1
|
Crittenden J, Raudabaugh D, Gunsch CK. Isolation, characterization, and mycostimulation of fungi for the degradation of polycyclic aromatic hydrocarbons at a superfund site. Biodegradation 2025; 36:15. [PMID: 39853428 PMCID: PMC11761828 DOI: 10.1007/s10532-024-10106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/23/2024] [Indexed: 01/26/2025]
Abstract
Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia. Our goal was to identify non-basidiomycete PAH degrading fungi. A total of 132 isolates were isolated, of which the overwhelming majority belonged to the phylum Ascomycota. Isolates were screened for their ability to produce known PAH degrading enzymes, particularly laccase and manganese-dependent peroxidases, and to transform model PAH compounds [fluoranthene, phenanthrene, pyrene and benzo(a)pyrene]. Fungal isolates were subsequently biostimulated using complex amendments including chicken feathers, wheat seeds, grasshoppers, and maple saw dust. Following biostimulation, laccase expression and PAH transformation were assessed. The grasshopper amendment was found to yield the highest laccase upregulation improvement with a maximum increase of 18.9% for the Paraphaeosphaeria isolate. The Septoriella and Trichoderma isolates exposed to the chitin-based grasshopper amendment demonstrated an increase in PAH removal. Septoriella sp. increased its transformation of fluoranthene (44%), pyrene (54.2%, and benzo(a)pyrene (48.7%), while there was a 58.3% increase in the removal of benzo(a)pyrene by Trichoderma sp. While the results from this study demonstrate the potential of indigenous fungi to be biostimulated for the removal of PAHs, additional investigation is needed to determine if the response to the chitin-based grasshopper mycostimulation can be translated from the bench to the field.
Collapse
Affiliation(s)
- Joshua Crittenden
- Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA.
| | - Daniel Raudabaugh
- Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA
| | - Claudia K Gunsch
- Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA
| |
Collapse
|
2
|
He X, Lu H, Hu W, Deng T, Gong X, Yang X, Song D, He M, Xu M. Novosphingobium percolationis sp. nov. and Novosphingobium huizhouense sp. nov., isolated from landfill leachate of a domestic waste treatment plant. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains designated as c1T and c7T, were isolated from the landfill leachate of a domestic waste treatment plant in Huizhou City, Guangdong Province, PR China. The cells of both strains were aerobic, rod-shaped, non-motile and formed yellow colonies on Reasoner’s 2A agar plates. Strain c1T grew at 10–42 °C (optimum, 30 °C), pH 4.5–10.5 (optimum, pH 7.0) and 0–2.0 % (w/v) NaCl (optimum, 0–0.5 %). Strain c7T grew at 10–42 °C (optimum, 30 °C), pH 4.5–10.5 (optimum, pH 6.0) and 0–2.0 % (w/v) NaCl (optimum, 0–0.5 %). Phylogenetic analyses revealed that strains c1T and c7T belong to the genus
Novosphingobium
. The 16S rRNA gene sequence similarities of strains c1T and c7T to the type strains of
Novosphingobium
species were 94.5–98.2 % and 94.3–99.1 %, respectively. The calculated pairwise average nucleotide identity values among strains c1T, c7T and the reference strains were in the range of 75.2–85.9 % and the calculated pairwise average amino acid identity values among strains c1T, c7T and reference strains were in the range of 72.0–88.3 %. Their major respiratory quinone was Q-10, and the major cellular fatty acids were C18 : 1
ω7c, C18 : 0, C16 : 1
ω7c, C16 : 0 and C14 : 0 2OH. The major polar lipids of strains c1T and c7T were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid, unidentified lipids and unidentified phospholipid. Based on phenotypic, chemotaxonomic, phylogenetic and genomic results from this study, strains c1T and c7T should represent two independent novel species of
Novosphingobium
