1
|
Li X, Li Z, Wei Y, Chen Z, Xie S. Identification and characterization of the TetR family transcriptional regulator NffT in Rhizobium johnstonii. Appl Environ Microbiol 2024; 90:e0185123. [PMID: 38426790 PMCID: PMC10952539 DOI: 10.1128/aem.01851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Symbiotic nitrogen fixation (SNF) by rhizobia is not only the main natural bionitrogen-source for organisms but also a green process leveraged to increase the fertility of soil for agricultural production. However, an insufficient understanding of the regulatory mechanism of SNF hinders its practical application. During SNF, nifA-fixA signaling is essential for the biosynthesis of nitrogenases and electron transfer chain proteins. In the present study, the TetR regulator NffT, whose mutation increased fixA expression, was discovered through a fixA-promoter-β-glucuronidase fusion assay performed with Rhizobium johnstonii. Real-time quantitative PCR analysis showed that nffT deletion increased the expression of symbiotic genes including nifA and fixA in nifA-fixA signaling, and fixL, fixK, fnrN, and fixN9 in fixL-fixN signaling. nffT overexpression resulted in disordered nodules and reduced nitrogen-fixing efficiency. Electrophoretic mobility shift assays revealed that NffT directly regulated the transcription of RL0091-93, which encode an ATP-binding ABC transporter predicted to be involved in carbohydrate transport. Purified His-tagged NffT bound to a 68 bp DNA sequence located -32 to -99 bp upstream of RL0091-93 and NffT deletion significantly increased the expression of RL0091-93. nffT-promoter-β-glucuronidase fusion assay indicated that nffT expression was regulated by the cobNTS genes and cobalamin. Mutations in cobNTS significantly decreased the expression of nffT, and cobalamin restored its expression. These results revealed that NffT affects nodule development and nitrogen-fixing reaction by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes and, thus, plays a pivotal regulatory role during symbiosis of R. johnstonii-Pisum sativum.IMPORTANCESymbiotic nitrogen fixation (SNF) by rhizobia is a green way to maintain soil fertility without causing environmental pollution or consuming chemical energy. A detailed understanding of the regulatory mechanism of this complex process is essential for promoting sustainable agriculture. In this study, we discovered the TetR-type regulator NffT, which suppressed the expression of fixA in Rhizobium johnstonii. Furthermore, NffT was confirmed to play pleiotropic roles in R. johnstonii-Pisum sativum symbiosis; specifically, it inhibited rhizobial growth, nodule differentiation, and nitrogen-fixing reactions. We revealed that NffT indirectly affected R. johnstonii-P. sativum symbiosis by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes. Furthermore, cobalamin, a chemical molecule, was reported for the first time to be involved in TetR-type protein transcription during symbiosis. Thus, NffT identification connects SNF regulation with genetic, metabolic, and chemical signals and provides new insights into the complex regulation of SNF, laying an experimental basis for the targeted construction of rhizobial strains with highly efficient nitrogen-fixing capacity.
Collapse
Affiliation(s)
- Xiaofang Li
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Yajuan Wei
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Zirui Chen
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Shijie Xie
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
3
|
Werner N, Werten S, Hoppen J, Palm GJ, Göttfert M, Hinrichs W. The induction mechanism of the flavonoid-responsive regulator FrrA. FEBS J 2022; 289:507-518. [PMID: 34314575 DOI: 10.1111/febs.16141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Bradyrhizobium diazoefficiens, a bacterial symbiont of soybean and other leguminous plants, enters a nodulation-promoting genetic programme in the presence of host-produced flavonoids and related signalling compounds. Here, we describe the crystal structure of an isoflavonoid-responsive regulator (FrrA) from Bradyrhizobium, as well as cocrystal structures with inducing and noninducing ligands (genistein and naringenin, respectively). The structures reveal a TetR-like fold whose DNA-binding domain is capable of adopting a range of orientations. A single molecule of either genistein or naringenin is asymmetrically bound in a central cavity of the FrrA homodimer, mainly via C-H contacts to the π-system of the ligands. Strikingly, however, the interaction does not provoke any conformational changes in the repressor. Both the flexible positioning of the DNA-binding domain and the absence of structural change upon ligand binding are corroborated by small-angle X-ray scattering (SAXS) experiments in solution. Together with a model of the promoter-bound state of FrrA our results suggest that inducers act as a wedge, preventing the DNA-binding domains from moving close enough together to interact with successive positions of the major groove of the palindromic operator.
