1
|
Biryukova EN, Arinbasarova AY, Medentsev AG. L-Lactate Oxidase Systems of Microorganisms. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
2
|
A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization. J Bacteriol 2017; 199:JB.00342-17. [PMID: 28847921 DOI: 10.1128/jb.00342-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial membrane-associated NAD-independent d-lactate dehydrogenase (Fe-S d-iLDH) oxidizes d-lactate into pyruvate. A sequence analysis of the enzyme reveals that it contains an Fe-S oxidoreductase domain in addition to a flavin adenine dinucleotide (FAD)-containing dehydrogenase domain, which differs from other typical d-iLDHs. Fe-S d-iLDH from Pseudomonas putida KT2440 was purified as a His-tagged protein and characterized in detail. This monomeric enzyme exhibited activities with l-lactate and several d-2-hydroxyacids. Quinone was shown to be the preferred electron acceptor of the enzyme. The two domains of the enzyme were then heterologously expressed and purified separately. The Fe-S cluster-binding motifs predicted by sequence alignment were preliminarily verified by site-directed mutagenesis of the Fe-S oxidoreductase domain. The FAD-containing dehydrogenase domain retained 2-hydroxyacid-oxidizing activity, although it decreased compared to the full Fe-S d-iLDH. Compared to the intact enzyme, the FAD-containing dehydrogenase domain showed increased catalytic efficiency with cytochrome c as the electron acceptor, but it completely lost the ability to use coenzyme Q10 Additionally, the FAD-containing dehydrogenase domain was no longer associated with the cell membrane, and it could not support the utilization of d-lactate as a carbon source. Based on the results obtained, we conclude that the Fe-S oxidoreductase domain functions as an electron transfer component to facilitate the utilization of quinone as an electron acceptor by Fe-S d-iLDH, and it helps the enzyme associate with the cell membrane. These functions make the Fe-S oxidoreductase domain crucial for the in vivo d-lactate utilization function of Fe-S d-iLDH.IMPORTANCE Lactate metabolism plays versatile roles in most domains of life. Lactate utilization processes depend on certain enzymes to oxidize lactate to pyruvate. In recent years, novel bacterial lactate-oxidizing enzymes have been continually reported, including the unique NAD-independent d-lactate dehydrogenase that contains an Fe-S oxidoreductase domain besides the typical flavin-containing domain (Fe-S d-iLDH). Although Fe-S d-iLDH is widely distributed among bacterial species, the investigation of it is insufficient. Fe-S d-iLDH from Pseudomonas putida KT2440, which is the major d-lactate-oxidizing enzyme for the strain, might be a representative of this type of enzyme. A study of it will be helpful in understanding the detailed mechanisms underlying the lactate utilization processes.
Collapse
|
3
|
Coupling between d-3-phosphoglycerate dehydrogenase and d-2-hydroxyglutarate dehydrogenase drives bacterial l-serine synthesis. Proc Natl Acad Sci U S A 2017; 114:E7574-E7582. [PMID: 28827360 DOI: 10.1073/pnas.1619034114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
l-Serine biosynthesis, a crucial metabolic process in most domains of life, is initiated by d-3-phosphoglycerate (d-3-PG) dehydrogenation, a thermodynamically unfavorable reaction catalyzed by d-3-PG dehydrogenase (SerA). d-2-Hydroxyglutarate (d-2-HG) is traditionally viewed as an abnormal metabolite associated with cancer and neurometabolic disorders. Here, we reveal that bacterial anabolism and catabolism of d-2-HG are involved in l-serine biosynthesis in Pseudomonas stutzeri A1501 and Pseudomonas aeruginosa PAO1. SerA catalyzes the stereospecific reduction of 2-ketoglutarate (2-KG) to d-2-HG, responsible for the major production of d-2-HG in vivo. SerA combines the energetically favorable reaction of d-2-HG production to overcome the thermodynamic barrier of d-3-PG dehydrogenation. We identified a bacterial d-2-HG dehydrogenase (D2HGDH), a flavin adenine dinucleotide (FAD)-dependent enzyme, that converts d-2-HG back to 2-KG. Electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) are also essential in d-2-HG metabolism through their capacity to transfer electrons from D2HGDH. Furthermore, while the mutant with D2HGDH deletion displayed decreased growth, the defect was rescued by adding l-serine, suggesting that the D2HGDH is functionally tied to l-serine synthesis. Substantial flux flows through d-2-HG, being produced by SerA and removed by D2HGDH, ETF, and ETFQO, maintaining d-2-HG homeostasis. Overall, our results uncover that d-2-HG-mediated coupling between SerA and D2HGDH drives bacterial l-serine synthesis.
