1
|
Abstract
By chance, we discovered a window of extracellular magnesium (Mg2+) availability that modulates the division frequency of Bacillus subtilis without affecting its growth rate. In this window, cells grown with excess Mg2+ produce shorter cells than do those grown in unsupplemented medium. The Mg2+-responsive adjustment in cell length occurs in both rich and minimal media as well as in domesticated and undomesticated strains. Of other divalent cations tested, manganese (Mn2+) and zinc (Zn2+) also resulted in cell shortening, but this occurred only at concentrations that affected growth. Cell length decreased proportionally with increasing Mg2+ from 0.2 mM to 4.0 mM, with little or no detectable change being observed in labile, intracellular Mg2+, based on a riboswitch reporter. Cells grown in excess Mg2+ had fewer nucleoids and possessed more FtsZ-rings per unit cell length, consistent with the increased division frequency. Remarkably, when shifting cells from unsupplemented to supplemented medium, more than half of the cell length decrease occurred in the first 10 min, consistent with rapid division onset. Relative to unsupplemented cells, cells growing at steady-state with excess Mg2+ showed an enhanced expression of a large number of SigB-regulated genes and the activation of the Fur, MntR, and Zur regulons. Thus, by manipulating the availability of one nutrient, we were able to uncouple the growth rate from the division frequency and identify transcriptional changes that suggest that cell division is accompanied by the general stress response and an enhanced demand to sequester and/or increase the uptake of iron, Mn2+, and Zn2+. IMPORTANCE The signals that cells use to trigger cell division are unknown. Although division is often considered intrinsic to the cell cycle, microorganisms can continue to grow and repeat rounds of DNA replication without dividing, indicating that cycles of division can be skipped. Here, we show that by manipulating a single nutrient, namely, Mg2+, cell division can be uncoupled from the growth rate. This finding can be applied to investigate the nature of the cell division signal(s).
Collapse
|
2
|
Gharwalová L, Palyzová A, Marešová H, Kolouchová I, Kyselová L, Řezanka T. Identification of Homologous Polyprenols from Thermophilic Bacteria. Microorganisms 2021; 9:microorganisms9061168. [PMID: 34071687 PMCID: PMC8226974 DOI: 10.3390/microorganisms9061168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
Sixteen strains of five genera of thermophilic bacteria, i.e., Alicyclobacillus, Brevibacillus, Geobacillus, Meiothermus, and Thermus, were cultivated at a temperature from 42 to 70 °C. Twelve strains were obtained from the Czech Collection of Microorganisms, while four were directly isolated and identified by 16S rRNA gene sequencing from the hot springs of the world-famous Carlsbad spa (Czech Republic). Polyprenol homologs from C40 to C65 as well as free undecaprenol (C55), undecaprenyl phosphate, and undecaprenyl diphosphate were identified by shotgun analysis and RP-HPLC/MS-ESI+ (reverse phase high-performance liquid chromatography–high-resolution positive electrospray ionization mass spectrometry). The limit of detection (50 pM) was determined for individual homologs and free polyprenols and their phosphates. Thus, it has been shown that at least some thermophilic bacteria produce not just the major C55 polyprenol as previously described, but a mixture of homologs.
Collapse
Affiliation(s)
- Lucia Gharwalová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (L.G.); (I.K.)
| | - Andrea Palyzová
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
| | - Helena Marešová
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
| | - Irena Kolouchová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (L.G.); (I.K.)