, for which the names Novosphingobium percolationis sp. nov. (type strain c1T=GDMCC 1.2555T=KCTC 82826T) and Novosphingobium huizhouense sp. nov. (type strain c7T=GDMCC 1.2556T=KCTC 82827T) are proposed. The gene function annotation results of strains c1T and c7T suggest that they could play an important role in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiaoling He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Huibin Lu
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Wenzhe Hu
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tongchu Deng
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xiaofan Gong
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xunan Yang
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Da Song
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Mei He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
3
|
Volkoff SJ, Rodriguez DL, Singleton DR, McCumber AW, Aitken MD, Stewart JR, Gunsch CK. Identifying bioaugmentation candidates for bioremediation of polycyclic aromatic hydrocarbons in contaminated estuarine sediment of the Elizabeth River, VA, USA. Appl Microbiol Biotechnol 2022; 106:1715-1727. [PMID: 35089401 DOI: 10.1007/s00253-021-11754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Estuarine sediments near former creosoting facilities along the Elizabeth River (Virginia, USA) are contaminated by polycyclic aromatic hydrocarbons (PAHs). In this study, we interrogated the bacterial community of the Elizabeth River with both culture-based and culture-independent methods to identify potential candidates for bioremediation of these contaminants. DNA-based stable isotope probing (SIP) experiments with phenanthrene and fluoranthene using sediment from the former Republic Creosoting site identified relevant PAH-degrading bacteria within the Azoarcus, Hydrogenophaga, and Croceicoccus genera. Targeted cultivation of PAH-degrading bacteria from the same site recovered 6 PAH-degrading strains, including one strain highly similar to Hydrogenophaga sequences detected in SIP experiments. Other isolates were most similar to organisms within the Novosphingobium, Sphingobium, Stenotrophomonas, and Alcaligenes genera. Lastly, we performed 16S rRNA gene amplicon microbiome analyses of sediment samples from four sites, including Republic Creosoting, with varying concentrations of PAHs. Analysis of these data showed a striking divergence of the microbial community at the highly contaminated Republic Creosoting site from less contaminated sites with the enrichment of several bacterial clades including those affiliated with the Pseudomonas genus. Sequences within the microbiome libraries similar to SIP-derived sequences were generally found at high relative abundance, while the Croceicoccus sequence was present at low to moderate relative abundance. These results suggest that Azoarcus and Hydrogenophaga strains might be good target candidates for biostimulation, while Croceicoccus spp. might be good targets for bioaugmentation in these sediments. Furthermore, this study demonstrates the value of culture-based and culture-independent methods in identifying promising bacterial candidates for use in a precision bioremediation scheme. KEY POINTS: • This study highlights the importance of using multiple strategies to identify promising bacterial candidates for use in a precision bioremediation scheme. • We used both selective cultivation techniques and DNA-based stable isotope probing to identify bacterial degraders of prominent PAHs at a historically contaminated site in the Elizabeth River, VA, USA. • Azoarcus and Hydrogenophaga strains might be good target candidates for biostimulation in Elizabeth River sediments, while Croceicoccus spp. might be good targets for bioaugmentation.
Collapse
Affiliation(s)
- Savannah J Volkoff
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Daniel L Rodriguez
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - David R Singleton
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Alexander W McCumber
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27759-7431, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27759-7431, USA
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA.
