy conservation during growth with each methanogenic pathway are discussed.IMPORTANCE Methanogenic archaea are key players in the global carbon cycle due to their ability to facilitate the remineralization of organic substrates in many anaerobic environments. The consequences of biological methanogenesis are far-reaching, with impacts on atmospheric methane and CO2 concentrations, agriculture, energy production, waste treatment, and human health. The data presented here clarify the in vivo function of hydrogenases during methanogenesis, which in turn deepens our understanding of this unique form of metabolism. This knowledge is critical for a variety of important issues ranging from atmospheric composition to human health.
Collapse
|
25
|
Nayak DD, Mahanta N, Mitchell DA, Metcalf WW. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea. eLife 2017; 6. [PMID: 28880150 PMCID: PMC5589413 DOI: 10.7554/elife.29218] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR), found in strictly anaerobic methanogenic and methanotrophic archaea, catalyzes the reversible production and consumption of the potent greenhouse gas methane. The α subunit of MCR (McrA) contains several unusual post-translational modifications, including a rare thioamidation of glycine. Based on the presumed function of homologous genes involved in the biosynthesis of thioviridamide, a thioamide-containing natural product, we hypothesized that the archaeal tfuA and ycaO genes would be responsible for post-translational installation of thioglycine into McrA. Mass spectrometric characterization of McrA from the methanogenic archaeon Methanosarcina acetivorans lacking tfuA and/or ycaO revealed the presence of glycine, rather than thioglycine, supporting this hypothesis. Phenotypic characterization of the ∆ycaO-tfuA mutant revealed a severe growth rate defect on substrates with low free energy yields and at elevated temperatures (39°C - 45°C). Our analyses support a role for thioglycine in stabilizing the protein secondary structure near the active site.
Collapse
Affiliation(s)
- Dipti D Nayak
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States
| | - Nilkamal Mahanta
- Department of Chemistry, University of Illinois, Urbana, United States
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States.,Department of Chemistry, University of Illinois, Urbana, United States.,Department of Microbiology, University of Illinois, Urbana, United States
| | - William W Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States.,Department of Microbiology, University of Illinois, Urbana, United States
| |
Collapse
|
26
|
Genome-Scale Metabolic Modeling of Archaea Lends Insight into Diversity of Metabolic Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:9763848. [PMID: 28133437 PMCID: PMC5241448 DOI: 10.1155/2017/9763848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023]
Abstract
Decades of biochemical, bioinformatic, and sequencing data are currently being systematically compiled into genome-scale metabolic reconstructions (GEMs). Such reconstructions are knowledge-bases useful for engineering, modeling, and comparative analysis. Here we review the fifteen GEMs of archaeal species that have been constructed to date. They represent primarily members of the Euryarchaeota with three-quarters comprising representative of methanogens. Unlike other reviews on GEMs, we specially focus on archaea. We briefly review the GEM construction process and the genealogy of the archaeal models. The major insights gained during the construction of these models are then reviewed with specific focus on novel metabolic pathway predictions and growth characteristics. Metabolic pathway usage is discussed in the context of the composition of each organism's biomass and their specific energy and growth requirements. We show how the metabolic models can be used to study the evolution of metabolism in archaea. Conservation of particular metabolic pathways can be studied by comparing reactions using the genes associated with their enzymes. This demonstrates the utility of GEMs to evolutionary studies, far beyond their original purpose of metabolic modeling; however, much needs to be done before archaeal models are as extensively complete as those for bacteria.
Collapse
|
27
|
Peterson JR, Thor S, Kohler L, Kohler PR, Metcalf WW, Luthey-Schulten Z. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans. BMC Genomics 2016; 17:924. [PMID: 27852217 PMCID: PMC5112694 DOI: 10.1186/s12864-016-3219-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND While a few studies on the variations in mRNA expression and half-lives measured under different growth conditions have been used to predict patterns of regulation in bacterial organisms, the extent to which this information can also play a role in defining metabolic phenotypes has yet to be examined systematically. Here we present the first comprehensive study for a model methanogen. RESULTS We use expression and half-life data for the methanogen Methanosarcina acetivorans growing on fast- and slow-growth substrates to examine the regulation of its genes. Unlike Escherichia coli where only small shifts in half-lives were observed, we found that most mRNA have significantly longer half-lives for slow growth on acetate compared to fast growth on methanol or trimethylamine. Interestingly, half-life shifts are not uniform across functional classes of enzymes, suggesting the existence of a selective stabilization mechanism for mRNAs. Using the transcriptomics data we determined whether transcription or degradation rate controls the change in transcript abundance. Degradation was found to control abundance for about half of the metabolic genes underscoring its role in regulating metabolism. Genes involved in half of the metabolic reactions were found to be differentially expressed among the substrates suggesting the existence of drastically different metabolic phenotypes that extend beyond just the methanogenesis pathways. By integrating expression data with an updated metabolic model of the organism (iST807) significant differences in pathway flux and production of metabolites were predicted for the three growth substrates. CONCLUSIONS This study provides the first global picture of differential expression and half-lives for a class II methanogen, as well as provides the first evidence in a single organism that drastic genome-wide shifts in RNA half-lives can be modulated by growth substrate. We determined which genes in each metabolic pathway control the flux and classified them as regulated by transcription (e.g. transcription factor) or degradation (e.g. post-transcriptional modification). We found that more than half of genes in metabolism were controlled by degradation. Our results suggest that M. acetivorans employs extensive post-transcriptional regulation to optimize key metabolic steps, and more generally that degradation could play a much greater role in optimizing an organism's metabolism than previously thought.