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, 120 44 Prague, Czech Republic;
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
- Correspondence:
| |
Collapse
|
3
|
Huang LY, Wang SC, Cheng TJR, Wong CH. Undecaprenyl Phosphate Phosphatase Activity of Undecaprenol Kinase Regulates the Lipid Pool in Gram-Positive Bacteria. Biochemistry 2017; 56:5417-5427. [PMID: 28872301 DOI: 10.1021/acs.biochem.7b00603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteria cell walls contain many repeating glycan structures, such as peptidoglycans, lipopolysaccharides, teichoic acids, and capsular polysaccharides. Their synthesis starts in the cytosol, and they are constructed from a glycan lipid carrier, undecaprenyl phosphate (C55P), which is essential for cell growth and survival. The lipid derivative undecaprenol (C55OH) is predominant in many Gram-positive bacteria but has not been detected in Gram-negative bacteria; its origin and role have thus remained unknown. Recently, a homologue of diacylglycerol kinase (DgkA) in Escherichia coli (E. coli) was demonstrated to be an undecaprenol kinase (UK) in the Gram-positive bacterium Streptococcus mutans (S. mutans). In this study, we found that S. mutans UK was not only an undecaprenol kinase but also a Mg-ADP-dependent undecaprenyl phosphate phosphatase (UpP), catalyzing the hydrolysis of C55P to C55OH and a free inorganic phosphate. Furthermore, the naturally undetectable C55OH was observed in E. coli cells expressing S. mutans dgkA, supporting the phosphatase activity of UK/UpP in vivo. These two activities were indispensable to each other and utilized identical essential residues binding to their substrates, suggesting that both activities share the same active site and might involve a direct phosphoryl transfer mechanism. This study revealed a unique membrane enzyme displaying bifunctional activities determined by substrate binding and C55OH production. The reciprocal conversion of C55P and the undecaprenol pool efficiently regulate cell wall synthesis, especially in Gram-positive bacteria.
Collapse
Affiliation(s)
- Lin-Ya Huang
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan
| | - Shih-Chi Wang
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University , Taipei 112, Taiwan
| | | | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University , Taipei 112, Taiwan
| |
Collapse
|
4
|
Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touzé T. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb Drug Resist 2014; 20:199-214. [PMID: 24799078 DOI: 10.1089/mdr.2014.0035] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During the biogenesis of bacterial cell-wall polysaccharides, such as peptidoglycan, cytoplasmic synthesized precursors should be trafficked across the plasma membrane. This essential process requires a dedicated lipid, undecaprenyl-phosphate that is used as a glycan lipid carrier. The sugar is linked to the lipid carrier at the inner face of the membrane and is translocated toward the periplasm, where the glycan moiety is transferred to the growing polymer. Undecaprenyl-phosphate originates from the dephosphorylation of its precursor undecaprenyl-diphosphate, with itself generated by de novo synthesis or by recycling after the final glycan transfer. Undecaprenyl-diphosphate is de novo synthesized by the cytosolic cis-prenyltransferase undecaprenyl-diphosphate synthase, which has been structurally and mechanistically characterized in great detail highlighting the condensation process. In contrast, the next step toward the formation of the lipid carrier, the dephosphorylation step, which has been overlooked for many years, has only started revealing surprising features. In contrast to the previous step, two unrelated families of integral membrane proteins exhibit undecaprenyl-diphosphate phosphatase activity: BacA and members of the phosphatidic acid phosphatase type 2 super-family, raising the question of the significance of this multiplicity. Moreover, these enzymes establish an unexpected link between the synthesis of bacterial cell-wall polymers and other biological processes. In the present review, the current knowledge in the field of the bacterial lipid carrier, its mechanism of action, biogenesis, recycling, regulation, and future perspective works are presented.
Collapse
Affiliation(s)
- Guillaume Manat
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Université Paris Sud , Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Hartley MD, Imperiali B. At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch Biochem Biophys 2012; 517:83-97. [PMID: 22093697 PMCID: PMC3253937 DOI: 10.1016/j.abb.2011.10.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 11/20/2022]
Abstract
Long-chain polyprenols and polyprenyl-phosphates are ubiquitous and essential components of cellular membranes throughout all domains of life. Polyprenyl-phosphates, which include undecaprenyl-phosphate in bacteria and the dolichyl-phosphates in archaea and eukaryotes, serve as specific membrane-bound carriers in glycan biosynthetic pathways responsible for the production of cellular structures such as N-linked protein glycans and bacterial peptidoglycan. Polyprenyl-phosphates are the only form of polyprenols with a biochemically-defined role; however, unmodified or esterified polyprenols often comprise significant percentages of the cellular polyprenol pool. The strong evolutionary conservation of unmodified polyprenols as membrane constituents and polyprenyl-phosphates as preferred glycan carriers in biosynthetic pathways is poorly understood. This review surveys the available research to explore why unmodified polyprenols have been conserved in evolution and why polyprenyl-phosphates are universally and specifically utilized for membrane-bound glycan assembly.