| |
Collapse
|
4
|
Jin M, Yu X, Yao Z, Tao P, Li G, Yu X, Zhao JL, Peng J. How biofilms affect the uptake and fate of hydrophobic organic compounds (HOCs) in microplastic: Insights from an In situ study of Xiangshan Bay, China. WATER RESEARCH 2020; 184:116118. [PMID: 32731037 DOI: 10.1016/j.watres.2020.116118] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Microplastic (MP) has been identified as an emerging vector that transports hydrophobic organic compounds (HOCs) across aquatic environments due to its hydrophobic surfaces and small size. However, it is also recognized that environmental factors affect MP's chemical vector effects and that attached biofilms could play a major role, although the specific mechanisms remain unclear. To explore this issue, an in situ experiment was conducted at Xiangshan Bay of southeastern China, and dynamics of HOCs (i.e., polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)) and bacterial communities related to the model MP (i.e., PE fibers) were analyzed and compared. Through bacterial characterizations including the 16S rRNA approach, higher summer temperatures (31.4 ± 1.07 °C) were found to promote colonizing bacterial assemblages with larger biomasses, higher activity and more degrading bacteria than winter temperatures (13.3 ± 2.49 °C). Consequently, some sorbed pollutants underwent significant decline in the summer, and this decline was particularly the case for PAHs with low (2-3 rings) and median (4 rings) molecular weights such as phenanthrene (59.4 ± 1.6%), chrysene (70.6 ± 4.2%), fluoranthene (77.1 ± 13.3%) and benz[a]anthracene (71.5 ± 11.0%). In our winter test, however, most pollutants underwent a consistent increase throughout the 8-week exposure period. Moreover, more biorefractory pollutants including PCBs and high molecular weight (5-6 rings) PAHs accumulated regardless of bacterial characteristics. Two putative PAH-degrading bacteria appeared with high relative abundances during the summer test, i.e., family Rhodobacteraceae (18.6 ± 0.5%) and genus Sphingomicrobium (22.4 ± 3.6%), associated with drastic decreases in low (45.2 ± 0.4%) and median (66.0 ± 2.5%) molecular weight PAHs, respectively. Bacterial degradation effects of biofilms on PAHs are also supported by the correlative dynamics of salicylic acid, an important degradation intermediate of PAHs. The results of this study indicate that MP's HOC vector effects are essentially determined by interactions between attached pollutants and microbial assemblages, which are further related to bacterial activity and pollutant features. Further studies of biofilm effects on MP toxicity and on the metabolic pathways of MP-attached HOCs are required.
Collapse
Affiliation(s)
- Meng Jin
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Peiran Tao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, PR China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Jinping Peng
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
5
|
Chang YT, Chao WL, Chen HY, Li H, Boyd SA. Characterization of a Sequential UV Photolysis-Biodegradation Process for Treatment of Decabrominated Diphenyl Ethers in Sorbent/Water Systems. Microorganisms 2020; 8:E633. [PMID: 32349399 PMCID: PMC7284435 DOI: 10.3390/microorganisms8050633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/26/2022] Open
Abstract
Decabrominated diphenyl ether (BDE-209) is a primary component of the brominated flame retardants used in a variety of industrial and domestic applications. BDE-209 bioaccumulates in aquatic organisms and has been identified as an emerging contaminant that threatens human and ecosystem health. Sequential photolysis-microbial biodegradation processes were utilized here to treat BDE-209 in clay- or soil-water slurries. The removal efficiency of BDE-209 in the clay-water slurries was high; i.e., 96.5%, while that in the soil-water slurries was minimal. In the clay-water slurries the first order rate constants for the UV photolysis and biodegradation of BDE-209 were 0.017 1/day and 0.026 1/day, respectively. UV wavelength and intensity strongly influenced the BDE-209 photolysis and the subsequent biodegradation of photolytic products. Facultative chemotrophic bacteria, including Acidovorax spp., Pseudomonas spp., Novosphingobium spp. and Sphingomonas spp., were the dominant members of the bacterial community (about 71%) at the beginning of the biodegradation; many of these organisms have previously been shown to biodegrade BDE-209 and other polybrominated diphenyl ether (PBDE) congeners. The Achromobacter sp. that were isolated (NH-2; NH-4; NH-6) were especially effective during the BDE-209 degradation. These results indicated the effectiveness of the sequential UV photolysis and biodegradation for treating certain BDE-209-contaminated solids; e.g., clays; in bioreactors containing such solids as aqueous slurries. Achieving a similar treatment effectiveness for more heterogeneous solids containing natural organic matter, e.g., surface solids, appears to be significantly more difficult. Further investigations are needed in order to understand the great difference between the clay-water or soil-water slurries.