Collapse
|
4
|
Draft Genome Sequence of the Toluene-Degrading Pseudomonas stutzeri Strain ST-9. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00567-15. [PMID: 26044424 PMCID: PMC4457061 DOI: 10.1128/genomea.00567-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strain ST-9 was isolated from toluene-contaminated soil (Samaria, Israel). The draft genome has an estimated size of 4.8 Mb, exhibits an average G+C content of 60.37%, and is predicted to encode 4,183 proteins, including a gene cluster for aromatic hydrocarbon degradation. It is assigned to genomovar 3 of Pseudomonas stutzeri.
Collapse
|
5
|
NAD-Independent L-Lactate Dehydrogenase Required for L-Lactate Utilization in Pseudomonas stutzeri A1501. J Bacteriol 2015; 197:2239-2247. [PMID: 25917905 DOI: 10.1128/jb.00017-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/22/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED NAD-independent L-lactate dehydrogenases (l-iLDHs) play important roles in L-lactate utilization of different organisms. All of the previously reported L-iLDHs were flavoproteins that catalyze the oxidation of L-lactate by the flavin mononucleotide (FMN)-dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of L-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichia coli, distinctive L-iLDH activity was detected. The expressed L-iLDH was purified by ammonium sulfate precipitation, ion-exchange chromatography, and affinity chromatography. SDS-PAGE and successive matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the purified L-iLDH indicated that it is a complex of LldA, LldB, and LldC (encoded by lldA, lldB, and lldC, respectively). Purified L-iLDH (LldABC) is a dimer of three subunits (LldA, LldB, and LldC), and the ratio between LldA, LldB, and LldC is 1:1:1. Different from the FMN-containing L-iLDH, absorption spectra and elemental analysis suggested that LldABC might use the iron-sulfur cluster for the L-lactate oxidation. LldABC has narrow substrate specificity, and only L-lactate and DL-2-hydrobutyrate were rapidly oxidized. Mg(2+) could activate L-iLDH activity effectively (6.6-fold). Steady-state kinetics indicated a ping-pong mechanism of LldABC for the L-lactate oxidation. Based on the gene knockout results, LldABC was confirmed to be required for the L-lactate metabolism of P. stutzeri A1501. LldABC is the first purified and characterized L-iLDH with different subunits that uses the iron-sulfur cluster as the cofactor. IMPORTANCE Providing new insights into the diversity of microbial lactate utilization could assist in the production of valuable chemicals and understanding microbial pathogenesis. An NAD-independent L-lactate dehydrogenase (L-iLDH) encoded by the gene cluster lldABC is indispensable for the L-lactate metabolism in Pseudomonas stutzeri A1501. This novel type of enzyme was purified and characterized in this study. Different from the well-characterized FMN-containing L-iLDH in other microbes, LldABC in P. stutzeri A1501 is a dimer of three subunits (LldA, LldB, and LldC) and uses the iron-sulfur cluster as a cofactor.
Collapse
|
6
|
Wang Y, Zhang Y, Jiang T, Meng J, Sheng B, Yang C, Gao C, Xu P, Ma C. A novel biocatalyst for efficient production of 2-oxo-carboxylates using glycerol as the cost-effective carbon source. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:186. [PMID: 26609321 PMCID: PMC4659176 DOI: 10.1186/s13068-015-0368-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND The surplus of glycerol has increased remarkably as a main byproduct during the biofuel's production. Exploiting an alternative route for glycerol utilization is significantly important for sustainability of biofuels. RESULTS A novel biocatalyst that could be prepared from glycerol for producing 2-oxo-carboxylates was developed. First, Pseudomonas putida KT2440 was reconstructed by deleting lldR to develop a mutant expressing the NAD-independent lactate dehydrogenases (iLDHs) constitutively. Then, the Vitreoscilla hemoglobin (VHb) was heterologously expressed to further improve the biotransformation activity. The reconstructed strain, P. putida KT2440 (ΔlldR)/pBSPPcGm-vgb, exhibited high activities of iLDHs when cultured with glycerol as the carbon source. This cost-effective biocatalyst could efficiently produce pyruvate and 2-oxobutyrate from dl-lactate and dl-2-hydroxybutyrate with high molar conversion rates of 91.9 and 99.8 %, respectively. CONCLUSIONS The process would not only be a promising alternative for the production of 2-oxo-carboxylates, but also be an example for preparation of efficient biocatalysts for the value-added utilization of glycerol.