Collapse
Affiliation(s)
- Meredith D. Hartley
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
6
|
Barreteau H, Magnet S, El Ghachi M, Touzé T, Arthur M, Mengin-Lecreulx D, Blanot D. Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 877:213-20. [PMID: 19110475 DOI: 10.1016/j.jchromb.2008.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 11/19/2022]
Abstract
Undecaprenyl phosphate is the essential lipid involved in the transport of hydrophilic motifs across the bacterial membranes during the synthesis of cell wall polymers such as peptidoglycan. A HPLC procedure was developed for the quantification of undecaprenyl phosphate and its two derivatives, undecaprenyl pyrophosphate and undecaprenol. During the exponential growth phase, the pools of undecaprenyl phosphate and undecaprenyl pyrophosphate were ca. 75 and 270 nmol/g of cell dry weight, respectively, in Escherichia coli, and ca. 50 and 150 nmol/g, respectively, in Staphylococcus aureus. Undecaprenol was detected in S. aureus (70 nmol/g), but not in E. coli (<1 nmol/g).
Collapse
Affiliation(s)
- Hélène Barreteau
- Université Paris-Sud, UMR 8619, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Undecaprenyl phosphate (C55-P) is an essential 55-carbon long-chain isoprene lipidinvolved in the biogenesis of bacterial cell wall carbohydrate polymers: peptidoglycan, O antigen, teichoic acids, and other cell surface polymers. It functions as a lipid carrier that allows the traffic of sugar intermediates across the plasma membrane, towards the periplasm,where the polymerization of the different cellwall components occurs. At the end of these processes, the lipid is released in a pyrophosphate form (C55-PP). C55-P arises from the dephosphorylation of C55-PP, which itself originates from either a recycling event or a de novo synthesis. In Escherichia coli, the formation of C55-PP is catalyzed by the essential UppS synthase, a soluble cis-prenyltransferase, whichadds eight isoprene units ontofarnesyl pyrophosphate. Severalapo- and halo-UppSthree-dimensional structures have provided a high level of understanding of this enzymatic step. The following dephosphorylationstep is required before the lipid carrier can accept a sugar unit at the cytoplasmic face of the membrane. Four integralmembrane proteins have been shown to catalyzethis reaction in E. coli:BacA and three members of the PAP2 super-family:YbjG, LpxT, and PgpB. None of these enzymes is essential,but the simultaneous inactivation of bacA, ybjG, and pgpB genes gave rise to a lethal phenotype, raising the question of the relevance of such a redundancy of activity. It was alsorecently shown that LpxTcatalyzes the specific transfer of the phosphate group arising from C55-PP to the lipidA moiety of lipopolysaccharides, leading to a lipid-A 1-diphosphate form whichaccounts for one-third of the total lipidA in wild-type E. coli cells. The active sites of LpxT, PgpB,andYbjG were shown to face the periplasm, suggesting that PAP2 enzymes arerather involved in C55-PP recycling. These recent discoveries have opened the way to the elucidation of the functional and structural characterization of these different phosphatases.
Collapse
|
8
|
Abstract
This review is an attempt to bring together and critically evaluate the now-abundant but dispersed data concerning the lipid intermediates of the biosynthesis of bacterial peptidoglycan. Lipid I, lipid II, and their modified forms play a key role not only as the specific link between the intracellular synthesis of the peptidoglycan monomer unit and the extracytoplasmic polymerization reactions but also in the attachment of proteins to the bacterial cell wall and in the mechanisms of action of antibiotics with which they form specific complexes. The survey deals first with their detection, purification, structure, and preparation by chemical and enzymatic methods. The recent important advances in the study of transferases MraY and MurG, responsible for the formation of lipids I and II, are reported. Various modifications undergone by lipids I and II are described, especially those occurring in gram-positive organisms. The following section concerns the cellular location of the lipid intermediates and the translocation of lipid II across the cytoplasmic membrane. The great efforts made since 2000 in the study of the glycosyltransferases catalyzing the glycan chain formation with lipid II or analogues are analyzed in detail. Finally, examples of antibiotics forming complexes with the lipid intermediates are presented.
