1
|
Zhu X, Li S, Xu B, Luo H. Cancer evolution: A means by which tumors evade treatment. Biomed Pharmacother 2020; 133:111016. [PMID: 33246226 DOI: 10.1016/j.biopha.2020.111016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Although various methods have been tried to study and treat cancer, the cancer remains a major challenge for human medicine today. One important reason for this is the presence of cancer evolution. Cancer evolution is a process in which tumor cells adapt to the external environment, which can suppress the human immune system's ability to recognize and attack tumors, and also reduce the reproducibility of cancer research. Among them, heterogeneity of the tumor provides intrinsic motivation for this process. Recently, with the development of related technologies such as liquid biopsy, more and more knowledge about cancer evolution has been gained and interest in this topic has also increased. Therefore, starting from the causes of tumorigenesis, this paper introduces several tumorigenesis processes and pathways, as well as treatment options for different targets.
Collapse
Affiliation(s)
- Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Shi Li
- Guangdong Key Laboratory of Urogenital Tumor Systems and Synthetic Biology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China; Shenzhen Key Laboratory of Genitourinary Tumor, Translational Medicine Institute of Shenzhen, The Second People's Hospital of Shenzhen, Shenzhen, China; College of Bioengineering, Chongqing University, Chongqing, China
| | - Bairui Xu
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China.
| |
Collapse
|
2
|
The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood. Infect Immun 2017; 86:IAI.00612-17. [PMID: 29109175 PMCID: PMC5736797 DOI: 10.1128/iai.00612-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.
Collapse
|
3
|
Peano C, Damiano F, Forcato M, Pietrelli A, Palumbo C, Corti G, Siculella L, Fuligni F, Tagliazucchi GM, De Benedetto GE, Bicciato S, De Bellis G, Alifano P. Comparative genomics revealed key molecular targets to rapidly convert a reference rifamycin-producing bacterial strain into an overproducer by genetic engineering. Metab Eng 2014; 26:1-16. [DOI: 10.1016/j.ymben.2014.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
4
|
Brady BS, Hyman BC, Lovatt CJ. Regulation of CPSase, ACTase, and OCTase genes in Medicago truncatula: Implications for carbamoylphosphate synthesis and allocation to pyrimidine and arginine de novo biosynthesis. Gene 2010; 462:18-25. [PMID: 20451592 DOI: 10.1016/j.gene.2010.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 03/25/2010] [Accepted: 04/16/2010] [Indexed: 11/27/2022]
Abstract
In most prokaryotes and many eukaryotes, synthesis of carbamoylphosphate (CP) by carbamoylphosphate synthetase (CPSase; E.C. 6.3.5.5) and its allocation to either pyrimidine or arginine biosynthesis are highly controlled processes. Regulation at the transcriptional level occurs at either CPSase genes or the downstream genes encoding aspartate carbamoyltransferase (E.C. 2.1.3.2) or ornithine carbamoyltransferase (E.C. 2.1.3.3). Given the importance of pyrimidine and arginine biosynthesis, our lack of basic knowledge regarding genetic regulation of these processes in plants is a striking omission. Transcripts encoding two CPSase small subunits (MtCPSs1 and MtCPSs2), a single CPSase large subunit (MtCPSl), ACTase (MtPyrB), and OCTase (MtArgF) were characterized in the model legume Medicago truncatula. Quantitative real-time PCR data provided evidence (i) that the accumulation of all CPSase gene transcripts, as well as the MtPyrB transcript, was dramatically reduced following seedling incubation with uridine; (ii) exogenously supplied arginine down regulated only MtArgF; and (iii) mRNA levels of both CPSase small subunits, MtPyrB, and MtArgF were significantly increased after supplying plants with ornithine alone or in combination with uridine or arginine compared to plants treated with only uridine or arginine, respectively (P< or =0.05). A proposed novel, yet simple regulatory scheme employed by M. truncatula more closely resembles a prokaryotic control strategy than those used by other eukaryotes.
