1
|
Wu H, Ren Y, Zhang J, Xue J, Chen L, Chen H, Yang X, Wang H. Research progress of LpxC inhibitor on Gram-negative bacteria. Eur J Med Chem 2025; 289:117440. [PMID: 40020426 DOI: 10.1016/j.ejmech.2025.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is a metalloprotein that utilizes zinc as a cofactor. LpxC plays a crucial role in catalyzing the synthesis of Lipid A, a major component of the outer membrane lipopolysaccharide in Gram-negative (G-) bacteria, and LpxC shares no common amino acid sequence with various mammalian enzyme proteins. LpxC is essential for the survival of Gram-negative bacteria, making it a promising target for the antibacterial drug development. In recent years, numerous LpxC inhibitors have been reported, which can be broadly categorized into hydroxamic acid and non-hydroxamic acid based on their structural characteristics. Although no LpxC inhibitors are currently available on the market, several candidate small molecules are anticipated to enter clinical trials. The current manuscript offers a comprehensive review of the structures, enzyme catalytic mechanisms, and research progress of novel LpxC inhibitors, with the objective of providing insights and directions for future research in the development of LpxC inhibitors as new antibacterial agents.
Collapse
Affiliation(s)
- Han Wu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Jungan Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China
| | - Jingsu Xue
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Lulu Chen
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. Commun Biol 2022; 5:560. [PMID: 35676411 PMCID: PMC9177699 DOI: 10.1038/s42003-022-03502-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Correct folding of outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria depends on delivery of unfolded OMPs to the β-barrel assembly machinery (BAM). How unfolded substrates are presented to BAM remains elusive, but the major OMP chaperone SurA is proposed to play a key role. Here, we have used hydrogen deuterium exchange mass spectrometry (HDX-MS), crosslinking, in vitro folding and binding assays and computational modelling to show that the core domain of SurA and one of its two PPIase domains are key to the SurA-BAM interaction and are required for maximal catalysis of OMP folding. We reveal that binding causes changes in BAM and SurA conformation and/or dynamics distal to the sites of binding, including at the BamA β1-β16 seam. We propose a model for OMP biogenesis in which SurA plays a crucial role in OMP delivery and primes BAM to accept substrates for folding. Interaction of the outer membrane protein (OMP) chaperone SurA and the OMP folding catalyst BAM results in changes in the conformational ensembles of both species, suggesting a mechanism for delivery of OMPs to BAM in Gram-negative bacteria.
Collapse
|
3
|
A noncanonical chaperone interacts with drug efflux pumps during their assembly into bacterial outer membranes. PLoS Biol 2022; 20:e3001523. [PMID: 35061668 PMCID: PMC8809574 DOI: 10.1371/journal.pbio.3001523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/02/2022] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria have membrane-spanning efflux pumps to secrete toxic compounds ranging from heavy metal ions to organic chemicals, including antibiotic drugs. The overall architecture of these efflux pumps is highly conserved: with an inner membrane energy-transducing subunit coupled via an adaptor protein to an outer membrane conduit subunit that enables toxic compounds to be expelled into the environment. Here, we map the distribution of efflux pumps across bacterial lineages to show these proteins are more widespread than previously recognised. Complex phylogenetics support the concept that gene cassettes encoding the subunits for these pumps are commonly acquired by horizontal gene transfer. Using TolC as a model protein, we demonstrate that assembly of conduit subunits into the outer membrane uses the chaperone TAM to physically organise the membrane-embedded staves of the conduit subunit of the efflux pump. The characteristics of this assembly pathway have impact for the acquisition of efflux pumps across bacterial species and for the development of new antimicrobial compounds that inhibit efflux pump function. A crosslinking study reveals novel insights into how the chaperone TAM helps Gram-negative bacteria insert the drug efflux pump subunit TolC into their outer membrane. Bioinformatic analyses show that TolC-like proteins can be found in all LPS-containing bacteria, but also in some monodermic Firmicutes.