Collapse
|
9
|
Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 2007; 32:208-33. [PMID: 18081839 DOI: 10.1111/j.1574-6976.2007.00089.x] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process involving many different steps taking place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner and outer sides of the cytoplasmic membrane (assembly and polymerization of the disaccharide-peptide monomer unit, respectively). This review summarizes the current knowledge on the membrane steps leading to the formation of the lipid II intermediate, i.e. the substrate of the polymerization reactions. It makes the point on past and recent data that have significantly contributed to the understanding of the biosynthesis of undecaprenyl phosphate, the carrier lipid required for the anchoring of the peptidoglycan hydrophilic units in the membrane, and to the characterization of the MraY and MurG enzymes which catalyze the successive transfers of the N-acetylmuramoyl-peptide and N-acetylglucosamine moieties onto the carrier lipid, respectively. Enzyme inhibitors and antibacterial compounds interfering with these essential metabolic steps and interesting targets are presented.
Collapse
Affiliation(s)
- Ahmed Bouhss
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Univ Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
10
|
Lis M, Kuramitsu HK. The stress-responsive dgk gene from Streptococcus mutans encodes a putative undecaprenol kinase activity. Infect Immun 2003; 71:1938-43. [PMID: 12654811 PMCID: PMC152025 DOI: 10.1128/iai.71.4.1938-1943.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed a previously constructed stress-sensitive Streptococcus mutans mutant Tn-1 strain resulting from disruption by transposon Tn916 of a gene encoding a protein exhibiting amino acid sequence similarity to the Escherichia coli diacylglycerol kinase. It was confirmed that the mutation led to significantly reduced lipid kinase activity, while expression of the intact gene on a plasmid restored both kinase activity and the wild-type phenotype. Further analysis revealed that the product of the dgk gene in S. mutans predominantly recognizes a lipid substrate other than diacylglycerol, most likely undecaprenol, as demonstrated by its efficient phosphorylation and the resistance of the product of the reaction to saponification. The physiological role of the product of the dgk gene as a putative undecaprenol kinase was further supported by a significantly higher sensitivity of the mutant to bacitracin compared with that of the parental strain.
Collapse
Affiliation(s)
- Maciej Lis
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
11
|
Chalker AF, Ingraham KA, Lunsford RD, Bryant AP, Bryant J, Wallis NG, Broskey JP, Pearson SC, Holmes DJ. The bacA gene, which determines bacitracin susceptibility in Streptococcus pneumoniae and Staphylococcus aureus, is also required for virulence. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1547-1553. [PMID: 10878119 DOI: 10.1099/00221287-146-7-1547] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homologues of Escherichia coli bacA, encoding extremely hydrophobic proteins, were identified in the genomes of Staphylococcus aureus and Streptococcus pneumoniae. Allelic replacement mutagenesis demonstrated that the gene is not essential for in vitro growth in either organism, and the mutants showed no significant changes in growth rate or morphology. The Staph. aureus bacA mutant showed slightly reduced virulence in a mouse model of infection and an eightfold increase in bacitracin susceptibility. However, a Strep. pneumoniae bacA mutant was highly attenuated in a mouse model of infection, and demonstrated an increase in susceptibility to bacitracin of up to 160000-fold. These observations are consistent with the previously proposed role of BacA protein as undecaprenol kinase.