Collapse
Affiliation(s)
- Yi-Tang Chang
- Department of Microbiology, Soochow University, Shilin District, Taipei 11102, Taiwan; (W.-L.C.); (H.-Y.C.)
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Wei-Liang Chao
- Department of Microbiology, Soochow University, Shilin District, Taipei 11102, Taiwan; (W.-L.C.); (H.-Y.C.)
| | - Hsin-Yu Chen
- Department of Microbiology, Soochow University, Shilin District, Taipei 11102, Taiwan; (W.-L.C.); (H.-Y.C.)
| | - Hui Li
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Stephen A. Boyd
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
6
|
Nagata Y, Kato H, Ohtsubo Y, Tsuda M. Lessons from the genomes of lindane-degrading sphingomonads. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:630-644. [PMID: 31063253 DOI: 10.1111/1758-2229.12762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Bacterial strains capable of degrading man-made xenobiotic compounds are good materials to study bacterial evolution towards new metabolic functions. Lindane (γ-hexachlorocyclohexane, γ-HCH, or γ-BHC) is an especially good target compound for the purpose, because it is relatively recalcitrant but can be degraded by a limited range of bacterial strains. A comparison of the complete genome sequences of lindane-degrading sphingomonad strains clearly demonstrated that (i) lindane-degrading strains emerged from a number of different ancestral hosts that have recruited lin genes encoding enzymes that are able to channel lindane to central metabolites, (ii) in sphingomonads lin genes have been acquired by horizontal gene transfer mediated by different plasmids and in which IS6100 plays a role in recruitment and distribution of genes, and (iii) IS6100 plays a role in dynamic genome rearrangements providing genetic diversity to different strains and ability to evolve to other states. Lindane-degrading bacteria whose genomes change so easily and quickly are also fascinating starting materials for tracing the bacterial evolution process experimentally in a relatively short time period. As the origin of the specific lin genes remains a mystery, such genes will be useful probes for exploring the cryptic 'gene pool' available to bacteria.
Collapse
Affiliation(s)
- Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| |
Collapse
|
7
|
Mansouri A, Abbes C, Landoulsi A. Combined intervention of static magnetic field and growth rate of Microbacterium maritypicum CB7 for Benzo( a )Pyrene biodegradation. Microb Pathog 2017; 113:40-44. [DOI: 10.1016/j.micpath.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
8
|
Draft Genome Sequence of Novosphingobium panipatense Strain P5:ABC, Isolated from Hydrocarbon-Contaminated Soil from Noonmati Refinery, Assam, India. GENOME ANNOUNCEMENTS 2017; 5:5/45/e01265-17. [PMID: 29122880 PMCID: PMC5679813 DOI: 10.1128/genomea.01265-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Novosphingobium panipatense P5:ABC is a hydrocarbon-degrading bacterium isolated from petroleum-contaminated soil. Here, we present the 5.74-Mb draft genome sequence with 5,206 genes and an average G+C content of 64.7%. The genomic information will improve our understanding of the diversity of N. panipatense and the mechanisms of microbe-based hydrocarbon degradation.
Collapse
|
9
|
Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium. mSystems 2017; 2:mSystems00020-17. [PMID: 28567447 PMCID: PMC5443232 DOI: 10.1128/msystems.00020-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 11/24/2022] Open
Abstract
This study highlights the significant role of the genetic repertoire of a microorganism in the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits for Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium. Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in habitat demarcation and extend our understanding of the metabolic versatility of the Novosphingobium species. IMPORTANCE This study highlights the significant role of a microorganism’s genetic repertoire in structuring the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits in Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium.