Collapse
Affiliation(s)
- Nadine Werner
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Sebastiaan Werten
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Jens Hoppen
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Gottfried J Palm
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Michael Göttfert
- Institute of Genetics, Dresden University of Technology, Germany
| | - Winfried Hinrichs
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| |
Collapse
|
4
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
5
|
Riviezzi B, García-Laviña CX, Morel MA, Castro-Sowinski S. Facing the communication between soybean plants and microorganisms (Bradyrhizobium and Delftia) by quantitative shotgun proteomics. Symbiosis 2021. [DOI: 10.1007/s13199-021-00758-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Han F, He X, Chen W, Gai H, Bai X, He Y, Takeshima K, Ohwada T, Wei M, Xie F. Involvement of a Novel TetR-Like Regulator (BdtR) of Bradyrhizobium diazoefficiens in the Efflux of Isoflavonoid Genistein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1411-1423. [PMID: 32924759 DOI: 10.1094/mpmi-08-20-0243-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide variety of leguminous plant-released (iso)flavonoids, such as genistein, are potential inducers of the nodulation (nod) genes of endosymbiotic rhizobia for the production of Nod factors, which are vital signaling molecules for triggering the symbiotic process. However, these (iso)flavonoids are generally thought to be toxic to the bacterial partner to varying degrees. Here, a novel TetR-like regulator gene of the soybean symbiont Bradyrhizobium diazoefficiens USDA110, bdtR (systematic designation blr7023), was characterized. It was found to be rapidly and preferentially induced by genistein, and its mutation resulted in significantly increased expression of the neighboring bll7019-bll7021 genes, encoding a multidrug resistance efflux pump system, in the absence of this isoflavonoid. Then, the transcriptional start site of BdtR was determined, and it was revealed that BdtR acted as a transcriptional repressor of the above efflux system through the binding of an AT-rich operator, which could be completely prevented by genistein. In addition, the ΔbdtR deletion mutant strain showed higher accumulation of extracellular genistein and became less susceptible to the isoflavonoid. In contrast, the inactivation of BdtR led to the significantly decreased induction of a nodulation gene (nodY) independent of the expression of nodD1 and nodW and to much weaker nodulation competitiveness. Taken together, the results show that BdtR plays an early sensing role in maintaining the intracellular homeostasis of genistein, helping to alleviate its toxic effect on this bacterium by negatively regulating neighboring genes encoding an efflux pump system while being essentially required for nodule occupancy competitiveness.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Fang Han
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Xueqian He
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Wenwen Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Haoyu Gai
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Xuemei Bai
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Yongxing He
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Keisuke Takeshima
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Takuji Ohwada
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Min Wei
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Yu XQ, Yan X, Zhang MY, Zhang LQ, He YX. Flavonoids repress the production of antifungal 2,4-DAPG but potentially facilitate root colonization of the rhizobacterium Pseudomonas fluorescens. Environ Microbiol 2020; 22:5073-5089. [PMID: 32363709 DOI: 10.1111/1462-2920.15052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
In the well-known legume-rhizobia symbiosis, flavonoids released by legume roots induce expression of the Nod factors and trigger early plant responses involved in root nodulation. However, it remains largely unknown how the plant-derived flavonoids influence the physiology of non-symbiotic beneficial rhizobacteria. In this work, we demonstrated that the flavonoids apigenin and/or phloretin enhanced the swarming motility and production of cellulose and curli in Pseudomonas fluorescens 2P24, both traits of which are essential for root colonization. Using a label-free quantitative proteomics approach, we showed that apigenin and phloretin significantly reduced the biosynthesis of the antifungal metabolite 2,4-DAPG and further identified a novel flavonoid-sensing TetR regulator PhlH, which was shown to modulate 2,4-DAPG production by regulating the expression of 2,4-DAPG hydrolase PhlG. Although having similar structures, apigenin and phloretin could also influence different physiological characteristics of P. fluorescens 2P24, with apigenin decreasing the biofilm formation and phloretin inducing expression of proteins involved in the denitrification and arginine fermentation processes. Taken together, our results suggest that plant-derived flavonoids could be sensed by the TetR regulator PhlH in P. fluorescens 2P24 and acts as important signalling molecules that strengthen mutually beneficial interactions between plants and non-symbiotic beneficial rhizobacteria.