Collapse
Affiliation(s)
- Alison F Chalker
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| | - Karen A Ingraham
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| | - R Dwayne Lunsford
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| | - Alexander P Bryant
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| | - Joanna Bryant
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| | - Nicola G Wallis
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| | - John P Broskey
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| | - Stewart C Pearson
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| | - David J Holmes
- Anti-Infective Research (UP1345), SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA19426-0989, USA1
| |
Collapse
|
12
|
Norris V, Manners B. Deformations in the cytoplasmic membrane of Escherichia coli direct the synthesis of peptidoglycan. The hernia model. Biophys J 1993; 64:1691-700. [PMID: 8369402 PMCID: PMC1262504 DOI: 10.1016/s0006-3495(93)81541-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To explain the growth of the Gram-negative envelope and in particular how it could be strengthened where it is weakest, we propose in the hernia model that local weakening of the peptidoglycan sacculus allows turgor pressure to cause the envelope to bulge outwards in a hernia; the consequent local alteration in the radius of curvature of the cytoplasmic membrane causes local alterations in phospholipid structure and composition that determine both the synthesis and hydrolysis of peptidoglycan. This proposal is supported by evidence that phospholipid composition determines the activity of phospho-N-acetylmuramic acid pentapeptide translocase, UDP-N-acetylglucosamine:N-acetylmuramic acid-(pentapeptide)-P-P-bactoprenyl-N-acetylglucosamine transferase, bactoprenyl phosphate phosphokinase, and N-acetylmuramyl-L-alanine amidase. We also propose that the shape of Escherichia coli is maintained by contractile proteins acting at the hernia. Given the universal importance of membranes, these proposals have implications for the determination of shape in eukaryotic cells.
Collapse
Affiliation(s)
- V Norris
- Department of Microbiology, University of Leicester, UK
| | | |
Collapse
|
13
|
van Heijenoort Y, Gómez M, Derrien M, Ayala J, van Heijenoort J. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J Bacteriol 1992; 174:3549-57. [PMID: 1592809 PMCID: PMC206040 DOI: 10.1128/jb.174.11.3549-3557.1992] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The two membrane precursors (pentapeptide lipids I and II) of peptidoglycan are present in Escherichia coli at cell copy numbers no higher than 700 and 2,000 respectively. Conditions were determined for an optimal accumulation of pentapeptide lipid II from UDP-MurNAc-pentapeptide in a cell-free system and for its isolation and purification. When UDP-MurNAc-tripeptide was used in the accumulation reaction, tripeptide lipid II was formed, and it was isolated and purified. Both lipids II were compared as substrates in the in vitro polymerization by transglycosylation assayed with PBP 1b or PBP 3. With PBP 1b, tripeptide lipid II was used as efficiently as pentapeptide lipid II. It should be stressed that the in vitro PBP 1b activity accounts for at best to 2 to 3% of the in vivo synthesis. With PBP 3, no polymerization was observed with either substrate. Furthermore, tripeptide lipid II was detected in D-cycloserine-treated cells, and its possible in vivo use in peptidoglycan formation is discussed. In particular, it is speculated that the transglycosylase activity of PBP 1b could be coupled with the transpeptidase activity of PBP 3, using mainly tripeptide lipid II as precursor.
Collapse
Affiliation(s)
- Y van Heijenoort
- Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
14
|
Abstract
Several lines of evidence suggest that Gram-positive bacterial cell surface polymers are synthesized by stepwise addition of polymer subunits to an amphipathic acceptor. In the case of membrane-bound lipopolymers such as mannan and lipoteichoic acid, the finished product may be covalently linked to a lipid anchor. In the case of polymers that are transferred into preexisting cell wall, such as teichoic acid and peptidoglycan, two alternative fates might be possible: (1) transfer into wall with concomitant or later cleavage of the lipid anchor, with recycling of the lipid anchor or secretion of the lipid anchor into the growth medium, and (2) transfer into wall without cleavage of the lipid anchor, resulting in maintenance of the covalent relationship between lipid anchor and polymer chain. In the latter case, a close relationship should be established between the cell wall and the plasma membrane. A number of Gram-positive bacteria have been shown to be resistant to plasmolysis. Therefore, a model for the assembly of the Gram-positive cell wall is proposed which takes into account a role for lipopolymeric intermediates and which views the establishment of resistance to plasmolysis as the natural consequence of such a mechanism.