Collapse
|
4
|
Tiwari PB, Mahalakshmi R. Interplay of protein primary sequence, lipid membrane, and chaperone in β-barrel assembly. Protein Sci 2021; 30:624-637. [PMID: 33410567 DOI: 10.1002/pro.4022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
The outer membrane of a Gram-negative bacterium is a crucial barrier between the external environment and its internal physiology. This barrier is bridged selectively by β-barrel outer membrane proteins (OMPs). The in vivo folding and biogenesis of OMPs necessitates the assistance of the outer membrane chaperone BamA. Nevertheless, OMPs retain the ability of independent self-assembly in vitro. Hence, it is unclear whether substrate-chaperone dynamics is influenced by the intrinsic ability of OMPs to fold, the magnitude of BamA-OMP interdependence, and the contribution of BamA to the kinetics of OMP assembly. We addressed this by monitoring the assembly kinetics of multiple 8-stranded β-barrel OMP substrates with(out) BamA. We also examined whether BamA is species-specific, or nonspecifically accelerates folding kinetics of substrates from independent species. Our findings reveal BamA as a substrate-independent promiscuous molecular chaperone, which assists the unfolded OMP to overcome the kinetic barrier imposed by the bilayer membrane. We additionally show that while BamA kinetically accelerates OMP folding, the OMP primary sequence remains a vital deciding element in its assembly rate. Our study provides unexpected insights on OMP assembly and the functional relevance of BamA in vivo.
Collapse
Affiliation(s)
- Pankaj B Tiwari
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
5
|
Bell EW, Zheng EJ, Ryno LM. Identification of inhibitors of the E. coli chaperone SurA using in silico and in vitro techniques. Bioorg Med Chem Lett 2018; 28:3540-3548. [PMID: 30301675 DOI: 10.1016/j.bmcl.2018.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 11/15/2022]
Abstract
SurA is a gram-negative, periplasmic chaperone protein involved in the proper folding of outer membrane porins (OMPs), which protect bacteria against toxins in the extracellular environment by selectively regulating the passage of nutrients into the cell. Previous studies demonstrated that deletion of SurA renders bacteria more sensitive to toxins that compromise the integrity of the outer membrane. Inhibitors of SurA will perturb the folding of OMPs, leading to disruption of the outer membrane barrier and making the cell more vulnerable to toxic insults. The discovery of novel SurA inhibitors is therefore of great importance for developing alternative strategies to overcome antibiotic resistance. Our laboratory has screened over 10,000,000 compoundsin silicoby computationally docking these compounds onto the crystal structure of SurA. Through this screen and a screen of fragment compounds (molecular weight less than 250 g/mol), we found twelve commercially readily available candidate compounds that bind to the putative client binding site of SurA. We confirmed binding to SurA by developing and employing a competitive fluorescence anisotropy-based binding assay. Our results show that one of these compounds, Fmoc-β-(2-quinolyl)-d-alanine, binds the client binding site with high micromolar affinity. Using this compound as a lead, we also discovered that Fmoc-l-tryptophan and Fmoc-l-phenylalanine, but not Fmoc-l-tyrosine, bind SurA with similar micromolar affinity. To our knowledge, this is the first report of a competitive fluorescence anisotropy assay developed for the identification of inhibitors of the chaperone SurA, and the identification of three small molecules that bind SurA at its client binding site.
Collapse
Affiliation(s)
- Eric W Bell
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States
| | - Erica J Zheng
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States
| | - Lisa M Ryno
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States.
| |
Collapse
|
6
|
Yun SH, Lee SY, Choi CW, Lee H, Ro HJ, Jun S, Kwon YM, Kwon KK, Kim SJ, Kim GH, Kim SI. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1. J Microbiol 2016; 55:56-62. [PMID: 28035602 DOI: 10.1007/s12275-017-6581-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMVNovo) are spherical in shape, and the average diameter of OMVNovo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMVNovo. Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMVNovo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.