Collapse
Affiliation(s)
- Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Meng-Yuan Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
8
|
Sinumvayo JP, Zhao C, Tuyishime P. Recent advances and future trends of riboswitches: attractive regulatory tools. World J Microbiol Biotechnol 2018; 34:171. [PMID: 30413889 DOI: 10.1007/s11274-018-2554-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Bacterial genomes contain a huge amount of different genes. These genes are spatiotemporally expressed to accomplish some required functions within the organism. Inside the cell, any step of gene expression may be modulated at four possible places such as transcription initiation, translation regulation, mRNA stability and protein stability. To achieve this, there is a necessity of strong regulators either natural or synthetic which can fine-tune gene expression regarding the required function. In recent years, riboswitches as metabolite responsive control elements residing in the untranslated regions of certain messenger RNAs, have been known to control gene expression at transcription or translation level. Importantly, these control elements do not prescribe the involvement of protein factors for metabolite binding. However, they own their particular properties to sense intramolecular metabolites (ligands). Herein, we highlighted current important bacterial riboswitches, their applications to support genetic control, ligand-binding domain mechanisms and current progress in synthetic riboswitches.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Philibert Tuyishime
- University of Chinese Academy of Sciences, Beijing, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
9
|
A Complex Mechanism Involving LysR and TetR/AcrR That Regulates Iron Scavenger Biosynthesis in Pseudomonas donghuensis HYS. J Bacteriol 2018; 200:JB.00087-18. [PMID: 29686142 DOI: 10.1128/jb.00087-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
7-Hydroxytropolone (7-HT) is a symmetrical seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 includes 12 genes related to the synthesis of 7-HT; among these genes, those for two regulators, Orf1 and Orf12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR and β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6 to orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. Orf1 and Orf12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; Orf1 facilitates the expression of Orf12, and Orf12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. The overexpression of Orf12 decreased 7-HT yields, possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between Orf1 and Orf12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria.IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, in the biosynthesis of the novel iron scavenger 7-hydroxytropolone (7-HT) was verified in Pseudomonas donghuensis HYS. The coaction of LysR Orf1 and TetR/AcrR Orf12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness under iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability.
Collapse
|
10
|
Liu Y, Jiang X, Guan D, Zhou W, Ma M, Zhao B, Cao F, Li L, Li J. Transcriptional analysis of genes involved in competitive nodulation in Bradyrhizobium diazoefficiens at the presence of soybean root exudates. Sci Rep 2017; 7:10946. [PMID: 28887528 PMCID: PMC5591287 DOI: 10.1038/s41598-017-11372-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Nodulation competition is a key factor that limits symbiotic nitrogen fixation between rhizobia and their host legumes. Soybean root exudates (SREs) are thought to act as signals that influence Bradyrhizobium ability to colonize roots and to survive in the rhizosphere, and thus they act as a key determinant of nodulation competitiveness. In order to find the competitiveness-related genes in B. diazoefficiens, the transcriptome of two SREs treated B. diazoefficiens with completely different nodulation abilities (B. diazoefficiens 4534 and B. diazoefficiens 4222) were sequenced and compared. In SREs treated strain 4534 (SREs-4534), 253 unigenes were up-regulated and 204 unigenes were down-regulated. In SREs treated strain 4534 (SREs-4222), the numbers of up- and down-regulated unigenes were 108 and 185, respectively. There were considerable differences between the SREs-4534 and SREs-4222 gene expression profiles. Some differentially expressed genes are associated with a two-component system (i.g., nodW, phyR-σEcfG), bacterial chemotaxis (i.g., cheA, unigene04832), ABC transport proteins (i.g., unigene02212), IAA (indole-3-acetic acid) metabolism (i.g., nthA, nthB), and metabolic fitness (i.g., put.), which may explain the higher nodulation competitiveness of B. diazoefficiens in the rhizosphere. Our results provide a comprehensive transcriptomic resource for SREs treated B. diazoefficiens and will facilitate further studies on competitiveness-related genes in B. diazoefficiens.