Collapse
Affiliation(s)
- Yujiao Wang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yingxin Zhang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Tianyi Jiang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Jingjing Meng
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Binbin Sheng
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Chunyu Yang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Chao Gao
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ping Xu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
- />State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Cuiqing Ma
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
7
|
Wang Y, Lv M, Zhang Y, Xiao X, Jiang T, Zhang W, Hu C, Gao C, Ma C, Xu P. Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production. Sci Rep 2014; 4:6939. [PMID: 25373400 PMCID: PMC4221787 DOI: 10.1038/srep06939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022] Open
Abstract
As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and reconstruction of the lactate utilization system in the P. putida strain, a novel biocatalyst that only exhibited NAD-independent D-lactate dehydrogenase activity was prepared and used in L-2-hydroxy-carboxylates production. Since the side reaction catalyzed by the NAD-independent L-lactate dehydrogenase was eliminated in whole cells of recombinant P. putida KT2440, two important L-2-hydroxy-carboxylates (L-lactate and L-2-hydroxybutyrate) were produced in high yield and high optical purity by kinetic resolution of racemic 2-hydroxy carboxylic acids. The results highlight the promise in biocatalysis by the biotechnologically important organism P. putida KT2440 through genomic analysis and recombination.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Min Lv
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Yingxin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Xieyue Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Wen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Chunhui Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Ping Xu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China [2] State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
8
|
Jiang T, Gao C, Ma C, Xu P. Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol 2014; 22:589-99. [PMID: 24950803 DOI: 10.1016/j.tim.2014.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022]
Abstract
Lactate utilization endows microbes with the ability to use lactate as a carbon source. Lactate oxidizing enzymes play key roles in the lactate utilization pathway. Various types of these enzymes have been characterized, but novel ones remain to be identified. Lactate determination techniques and biocatalysts have been developed based on these enzymes. Lactate utilization has also been found to induce pathogenicity of several microbes, and the mechanisms have been investigated. More recently, studies on the structure and organization of operons of lactate utilization have been carried out. This review focuses on the recent progress and future perspectives in understanding microbial lactate utilization.
Collapse
Affiliation(s)
- Tianyi Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
9
|
Draft Genome Sequence of the Gluconobacter oxydans Strain DSM 2003, an Important Biocatalyst for Industrial Use. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00417-14. [PMID: 24786959 PMCID: PMC4007994 DOI: 10.1128/genomea.00417-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gluconobacter oxydans strain DSM 2003 can efficiently produce some industrially important building blocks, such as (R)-lactic acid and (R)-2-hydroxybutyric acid. Here, we present a 2.94-Mb assembly of its genome sequence, which might provide further insights into the molecular mechanism of its biocatalysis in order to further improve its biotechnological applications.
Collapse
|
10
|
Genome Sequence of the Nonpathogenic Pseudomonas aeruginosa Strain ATCC 15442. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00421-14. [PMID: 24786961 PMCID: PMC4007996 DOI: 10.1128/genomea.00421-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa ATCC 15442 is an environmental strain of the Pseudomonas genus. Here, we present a 6.77-Mb assembly of its genome sequence. Besides giving insights into characteristics associated with the pathogenicity of P. aeruginosa, such as virulence, drug resistance, and biofilm formation, the genome sequence may provide some information related to biotechnological utilization of the strain.
Collapse
|
11
|
Gao C, Wang X, Ma C, Xu P. Production of hydroxypyruvate from glycerate by a novel biotechnological route. BIORESOURCE TECHNOLOGY 2013; 131:552-554. [PMID: 23415941 DOI: 10.1016/j.biortech.2013.01.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
In this work, bio-oxidation of glycerate was introduced for the green production of hydroxypyruvate. Whole cells of Pseudomonas sp. XP-LM were confirmed to have a good ability to produce hydroxypyruvate from glycerate. Under the optimal conditions, Hydroxypyruvate of 98.6 mM was produced from glycerate of 200 mM. Glycerate is now potentially producible from glycerol, a by-product during biodiesel fuel production, through a biotechnological process. Thus, the bioconversion system introduced in this work provided not only a green hydroxypyruvate production process but also a potential pathway of surplus glycerol utilization.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | | | | | | |
Collapse
|
12
|
Draft Genome of the Nitrogen-Fixing Bacterium Pseudomonas stutzeri Strain KOS6 Isolated from Industrial Hydrocarbon Sludge. GENOME ANNOUNCEMENTS 2013; 1:genomeA00072-12. [PMID: 23405317 PMCID: PMC3569306 DOI: 10.1128/genomea.00072-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/30/2012] [Indexed: 11/30/2022]
Abstract
Here we present a draft genome of Pseudomonas stutzeri strain KOS6. This strain was isolated from industrial hydrocarbon sludge as a diazotrophic microorganism. It represents one of the major parts of the culturable community of the waste and has potential importance for phytoremediation technology.