Collapse
Affiliation(s)
- Brian S Brady
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
5
|
Kisselev LL, Favorova OO. Aminoacyl-tRNA synthetases: sone recent results and achievements. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 40:141-238. [PMID: 4365538 DOI: 10.1002/9780470122853.ch5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Williams MG, Rogers P. Expression of arg genes of Escherichia coli during arginine limitation dependent upon stringent control of translation. J Bacteriol 1987; 169:1644-50. [PMID: 2435708 PMCID: PMC211994 DOI: 10.1128/jb.169.4.1644-1650.1987] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcription and translation of operons for arginine biosynthetic enzymes after arginine removal (arginine down shift) were studied in relA and relA+ strains of Escherichia coli. After arginine down shift, derepression of synthesis of the arginine biosynthetic enzymes ornithine carbamoyltransferase (argF) and argininosuccinate lyase (argH) began at about 15 min in relA+ cells but was delayed in relA cells for more than 2 h. However, both relA+ and relA cells accumulated high levels of argCBH mRNA, as shown by dot blot hybridization, after arginine down shift. After 15 min of arginine limitation, the proportion of ribosome-bound argCBH mRNA was equivalent in both relA+ and relA cells. During the 15 min after the arginine down shift, relA+ cells produced a significant burst of argF and argH enzyme synthesis when arginine was added back to the culture, whereas relA cells did not produce this burst of enzyme synthesis. The relA cells regained the ability to produce a burst of argF and argH enzyme synthesis when alpha-methylglucose-induced glucose starvation was combined with arginine limitation. Significant guanosine 5'-diphosphate 3'-diphosphate accumulated in relA cells under this condition. Our results support the view that during periods of severe amino acid limitation guanosine 5'-diphosphate 3'-diphosphate acts in some way to ensure the translation of argCBH mRNA.
Collapse
|
7
|
Fong D, Poole B. The effect of canavanine on protein synthesis and protein degradation in IMR-90 fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 696:193-200. [PMID: 7059609 DOI: 10.1016/0167-4781(82)90028-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Proteins of IMR-90 fibroblasts incorporating [35S]methionine during a 1 h labelling period in the presence of the arginine analogue canavanine were degraded twice as rapidly in the cells as were proteins similarly made in the presence of arginine. Using both isoelectric focusing and SDS-polyacrylamide gel electrophoretic analyses, the banding patterns of proteins labelled in the presence of canavanine and arginine were found to differ. This banding difference was detected as early as 15 min after canavanine treatment. With the exception of one minor band in isoelectric focusing gel, the relative intensity of labelled protein bands for the control samples remained unchanged during the 2 h period of protein degradation being investigated. This was also true for the proteins labelled in the presence of canavanine, despite the increase in their rate of degradation. Banding difference between canavanine and arginine treatment was also detected in an in vitro reticulocyte lysate translation system dependent on fibroblast mRNA. Proteins labelled in the presence of a different analogue, p-fluorophenylalanine instead of phenylalanine, however, had similar banding patterns as the control both in the lysate system and in intact cells.
Collapse
|
8
|
Krzyzek RA, Rogers P. Effect of arginine on the stability and size of argECBH messenger ribonucleic acid in Escherichia coli. J Bacteriol 1976; 126:365-76. [PMID: 770427 PMCID: PMC233293 DOI: 10.1128/jb.126.1.365-376.1976] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemical stability of argECBH messenger ribonucleic acid (mRNA) produced by Escherichia coli was found to be unaltered during steady-state repression by arginine. During extreme arginine deprivation, the increase in argECBH mRNA stability was related to general effects of amino acid starvation on mRNA stability. Thus a mechanism whereby argECBH gene expression is regulated by altering the decay rate of this mRNA is not consistent with our data. Sucrose gradient analysis followed by hybridization revealed that both heavy (14S) and light (8S) components of argECBH mRNA were produced by cells of E. coli K-12 grown without arginine, whereas predominantly light (8S) mRNA was produced by cells grown with arginine. A functional argR gene and the EC portion of the argECBH cluster were found essential for the arginine restriction of heavy-mRNA production. Experiments suggest that light argECBH mRNA did not arise from heavy message, and 8u% of both light and heavy mRNA was found bound to ribosomes. The data appear most consistent with the notion that a second site of control by arginine regulates the amounts of light and heavy arginine mRNA in the cell either by early termination of transcription or by endonucleolytic processing. Consideration of these data in conjunction with those of the accompanying report (Krzyzek and Rogers, 1976) permits the tentative conclusion that light argECBH mRNA is not translated into active enzymes and is thus responsible for the discrepancy between the high content of hybridizable mRNA and low rates of enzyme synthesis found during arginine repression.
Collapse
|
9
|
Armstrong KA, Herman RK. Method for the isolation of Escherichia coli K-12 mutants deficient in essential genes. J Bacteriol 1976; 126:38-47. [PMID: 770428 PMCID: PMC233257 DOI: 10.1128/jb.126.1.38-47.1976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We developed a general procedure for the induction and identification of mutations in chromosomal essential genes that are located in a diploid region of Escherichia coli K-12. The partial diploidy is conferred by an episome that is temperature sensitive for replication so that a mutant strain will form microcolonies at 42 C on complete media if an essential chromosomal gene in the diploid region is defective. Mutations identified by this procedure can be classified into cistrons by a complementation method devised for the purpose. To verify that the procedure works in practice, we fused an episome covering the rif region with an Ftslac+ and used the resulting temperature-sensitive episome to identify chromosomal mutations in essential functions near rif. As expected, a certain proportion of the mutations were in the rif gene, an essential gene that codes for the beta subunit of ribonucleic acid polymerase.