Collapse
Affiliation(s)
- Yao Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Baisuo Zhao
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
11
|
Hirooka K. Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Biosci Biotechnol Biochem 2015; 78:1471-84. [PMID: 25209494 DOI: 10.1080/09168451.2014.943689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacillus subtilis collectively inhabits the rhizosphere, where it contributes to the promotion of plant growth, although it does not have a direct symbiotic relationship to plants as observed in the case of rhizobia between leguminous plants. As rhizobia sense the flavonoids released from their host roots through the NodD transcriptional factor, which triggers transcription of the nod genes involved in the symbiotic processes, we supposed that B. subtilis utilizes certain flavonoids as signaling molecules to perceive and adapt to the rhizospheric environment that it is in. Our approaches to identify the flavonoid-responsive transcriptional regulatory system from B. subtilis resulted in the findings that three transcriptional factors (LmrA/QdoR, YetL, and Fur) are responsive to flavonoids, with the modes of action being different from each other. We also revealed a unique regulatory system by two transcriptional factors, YcnK and CsoR, for copper homeostasis in B. subtilis. In this review, we summarize the molecular mechanisms of these regulatory systems with the relevant information and discuss their physiological significances in the mutually beneficial interaction between B. subtilis and plants, considering the possibility of their application for plant cultivation.
Collapse
Affiliation(s)
- Kazutake Hirooka
- a Department of Biotechnology, Faculty of Life Science and Biotechnology , Fukuyama University , Fukuyama , Hiroshima , Japan
| |
Collapse
|
12
|
The TetR-type MfsR protein of the integrative and conjugative element (ICE) ICEclc controls both a putative efflux system and initiation of ICE transfer. J Bacteriol 2014; 196:3971-9. [PMID: 25182498 DOI: 10.1128/jb.02129-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Integrative and conjugating elements (ICE) are self-transferable DNAs widely present in bacterial genomes, which often carry a variety of auxiliary genes of potential adaptive benefit. One of the model ICE is ICEclc, an element originally found in Pseudomonas knackmussii B13 and known for its propensity to provide its host with the capacity to metabolize chlorocatechols and 2-aminophenol. In this work, we studied the mechanism and target of regulation of MfsR, a TetR-type repressor previously found to exert global control on ICEclc horizontal transfer. By using a combination of ICEclc mutant and transcriptome analysis, gene reporter fusions, and DNA binding assays, we found that MfsR is a repressor of both its own expression and that of a gene cluster putatively coding for a major facilitator superfamily efflux system on ICEclc (named mfsABC). Phylogenetic analysis suggests that mfsR was originally located immediately adjacent to the efflux pump genes but became displaced from its original cis target DNA by a gene insertion. This resulted in divergence of the original bidirectional promoters into two separated individual regulatory units. Deletion of mfsABC did not result in a strong phenotype, and despite screening a large number of compounds and conditions, we were unable to define the precise current function or target of the putative efflux pump. Our data reconstruct how the separation of an ancestor mfsR-mfsABC system led to global control of ICEclc transfer by MfsR.
Collapse
|
13
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
14
|
Rossbach S, Kunze K, Albert S, Zehner S, Göttfert M. The Sinorhizobium meliloti EmrAB efflux system is regulated by flavonoids through a TetR-like regulator (EmrR). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:379-387. [PMID: 24224534 DOI: 10.1094/mpmi-09-13-0282-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The divergently oriented Sinorhizobium meliloti emrAB (SMc03168 and SMc03167) and emrR (SMc03169) genes are predicted to encode an efflux system of the major facilitator superfamily and a TetR-like transcriptional regulator, respectively. The transcription of the emrA gene was found to be inducible by flavonoids, including luteolin and apigenin, which are known inducers of the nodulation genes in S. meliloti. Interestingly, quercetin, which does not induce nodulation genes, was also a potent inducer of emrA, indicating that NodD is not directly involved in regulation of emrA. The likely regulator of emrAB is EmrR, which binds to palindrome-like sequences in the intergenic region. Several modifications of the palindromes, including an increase of the spacing between the two half sites, prevented binding of EmrR. Binding was also impaired by the presence of luteolin. Mutations in emrA had no obvious effect on symbiosis. This was in contrast to the emrR mutant, which exhibited a symbiotic deficiency with Medicago sativa. Conserved binding sites for TetR-like regulators within the intergenic regions between the emrAB and emrR genes were identified in many symbiotic and pathogenic members of the order Rhizobiales.