Collapse
Affiliation(s)
- Sung Ho Yun
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Sang-Yeop Lee
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Chi-Won Choi
- Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Hayoung Lee
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun-Joo Ro
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Sangmi Jun
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Yong Min Kwon
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Kae Kyoung Kwon
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sang-Jin Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Gun-Hwa Kim
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Seung Il Kim
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea. .,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Iqbal H, Kenedy MR, Lybecker M, Akins DR. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 2016; 102:757-774. [PMID: 27588694 PMCID: PMC5582053 DOI: 10.1111/mmi.13492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Abstract
Two outer membrane protein (OMP) transport systems in diderm bacteria assist in assembly and export of OMPs. These two systems are the β-barrel assembly machine (BAM) complex and the translocation and assembly module (TAM). The BAM complex consists of the OMP component BamA along with several outer membrane associated proteins. The TAM also consists of an OMP, designated TamA, and a single inner membrane (IM) protein, TamB. Together TamA and TamB aid in the secretion of virulence-associated OMPs. In this study we characterized the hypothetical protein BB0794 in Borrelia burgdorferi. BB0794 contains a conserved DUF490 domain, which is a motif found in all TamB proteins. All spirochetes lack a TamA ortholog, but computational and physicochemical characterization of BB0794 revealed it is a TamB ortholog. Interestingly, BB0794 was observed to interact with BamA and a BB0794 regulatable mutant displayed altered cellular morphology and antibiotic sensitivity. The observation that B. burgdorferi contains a TamB ortholog that interacts with BamA and is required for proper outer membrane biogenesis not only identifies a novel role for TamB-like proteins, but also may explain why most diderms harbor a TamB-like protein while only a select group encodes TamA.
Collapse
Affiliation(s)
- Henna Iqbal
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Meghan Lybecker
- Department of Biology, University of Colorado - Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
8
|
Dehghani B, Mottamedifar M, Khoshkharam-Roodmajani H, Hassanzadeh A, Zomorrodian K, Rahimi A. SDS-PAGE Analysis of the Outer Membrane Proteins of Uropathogenic Escherichia coli Isolated from Patients in Different Wards of Nemazee Hospital, Shiraz, Iran. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:399-405. [PMID: 27582589 PMCID: PMC4967484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Outer membrane proteins (OMPs) constitute the main structure and about half of the cell wall of Gram-negative bacteria. The OMPs of Escherichia coli (E. coli) play an important role in its drug resistance. Previous studies have shown that the OMPs of E. coli enhance its pathogenic effects by helping the bacterium to evade the immune defense and promote its adsorption to host cells. We sought to compare E. coli isolates collected from different hospital wards and to perform a primary investigation of the association between the serotypes and profiles of their OMPs. We also aimed to detect the diversity of the E. coli isolates from the hospitalized patients. METHODS A total of 115 isolates of E. coli were collected from patients hospitalized in Nemazee Hospital, Shiraz, Iran. After biochemical and serological tests, OMPs were extracted by using glass beads and N-Lauroylsarcosine sodium. OMP typing was done by 10% SDS-PAGE and Coomassie brilliant blue staining. In terms of the number of protein bands, OMP-I was detected with 2 bands, OMP-α with 3 bands, and OMP-β with1 band. RESULTS Of the 115 isolates, 103 were OMP-I and 12 were OMP-α; none of the isolates belonged to OMP-β. Our statistical analyses showed a relationship between OMP patterns and other factors, including hospital wards and source of samples. Serotyping showed that the majority of the isolates were O128. CONCLUSION Our results demonstrated some similarities between the OMP band patterns of the analyzed groups of E. coli. Of all the OMPs in the isolates from the hospitalized and outpatient department patients, OmpA and OmpC were the most prevalent proteins in the outer membrane of the studied uropathogenic E. coli.