Collapse
|
15
|
Mancuso DJ, Chiu TH. Biosynthesis of glucosyl monophosphoryl undecaprenol and its role in lipoteichoic acid biosynthesis. J Bacteriol 1982; 152:616-25. [PMID: 7130126 PMCID: PMC221508 DOI: 10.1128/jb.152.2.616-625.1982] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A glucophospholipid was detected in an incubation mixture containing UDP-glucose, MgCl2, ATP, and a particulate enzyme prepared from Streptococcus sanguis. The synthesis of this lipid was inhibited strongly by UDP and moderately by UMP. The molar ratio of glucose to phosphate in the purified lipid was found to be 1:1. Glucose and glucose 1-phosphate were released by mild alkaline hydrolysis of the glucophospholipid. The lipid produced by mild acid degradation of the purified lipid yielded a thin-layer chromatographic profile similar to that of acid-treated undecaprenol. One of the minor components exhibited the same mobility as untreated undecaprenol. To characterize further the lipid moiety of the glucophospholipid, a polyisoprenol was purified from the neutral lipid of S. sanguis. The polyisoprenol was converted in the presence of ATP, UDP-glucose, and the particulate enzyme into a lipid which exhibited the same thin-layer chromatographic mobility as the glucophospholipid. The structure of the polyisoprenol was determined by nuclear magnetic resonance and mass spectrometry to be an undecaprenol with an internal cis-trans ratio of 7:2. These results indicate that the glucophospholipid is glucosyl monophosphoryl undecaprenol. The glucosyl moiety of the glucophospholipid was shown to be incorporated in the presence of the particulate enzyme into a macromolecule which was characterized as a lipoteichoic acid by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and DEAE-cellulose column chromatography. This result indicates that glucosyl monophosphoryl undecaprenol is the direct glucosyl donor in the synthesis of lipoteichoic acid.
Collapse
|
16
|
|
17
|
Abstract
The presence of the isoprenoid squalene, synthesized de novo, was demonstrated in 64 out of 73 strains of gram-positive bacteria by thin-layer chromatography. This observation was confirmed by gas-liquid chromatography, chemical reactivity, incorporation of radiolabeled precursor, and by gas chromatography mass spectroscopy of thin-layer chromatography-recovered material.
Collapse
|
18
|
Formation of lipid-linked sugar compounds in Halobacterium salinarium. Presumed intermediates in glycoprotein synthesis. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)32848-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Bohnenberger E, Sandermann H. Dephosphorylation of C55-isoprenyl-monophosphate by non-specific phosphatases. FEBS Lett 1976; 67:85-9. [PMID: 182547 DOI: 10.1016/0014-5793(76)80875-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
KOPMANN HJ, JANN K. Biosynthesis of the 09 Antigen of Escherichia coli. The Polysaccharide Component of E. coli 09: K29-. ACTA ACUST UNITED AC 1975. [DOI: 10.1111/j.1432-1033.1975.tb21037.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
|
22
|
Thorne KJ. Identification of prenol intermediates of wall biosynthesis in growing cells of Lactobacillus plantarum. J Bacteriol 1973; 116:235-44. [PMID: 4745415 PMCID: PMC246414 DOI: 10.1128/jb.116.1.235-244.1973] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The incorporation of (14)C-mevalonic acid by Lactobacillus plantarum predominantly into C(55) prenol made it possible to determine the distribution of (14)C-prenol between all its derivatives. In logarithmic-phase cells, 25% of the prenol was free, 31% was as monophosphate, 4% as pyrophosphate, 12% as peptidoglycan precursor, and 28% as glyco-phospho-prenol. The glyco-phospho-prenol contained rhamnose, and probably glucose, galactose, and ribitol phosphate, and it may, therefore, be involved in polysaccharide and teichoic acid biosynthesis. The proportion of free prenol increased, up to 73%, as the cell culture aged. Free prenol was also formed when cells were incubated in buffer. The free prenol was readily reutilized when cells were returned to growth medium.
Collapse
|