Collapse
|
15
|
Santos MR, Marques AT, Becker JD, Moreira LM. The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:388-399. [PMID: 24593245 DOI: 10.1094/mpmi-09-13-0284-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.
Collapse
|
16
|
Takeshima K, Hidaka T, Wei M, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Oomori H, Tajima S, Uchiumi T, Abe M, Tokuji Y, Ohwada T. Involvement of a novel genistein-inducible multidrug efflux pump of Bradyrhizobium japonicum early in the interaction with Glycine max (L.) Merr. Microbes Environ 2013; 28:414-21. [PMID: 24225224 PMCID: PMC4070704 DOI: 10.1264/jsme2.me13057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/20/2013] [Indexed: 11/12/2022] Open
Abstract
The early molecular dialogue between soybean and the bacterium Bradyrhizobium japonicum is crucial for triggering their symbiotic interaction. Here we found a single large genomic locus that is widely separated from the symbiosis island and was conspicuously induced within minutes after the addition of genistein. This locus (named BjG30) contains genes for the multidrug efflux pump, TetR family transcriptional regulator, and polyhydroxybutyrate (PHB) metabolism. The induction of BjG30 by genistein was competitively inhibited by daidzein, although both genistein and daidzein are soybean-derived inducers of nodulation (nod) genes. Such a differential expression pattern is also observed in some legume-derived flavonoids, which structurally differ in the hydroxy/deoxy group at the 5-position. In addition, not only did the induction start far in advance of nodW and nodD1 after the addition of genistein, but the levels showed distinct concentration dependence, indicating that the induction pattern of BjG30 is completely different from that of nod genes. The deletion of genes encoding either the multidrug efflux pump or PHB metabolism, especially the former, resulted in defective nodulation performance and nitrogen-fixing capability. Taken together, these results indicate that BjG30, and especially its multidrug efflux pump, may play a key role in the early stage of symbiosis by balancing the dual functions of genistein as both a nod gene inducer and toxicant.
Collapse
Affiliation(s)
- Keisuke Takeshima
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Nishi 2–11, Obihiro, Hokkaido, 080–8555, Japan
| | - Tatsuo Hidaka
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Nishi 2–11, Obihiro, Hokkaido, 080–8555, Japan
| | - Min Wei
- School of Life Science, Lanzhou University, 222 Tianshui South Rd, Gansu, Lanzhou, 730000, China
| | - Tadashi Yokoyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3–8–1, Harumi-cho, Fuchu, Tokyo, 183–8538, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Science, Tohoku University, 2–1–1, Katahira, Aoba-ku, Sendai, Miyagi, 980–8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Science, Tohoku University, 2–1–1, Katahira, Aoba-ku, Sendai, Miyagi, 980–8577, Japan
| | - Manabu Itakura
- Graduate School of Life Science, Tohoku University, 2–1–1, Katahira, Aoba-ku, Sendai, Miyagi, 980–8577, Japan
| | - Takakazu Kaneko
- Faculty of Engineering, Kyoto Sangyo University, Kitaku, Kyoto, 603–8555, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2–6–7, Kazusa-kamatari, Kisarazu, Chiba, 292–0818, Japan
| | - Kazuhiko Saeki
- Department of Biological Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara, 630–8506, Japan
| | - Hirofumi Oomori
- Graduate School of Science, Osaka University, 1–1, Machikaneyama, Toyonaka, 560–0043, Osaka, Japan
| | - Shigeyuki Tajima
- Department of Life Science, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761–0795, Japan
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Mikiko Abe
- Graduate School of Science and Engineering, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Yoshihiko Tokuji
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Nishi 2–11, Obihiro, Hokkaido, 080–8555, Japan
| | - Takuji Ohwada
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Nishi 2–11, Obihiro, Hokkaido, 080–8555, Japan
| |
Collapse
|