Collapse
|
10
|
Kryzek RA, Rogers P. Dual regulation by arginine of the expression of the Escherichia coli argECBH operon. J Bacteriol 1976; 126:348-64. [PMID: 770426 PMCID: PMC233292 DOI: 10.1128/jb.126.1.348-364.1976] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The correlation between the level of messenger ribonucleic acid (mRNA) specific for the argECBH gene cluster (argECBH mRNA) measured by ribonucleic acid-deoxyribonucleic acid (RNA-DNA) hybridization and the rates of synthesis of N-acetylornithine deacetylase (argE enzyme) and of argininosuccinate lyase (argH enzyme) of Escherichia coli strain K-12 were determined for steady-state growth with and without added L-arginine and during the transition periods between these two states. During the transient period after arginine removal (transient derepression), the synthesis of enzymes argE and argH was initially three to five times greater than the steady-state derepressed rate finally reached 50 min later. The level of argECHB mRNA correlated well both quantitatively and temporally with the rates of enzyme synthesis during this transition. The level of in vivo charged arginyl-transfer RNA (tRNAarg), monitored simultaneously, was initially only 5 to 10% and gradually increased to a final level of 80% after 45 min. During the transient period after arginine addition (transient repression), the rates of synthesis of enzymes argE and argH decreased to almost zero and gradually reached steady-state repressed rates after about 180 min. The argECBH mRNA level remained constant at the steady-state repressed level throughout transient repression, revealing a discontinuity between the level of this mRNA and rates of enzyme synthesis. A similar discrepancy was noted during the transition after ornithine addition. In vivo charged tRNAarg remained constant at 80% during this transition. After removal of arginine, the zero-level transient enzyme synthesis developed after only 7.5 min of arginine deprivation and was maximum after 30 min. The results suggest an accumulation of a molecule regulated by arginine that plays a role in transient repression. Our data indicate that arginyl-tRNA synthetase is not this molecule since its synthesis was unaffected by arginine. The ratios of steady-state argE and argH enzyme synthesis without arginine to that with arginine were 12 and 20, respectively, whereas the similar ratio for argECBH mRNA was 2 to 3. The repressed level of argECBH mRNA was not affected by attempts to repress or derepress the ppc+ gene (carried on the DNA used for hybridization), and the repressed level of argECBH mRNA was lowered about 50% in cells carrying an internal argBH deletion. These data taken together indicate the presence of an excess of untranslated argECBH mRNA during both transient and steady-state repression by arginine. Thus, a second regulatory mechanism, not yet defined, appears to play an important role in arginine regulation of enzyme synthesis.
Collapse
|
11
|
Rogers P, Kaden TM, Toth M. Repression of Arg mRNA synthesis by L-arginine in cell-free extracts of Escherichia coli. Biochem Biophys Res Commun 1975; 65:1284-91. [PMID: 802460 DOI: 10.1016/s0006-291x(75)80369-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Williams LS. Control of arginine biosynthesis in Escherichia coli: role of arginyl-transfer ribonucleic acid synthetase in repression. J Bacteriol 1973; 113:1419-32. [PMID: 4570785 PMCID: PMC251713 DOI: 10.1128/jb.113.3.1419-1432.1973] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The physiological role of arginyl-transfer ribonucleic acid (Arg-tRNA) synthetase (E.C. 6.1.1.13, arginine: RNA ligase adenosine monophosphate) in repression of arginine biosynthetic enzymes was examined. Mutants with nonrepressible synthesis of arginine biosynthetic enzymes were isolated from various strains of Escherichia coli by resistance to growth inhibition by canavanine, an arginine analogue. These mutants possessed reduced Arg-tRNA synthetase activities which were qualitatively different from the synthetase activity of the wild type. The mutant enzymes exhibited turnover in vivo and were less stable in vitro than the wild type at both 4 C and 40 C; they possessed different affinities for both arginine and canavanine as measured by the three common assay systems for aminoacyl-tRNA synthetases. Furthermore, in one case it was shown that (i) the mutant possesed unaltered uptake of arginine, and (ii) that the mutant possessed diminished ability to incorporate canavanine into proteins and to attach canavanine to tRNA. These observations suggested that the mutation to canavanine resistance involved a structural change in Arg-tRNA synthetase. Likewise, the results of genetic experiments suggested that the mutants differed from the wild-type strain at only one locus, and that this lies in the region of the chromosomes that includes a structural gene for Arg-tRNA synthetase. It appears that Arg-tRNA synthetase may be involved in some way in repression by arginine of its own biosynthetic enzymes.
Collapse
|