Collapse
Affiliation(s)
- Behzad Dehghani
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mottamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Shiraz HIV/AIDS Research Center Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Mohammad Motamedifar, PhD; Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Zip Code: 71348-45794, Shiraz, Iran Tel/Fax: +98 71 32304356 .
| | | | - Amir Hassanzadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamyar Zomorrodian
- Basic Sciences in Infectious Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Rahimi
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
O'Neil PK, Rollauer SE, Noinaj N, Buchanan SK. Fitting the Pieces of the β-Barrel Assembly Machinery Complex. Biochemistry 2015; 54:6303-11. [PMID: 26394220 PMCID: PMC4631317 DOI: 10.1021/acs.biochem.5b00852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Barrel membrane proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria; however, exactly how they are folded and inserted remains unknown. Over the past decade, both functional and structural studies have greatly contributed to addressing this elusive mechanism. It is known that a conserved core machinery is required for each organelle, though the overall composition varies significantly. The vast majority of studies that aimed to understand the biogenesis of β-barrel membrane proteins has been conducted in Gram-negative bacteria. Here, it is the task of a multicomponent complex known as the β-barrel assembly machinery (BAM) complex to fold and insert new β-barrel membrane proteins into the outer membrane. In this review, we will discuss recent discoveries with the goal of utilizing all reported structural and functional studies to piece together a current structural model for the fully assembled BAM complex.
Collapse
Affiliation(s)
- Patrick K O'Neil
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sarah E Rollauer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
10
|
Selkrig J, Leyton DL, Webb CT, Lithgow T. Assembly of β-barrel proteins into bacterial outer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1542-50. [DOI: 10.1016/j.bbamcr.2013.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022]
|
11
|
Misra R, Stikeleather R, Gabriele R. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli. J Mol Biol 2014; 427:1061-74. [PMID: 24792419 DOI: 10.1016/j.jmb.2014.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 11/24/2022]
Abstract
Assembly of the β-barrel outer membrane proteins (OMPs) is an essential cellular process in Gram-negative bacteria and in the mitochondria and chloroplasts of eukaryotes--two organelles of bacterial origin. Central to this process is the conserved β-barrel OMP that belongs to the Omp85 superfamily. In Escherichia coli, BamA is the core β-barrel OMP and, together with four outer membrane lipoproteins, BamBCDE, constitutes the β-barrel assembly machine (BAM). In this paper, we investigated the roles of BamD, an essential lipoprotein, and BamB in BamA biogenesis. Depletion of BamD caused impairment in BamA biogenesis and cessation of cell growth. These defects of BamD depletion were partly reversed by single-amino-acid substitutions mapping within the β-barrel domain of BamA. However, in the absence of BamB, the positive effects of the β-barrel substitutions on BamA biogenesis under BamD depletion conditions were nullified. By employing a BamA protein bearing one such substitution, F474L, it was demonstrated that the mutant BamA protein could not only assemble without BamD but also facilitate the assembly of wild-type BamA expressed in trans. Based on these data, we propose a model in which the Bam lipoproteins, which are localized to the outer membrane by the BAM-independent Lol pathway, aid in the creation of new BAM complexes by serving as outer membrane receptors and folding factors for nascent BamA molecules. The newly assembled BAM holocomplex then catalyzes the assembly of substrate OMPs and BamA. These in vivo findings are corroborated by recently published in vitro data.