Collapse
|
13
|
Abstract
Pseudomonas aeruginosa XMG, isolated from soil, utilizes lactate. Here we present a 6.45-Mb assembly of its genome sequence. Besides the lactate utilization mechanism of the strain, the genome sequence may also provide other useful information related to P. aeruginosa, such as identifying genes involved in virulence, drug resistance, and aromatic catabolism.
Collapse
|
14
|
Genome sequence of the moderately halotolerant, arsenite-oxidizing bacterium Pseudomonas stutzeri TS44. J Bacteriol 2012; 194:4473-4. [PMID: 22843599 DOI: 10.1128/jb.00907-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the draft genome sequence of Pseudomonas stutzeri TS44, a moderately halotolerant, arsenite-oxidizing bacterium isolated from arsenic-contaminated soil. The genome contains genes for arsenite oxidation, arsenic resistance, and ectoine/hydroxyectoine biosynthesis. The genome information will be useful for exploring adaptation of P. stutzeri TS44 to an arsenic-contaminated environment.
Collapse
|
15
|
Biocatalytic production of chiral 2-hydroxycarboxylic acids and 2-oxocarboxylic acids. N Biotechnol 2012. [DOI: 10.1016/j.nbt.2012.08.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Gao C, Qiu J, Ma C, Xu P. Efficient production of pyruvate from DL-lactate by the lactate-utilizing strain Pseudomonas stutzeri SDM. PLoS One 2012; 7:e40755. [PMID: 22792404 PMCID: PMC3392241 DOI: 10.1371/journal.pone.0040755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The platform chemical lactate is currently produced mainly through the fermentation of sugars presented in biomass. Besides the synthesis of biodegradable polylactate, lactate is also viewed as a feedstock for the green chemistry of the future. Pyruvate, another important platform chemical, can be produced from lactate through biocatalysis. METHODOLOGY/PRINCIPAL FINDINGS It was established that whole cells of Pseudomonas stutzeri SDM catalyze lactate oxidation with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) through the inherent electron transfer chain. Unlike the lactate oxidation processes observed in previous reports, the mechanism underlying lactate oxidation described in the present study excluded the costliness of the cofactor regeneration step and production of the byproduct hydrogen peroxide. CONCLUSIONS/SIGNIFICANCE Biocatalysis conditions were optimized by using the cheap dl-lactate as the substrate and whole cells of the lactate-utilizing P. stutzeri SDM as catalyst. Under optimal conditions, the biocatalytic process produced pyruvate at a high concentration (48.4 g l(-1)) and a high yield (98%). The bioconversion system provides a promising alternative for the green production of pyruvate.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People’s Republic of China
| | - Jianhua Qiu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People’s Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People’s Republic of China
- * E-mail:
| | - Ping Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Gao C, Jiang T, Dou P, Ma C, Li L, Kong J, Xu P. NAD-independent L-lactate dehydrogenase is required for L-lactate utilization in Pseudomonas stutzeri SDM. PLoS One 2012; 7:e36519. [PMID: 22574176 PMCID: PMC3344892 DOI: 10.1371/journal.pone.0036519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Various Pseudomonas strains can use L-lactate as their sole carbon source for growth. However, the L-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. METHODOLOGY/PRINCIPAL FINDINGS An NAD-independent L-lactate dehydrogenase (L-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of L-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), L-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on L-lactate, but retained the ability to grow on pyruvate. CONCLUSIONS/SIGNIFICANCE It is proposed that L-iLDH plays an indispensable function in Pseudomonas L-lactate utilization by catalyzing the conversion of L-lactate into pyruvate.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Peipei Dou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Lixiang Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Nelson OW, Garrity GM. Genome sequences published outside of Standards in Genomic Sciences, January-March 2012. Stand Genomic Sci 2012. [DOI: 10.4056/sigs.1756022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. J Bacteriol 2012; 194:2687-92. [PMID: 22408166 DOI: 10.1128/jb.06579-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD-independent L-lactate dehydrogenase (l-iLDH) and NAD-independent D-lactate dehydrogenase (D-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an L-iLDH), and lldE (encoding a D-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses D-iLDH and L-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldR(M), lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. L-Lactate and D-lactate interfered with the DNA-binding activity of LldR. Thus, L-iLDH and D-iLDH were expressed when the operon was induced in the presence of L-lactate or D-lactate.
Collapse
|