Collapse
|
10
|
Novosphingobium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res Microbiol 2017; 168:113-121. [DOI: 10.1016/j.resmic.2016.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/29/2023]
|
11
|
Yun SH, Lee SY, Choi CW, Lee H, Ro HJ, Jun S, Kwon YM, Kwon KK, Kim SJ, Kim GH, Kim SI. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1. J Microbiol 2016; 55:56-62. [PMID: 28035602 DOI: 10.1007/s12275-017-6581-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMVNovo) are spherical in shape, and the average diameter of OMVNovo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMVNovo. Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMVNovo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.
Collapse
Affiliation(s)
- Sung Ho Yun
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Sang-Yeop Lee
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Chi-Won Choi
- Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Hayoung Lee
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun-Joo Ro
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Sangmi Jun
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Yong Min Kwon
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Kae Kyoung Kwon
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sang-Jin Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Gun-Hwa Kim
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Seung Il Kim
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea. .,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
12
|
Tabata M, Ohhata S, Nikawadori Y, Kishida K, Sato T, Kawasumi T, Kato H, Ohtsubo Y, Tsuda M, Nagata Y. Comparison of the complete genome sequences of four γ-hexachlorocyclohexane-degrading bacterial strains: insights into the evolution of bacteria able to degrade a recalcitrant man-made pesticide. DNA Res 2016; 23:581-599. [PMID: 27581378 PMCID: PMC5144681 DOI: 10.1093/dnares/dsw041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/09/2016] [Indexed: 11/20/2022] Open
Abstract
γ-Hexachlorocyclohexane (γ-HCH) is a recalcitrant man-made chlorinated pesticide. Here, the complete genome sequences of four γ-HCH-degrading sphingomonad strains, which are most unlikely to have been derived from one ancestral γ-HCH degrader, were compared. Together with several experimental data, we showed that (i) all the four strains carry almost identical linA to linE genes for the conversion of γ-HCH to maleylacetate (designated “specific” lin genes), (ii) considerably different genes are used for the metabolism of maleylacetate in one of the four strains, and (iii) the linKLMN genes for the putative ABC transporter necessary for γ-HCH utilization exhibit structural divergence, which reflects the phylogenetic relationship of their hosts. Replicon organization and location of the lin genes in the four genomes are significantly different with one another, and that most of the specific lin genes are located on multiple sphingomonad-unique plasmids. Copies of IS6100, the most abundant insertion sequence in the four strains, are often located in close proximity to the specific lin genes. Analysis of the footprints of target duplication upon IS6100 transposition and the experimental detection of IS6100 transposition strongly suggested that the IS6100 transposition has caused dynamic genome rearrangements and the diversification of lin-flanking regions in the four strains.
Collapse
Affiliation(s)
- Michiro Tabata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Satoshi Ohhata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yuki Nikawadori
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Kouhei Kishida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Takuya Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Toru Kawasumi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Pereira JH, Heins RA, Gall DL, McAndrew RP, Deng K, Holland KC, Donohue TJ, Noguera DR, Simmons BA, Sale KL, Ralph J, Adams PD. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6. J Biol Chem 2016; 291:10228-38. [PMID: 26940872 PMCID: PMC4858972 DOI: 10.1074/jbc.m115.700427] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 12/23/2022] Open
Abstract
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.