Collapse
Affiliation(s)
- Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Ryan Stikeleather
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rebecca Gabriele
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
12
|
The activity and specificity of the outer membrane protein chaperone SurA are modulated by a proline isomerase domain. mBio 2013; 4:mBio.00540-13. [PMID: 23943764 PMCID: PMC3747590 DOI: 10.1128/mbio.00540-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED SurA is a component of the periplasmic chaperone network that plays a central role in biogenesis of integral outer membrane β-barrel proteins (OMPs) in Escherichia coli. Although SurA contains two well-conserved proline isomerase (PPIase) domains, the contribution of these domains to SurA function is unclear. In the present work, we show that defects in OMP assembly caused by mutation of the β-barrel assembly factors BamA or BamB can be corrected by gain-of-function mutations in SurA that map to the first PPIase domain. These mutations apparently bypass the requirement for a stable interaction between SurA and the Bam complex and enhance SurA chaperone activity in vivo despite destabilization of the protein in vitro. Our findings suggest an autoinhibitory mechanism for regulation of SurA chaperone activity through interdomain interactions involving a PPIase domain. We propose a model in which SurA activity is modulated by an interaction between SurA and the Bam complex that alters the substrate specificity of the chaperone. IMPORTANCE The dominant surA mutations described here alter amino acid residues that are highly conserved in eukaryotic homologs of SurA, including Pin 1, the human proline isomerase (PPIase) implicated in Alzheimer's disease and certain cancers. Consequently, a mechanistic description of SurA function may enhance our understanding of clinically important PPIases and their role(s) in disease. In addition, the virulence of Gram-negative bacterial pathogens, such as Salmonella, Shigella, and Escherichia coli O157:H7, is largely dependent on SurA, making this PPIase/chaperone an attractive antibiotic target. Investigating the function of SurA in outer membrane (OM) biogenesis will be useful in the development of novel therapeutic strategies for the disruption of the OM or the processes that are essential for its assembly.
Collapse
|
13
|
Misra R. Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts. ISRN MOLECULAR BIOLOGY 2012; 2012:708203. [PMID: 27335668 PMCID: PMC4890855 DOI: 10.5402/2012/708203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/22/2012] [Indexed: 01/12/2023]
Abstract
In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems—Gram-negative bacteria, mitochondria and chloroplasts—research on bacterial and mitochondrial systems has so far led the way in dissecting the β-barrel OMP assembly pathways. Many exciting discoveries have been made, including the identification of β-barrel OMP assembly machineries in bacteria and mitochondria, and potentially the core assembly component in chloroplasts. The atomic structures of all five components of the bacterial β-barrel assembly machinery (BAM) complex, except the β-barrel domain of the core BamA protein, have been solved. Structures reveal that these proteins contain domains/motifs known to facilitate protein-protein interactions, which are at the heart of the assembly pathways. While structural information has been valuable, most of our current understanding of the β-barrel OMP assembly pathways has come from genetic, molecular biology, and biochemical analyses. This paper provides a comparative account of the β-barrel OMP assembly pathways in Gram-negative bacteria, mitochondria, and chloroplasts.
Collapse
Affiliation(s)
- Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including that of BamA itself. J Bacteriol 2012; 194:4662-8. [PMID: 22753067 DOI: 10.1128/jb.00825-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many members of the Omp85 family of proteins form essential β-barrel outer membrane protein (OMP) biogenesis machinery in Gram-negative bacteria, chloroplasts, and mitochondria. In Escherichia coli, BamA, a member of the Omp85 family, folds into an outer membrane-embedded β-barrel domain and a soluble periplasmic polypeptide-transport-associated (POTRA) domain. Although the high-resolution structures of only the BamA POTRA domain of E. coli are available, the crystal structure of FhaC, an Omp85 family member and a component of the two-partner secretion system in Bordetella pertussis, suggests that the BamA β-barrel likely folds into a 16-stranded β-barrel. The FhaC β-barrel is occluded by an N-terminal α-helix and a large β-barrel loop, L6, which carries residues that are highly conserved among the Omp85 family members. Deletion of L6 in FhaC did not affect its biogenesis but abolished its secretion function. In this study, we tested the hypothesis that the conserved residues of the putative L6 loop, which presumably folds back into the lumen of the BamA β-barrel like the FhaC counterpart, play an important role in OMP and/or BamA biogenesis. The conserved (641)RGF(643) residues of L6 were either deleted or replaced with alanine in various permutations. Phenotypic and biochemical characterization of various BamA L6 mutants revealed that the conserved RGF residues are critical for OMP biogenesis. Moreover, three BamA L6 alterations, ΔRGF, AAA, and AGA, produced a conditional lethal phenotype, concomitant with severely reduced BamA levels and folding defects. Thus, the conserved (641)RGF(643) residues of the BamA L6 loop are important for BamA folding and biogenesis.
Collapse
|