Collapse
Affiliation(s)
- Joseph R. Peterson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Ave, Urbana, 60801 IL USA
| | - ShengShee Thor
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 60801 IL USA
| | - Lars Kohler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Ave, Urbana, 60801 IL USA
| | - Petra R.A. Kohler
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S Goodwin AveIL, Urbana, 60801 USA
| | - William W. Metcalf
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S Goodwin AveIL, Urbana, 60801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory DrIL, Urbana, 60801 USA
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Ave, Urbana, 60801 IL USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 60801 IL USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory DrIL, Urbana, 60801 USA
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, 60801 IL USA
| |
Collapse
|
28
|
Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME JOURNAL 2016; 10:2478-87. [PMID: 26943620 DOI: 10.1038/ismej.2016.33] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 02/06/2023]
Abstract
The ecophysiology of one candidate methanogen class WSA2 (or Arc I) remains largely uncharacterized, despite the long history of research on Euryarchaeota methanogenesis. To expand our understanding of methanogen diversity and evolution, we metagenomically recover eight draft genomes for four WSA2 populations. Taxonomic analyses indicate that WSA2 is a distinct class from other Euryarchaeota. None of genomes harbor pathways for CO2-reducing and aceticlastic methanogenesis, but all possess H2 and CO oxidation and energy conservation through H2-oxidizing electron confurcation and internal H2 cycling. As the only discernible methanogenic outlet, they consistently encode a methylated thiol coenzyme M methyltransferase. Although incomplete, all draft genomes point to the proposition that WSA2 is the first discovered methanogen restricted to methanogenesis through methylated thiol reduction. In addition, the genomes lack pathways for carbon fixation, nitrogen fixation and biosynthesis of many amino acids. Acetate, malonate and propionate may serve as carbon sources. Using methylated thiol reduction, WSA2 may not only bridge the carbon and sulfur cycles in eutrophic methanogenic environments, but also potentially compete with CO2-reducing methanogens and even sulfate reducers. These findings reveal a remarkably unique methanogen 'Candidatus Methanofastidiosum methylthiophilus' as the first insight into the sixth class of methanogens 'Candidatus Methanofastidiosa'.
Collapse
Affiliation(s)
- Masaru Konishi Nobu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kyohei Kuroda
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
29
|
Genetic, Genomic, and Transcriptomic Studies of Pyruvate Metabolism in Methanosarcina barkeri Fusaro. J Bacteriol 2015; 197:3592-600. [PMID: 26350133 DOI: 10.1128/jb.00551-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pyruvate, a central intermediate in the carbon fixation pathway of methanogenic archaea, is rarely used as an energy source by these organisms. The sole exception to this rule is a genetically uncharacterized Methanosarcina barkeri mutant capable of using pyruvate as a sole energy and carbon source (the Pyr(+) phenotype). Here, we provide evidence that suggests that the Pyr(+) mutant is able to metabolize pyruvate by overexpressing pyruvate ferredoxin oxidoreductase (por) and mutating genes involved in central carbon metabolism. Genomic analysis showed that the Pyr(+) strain has two mutations localized to Mbar_A1588, the biotin protein ligase subunit of the pyruvate carboxylase (pyc) operon, and Mbar_A2165, a putative transcriptional regulator. Mutants expressing the Mbar_A1588 mutation showed no growth defect compared to the wild type (WT), yet the strains lacked pyc activity. Recreation of the Mbar_A2165 mutation resulted in a 2-fold increase of Por activity and gene expression, suggesting a role in por transcriptional regulation. Further transcriptomic analysis revealed that Pyr(+) strains also overexpress the gene encoding phosphoenolpyruvate carboxylase, indicating the presence of a previously uncharacterized route for synthesizing oxaloacetate in M. barkeri and explaining the unimpaired growth in the absence of Pyc. Surprisingly, stringent repression of the por operon was lethal, even when the media were supplemented with pyruvate and/or Casamino Acids, suggesting that por plays an unidentified essential function in M. barkeri. IMPORTANCE The work presented here reveals a complex interaction between anabolic and catabolic pathways involving pyruvate metabolism in Methanosarcina barkeri Fusaro. Among the unexpected findings were an essential role for the enzyme pyruvate-ferredoxin oxidoreductase and an alternate pathway for synthesis of oxaloacetate. These results clarify the mechanism of methanogenic catabolism of pyruvate and expand our understanding of carbon assimilation in methanogens.
Collapse
|