Collapse
Affiliation(s)
- Jose Henrique Pereira
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Richard A Heins
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Daniel L Gall
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, the Departments of Civil and Environmental Engineering and
| | - Ryan P McAndrew
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Kai Deng
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Keefe C Holland
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Timothy J Donohue
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Daniel R Noguera
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, the Departments of Civil and Environmental Engineering and
| | - Blake A Simmons
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Kenneth L Sale
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - John Ralph
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Paul D Adams
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, the Department of Bioengineering, University of California, Berkeley, California 94720
| |
Collapse
|
14
|
Choi DH, Kwon YM, Kwon KK, Kim SJ. Complete genome sequence of Novosphingobium pentaromativorans US6-1(T). Stand Genomic Sci 2015; 10:107. [PMID: 26594308 PMCID: PMC4653889 DOI: 10.1186/s40793-015-0102-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/11/2015] [Indexed: 11/17/2022] Open
Abstract
Novosphingobium pentaromativorans US6-1(T) is a species in the family Sphingomonadaceae. According to the phylogenetic analysis based on 16S rRNA gene sequence of the N. pentaromativorans US6-1(T) and nine genome-sequenced strains in the genus Novosphingobium, the similarity ranged from 93.9 to 99.9 % and the highest similarity was found with Novosphingobium sp. PP1Y (99.9 %), whereas the ANI value based on genomes ranged from 70.9 to 93 % and the highest value was 93 %. This microorganism was isolated from muddy coastal bay sediments where the environment is heavily polluted by polycyclic aromatic hydrocarbons (PAHs). It was previously shown to be capable of degrading multiple PAHs, including benzo[a]pyrene. To further understand the PAH biodegradation pathways the previous draft genome of this microorganism was revised to obtain a complete genome using Illumina MiSeq and PacBio platform. The genome of strain US6-1(T) consists of 5,457,578 bp, which includes the 3,979,506 bp chromosome and five megaplasmids. It comprises 5110 protein-coding genes and 82 RNA genes. Here, we provide an analysis of the complete genome sequence which enables the identification of new characteristics of this strain.
Collapse
Affiliation(s)
- Dong Hee Choi
- />Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 426-744 Republic of Korea
| | - Yong Min Kwon
- />Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 426-744 Republic of Korea
| | - Kae Kyoung Kwon
- />Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 426-744 Republic of Korea
- />Major of Marine Biotechnology, University of Science and Technology, Daejeon, 305-350 Republic of Korea
| | - Sang-Jin Kim
- />Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 426-744 Republic of Korea
- />Major of Marine Biotechnology, University of Science and Technology, Daejeon, 305-350 Republic of Korea
- />National Marine Biodiversity Institute of Korea, Seocheon, 325-902 Republic of Korea
| |
Collapse
|
15
|
Pearce SL, Oakeshott JG, Pandey G. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains. G3 (BETHESDA, MD.) 2015; 5:1081-94. [PMID: 25850427 PMCID: PMC4478539 DOI: 10.1534/g3.114.015933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/29/2015] [Indexed: 11/18/2022]
Abstract
Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed.
Collapse
Affiliation(s)
| | | | - Gunjan Pandey
- CSIRO Ecosystem Sciences, Acton, ACT-2601, Australia
| |
Collapse
|
16
|
Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 2015; 6:242. [PMID: 25873913 PMCID: PMC4379921 DOI: 10.3389/fmicb.2015.00242] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Plasmids are important "vehicles" for the communication of genetic information between bacteria. The exchange of plasmids transmits pathogenically and environmentally relevant traits to the host bacteria, promoting their rapid evolution and adaptation to various environments. Over the past six decades, a large number of plasmids have been identified and isolated from different microbes. With the revolution of sequencing technology, more than 4600 complete sequences of plasmids found in bacteria, archaea, and eukaryotes have been determined. The classification of a wide variety of plasmids is not only important to understand their features, host ranges, and microbial evolution but is also necessary to effectively use them as genetic tools for microbial engineering. This review summarizes the current situation of the classification of fully sequenced plasmids based on their host taxonomy and their features of replication and conjugative transfer. The majority of the fully sequenced plasmids are found in bacteria in the Proteobacteria, Firmicutes, Spirochaetes, Actinobacteria, Cyanobacteria and Euryarcheota phyla, and key features of each phylum are included. Recent advances in the identification of novel types of plasmids and plasmid transfer by culture-independent methods using samples from natural environments are also discussed.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan ; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan
| | - Zoe K Sanchez
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| | - Kazuhide Kimbara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| |
Collapse
|
17
|
Lyu Y, Zheng W, Zheng T, Tian Y. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 2014; 9:e101438. [PMID: 25007154 PMCID: PMC4090153 DOI: 10.1371/journal.pone.0101438] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/05/2014] [Indexed: 11/18/2022] Open
Abstract
Novosphingobium pentaromativorans US6-1, a marine bacterium isolated from muddy sediments of Ulsan Bay, Republic of Korea, was previously shown to be capable of degrading multiple polycyclic aromatic hydrocarbons (PAHs). In order to gain insight into the characteristics of PAHs degradation, a proteome analysis of N. pentaromativorans US6-1 exposed to phenanthrene, pyrene, and benzo[a]pyrene was conducted. Several enzymes associated with PAHs degradation were identified, including 4-hydroxybenzoate 3-monooxygenase, salicylaldehyde dehydrogenase, and PAH ring-hydroxylating dioxygenase alpha subunit. Reverse transcription and real-time quantitative PCR was used to compare RHDα and 4-hydroxybenzoate 3-monooxygenase gene expression, and showed that the genes involved in the production of these two enzymes were upregulated to varying degrees after exposing the bacterium to PAHs. These results suggested that N. pentaromativorans US6-1 degraded PAHs via the metabolic route initiated by ring-hydroxylating dioxygenase, and further degradation occurred via the o-phthalate pathway or salicylate pathway. Both pathways subsequently entered the tricarboxylic acid (TCA) cycle, and were mineralized to CO2.
Collapse
Affiliation(s)
- Yihua Lyu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Tianling Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Adam IKU, Rein A, Miltner A, Fulgêncio ACD, Trapp S, Kästner M. Experimental results and integrated modeling of bacterial growth on an insoluble hydrophobic substrate (phenanthrene). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8717-8726. [PMID: 24967613 DOI: 10.1021/es500004z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metabolism of a low-solubility substrate is limited by dissolution and availability and can hardly be determined. We developed a numerical model for simultaneously calculating dissolution kinetics of such substrates and their metabolism and microbial growth (Monod kinetics with decay) and tested it with three aerobic phenanthrene (PHE) degraders: Novosphingobium pentaromativorans US6-1, Sphingomonas sp. EPA505, and Sphingobium yanoikuyae B1. PHE was present as microcrystals, providing non-limiting conditions for growth. Total PHE and protein concentration were tracked over 6-12 days. The model was fitted to the test results for the rates of dissolution, metabolism, and growth. The strains showed similar efficiency, with vmax values of 12-18 g dw g(-1) d(-1), yields of 0.21 g g(-1), maximum growth rates of 2.5-3.8 d(-1), and decay rates of 0.04-0.05 d(-1). Sensitivity analysis with the model shows that (i) retention in crystals or NAPLs or by sequestration competes with biodegradation, (ii) bacterial growth conditions (dissolution flux and resulting chemical activity of substrate) are more relevant for the final state of the system than the initial biomass, and (iii) the desorption flux regulates the turnover in the presence of solid-state, sequestered (aged), or NAPL substrate sources.
Collapse
Affiliation(s)
- Iris K U Adam
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research-UFZ , Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. Appl Microbiol Biotechnol 2014; 98:8235-52. [DOI: 10.1007/s00253-014-5858-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022]
|
20
|
Yun SH, Choi CW, Lee SY, Lee YG, Kwon J, Leem SH, Chung YH, Kahng HY, Kim SJ, Kwon KK, Kim SI. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. PLoS One 2014; 9:e90812. [PMID: 24608660 PMCID: PMC3946609 DOI: 10.1371/journal.pone.0090812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/04/2014] [Indexed: 11/18/2022] Open
Abstract
Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs). Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs) identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.
Collapse
Affiliation(s)
- Sung Ho Yun
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Chi-Won Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Sang-Yeop Lee
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Yeol Gyun Lee
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Joseph Kwon
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Sun Hee Leem
- Department of Biology, Dong-A University, Busan, Republic of Korea
| | - Young Ho Chung
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyung-Yeel Kahng
- Department of Environmental Education, Sunchon National University, Sunchon, Republic of Korea
| | - Sang Jin Kim
- Korea Institute of Ocean Science & Technology, Ansan, Republic of Korea
| | - Kae Kyoung Kwon
- Korea Institute of Ocean Science & Technology, Ansan, Republic of Korea
| | - Seung Il Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Mortazavi B, Horel A, Anders JS, Mirjafari A, Beazley MJ, Sobecky PA. Enhancing the biodegradation of oil in sandy sediments with choline: a naturally methylated nitrogen compound. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 182:53-62. [PMID: 23896678 DOI: 10.1016/j.envpol.2013.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg(-1) sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons.
Collapse
Affiliation(s)
- Behzad Mortazavi
- Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487, USA; Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Stolz A. Degradative plasmids from sphingomonads. FEMS Microbiol Lett 2013; 350:9-19. [DOI: 10.1111/1574-6968.12283] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andreas Stolz
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart Germany
| |
Collapse
|
23
|
Wongwongsee W, Chareanpat P, Pinyakong O. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. MARINE POLLUTION BULLETIN 2013; 74:95-104. [PMID: 23928000 DOI: 10.1016/j.marpolbul.2013.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50-76% of 100 mg/l phenanthrene within 2 weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.
Collapse
Affiliation(s)
- Wanwasan Wongwongsee
- Microbiology Program in Science, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | |
Collapse
|
24
|
Gan HM, Hudson AO, Rahman AYA, Chan KG, Savka MA. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics 2013; 14:431. [PMID: 23809012 PMCID: PMC3704786 DOI: 10.1186/1471-2164-14-431] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Bacteria belonging to the genus Novosphingobium are known to be metabolically versatile and occupy different ecological niches. In the absence of genomic data and/or analysis, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. In this study, we analyzed the whole genome sequencing data of six bacteria in the Novosphingobium genus and provide evidence to show the presence of genes that are associated with salt tolerance, cell-cell signaling and aromatic compound biodegradation phenotypes. Additionally, we show the taxonomic relationship between the sequenced bacteria based on phylogenomic analysis, average amino acid identity (AAI) and genomic signatures. Results The taxonomic clustering of Novosphingobium strains is generally influenced by their isolation source. AAI and genomic signature provide strong support the classification of Novosphingobium sp. PP1Y as Novosphingobium pentaromaticivorans PP1Y. The identification and subsequent functional annotation of the unique core genome in the marine Novosphingobium bacteria show that ectoine synthesis may be the main contributing factor in salt water adaptation. Genes coding for the synthesis and receptor of the cell-cell signaling molecules, of the N-acyl-homoserine lactones (AHL) class are identified. Notably, a solo luxR homolog was found in strain PP1Y that may have been recently acquired via horizontal gene transfer as evident by the presence of multiple mobile elements upstream of the gene. Additionally, phylogenetic tree analysis and sequence comparison with functionally validated aromatic ring hydroxylating dioxygenases (ARDO) revealed the presence of several ARDOs (oxygenase) in Novosphingobium bacteria with the majority of them belonging to the Groups II and III of the enzyme. Conclusions The combination of prior knowledge on the distinctive phenotypes of Novosphingobium strains and meta-analysis of their whole genomes enables the identification of several genes that are relevant in industrial applications and bioremediation. The results from such targeted but comprehensive comparative genomics analysis have the potential to contribute to the understanding of adaptation, cell-cell communication and bioremediation properties of bacteria belonging to the genus Novosphingobium.
Collapse
Affiliation(s)
- Han Ming Gan
- Science Vision SB, Shah Alam, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
25
|
Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 2013; 79:3724-33. [PMID: 23563954 DOI: 10.1128/aem.00518-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.
Collapse
|
26
|
Nelson OW, Garrity GM. Genome sequences published outside of Standards in Genomic Sciences, January-March 2012. Stand Genomic Sci 2012. [DOI: 10.4056/sigs.1756022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|