1
|
Sing BK, Stidham MA, Shaner DL. Separation and characterization of two forms of acetohydroxy acid synthase from black mexican sweet corn cells. J Chromatogr A 1988. [DOI: 10.1016/s0021-9673(01)94028-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Dailey FE, Cronan JE, Maloy SR. Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids. J Bacteriol 1987; 169:917-9. [PMID: 3542980 PMCID: PMC211871 DOI: 10.1128/jb.169.2.917-919.1987] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonella typhimurium LT2 normally expresses two acetohydroxy acid synthases (AHAS I and AHAS II). The function of AHAS I in this organism was unclear, since AHAS I-deficient (ilvBN) mutants of LT2 grew well on glucose or succinate minimal media, whereas AHAS II-deficient (ilvGM) mutants requried isoleucine for normal growth on glucose minimal media. We report that AHAS I-deficient mutants of S. typhimurium required isoleucine and valine for growth on acetate or oleate minimal media, whereas AHAS II-deficient mutants were able to grow on these media without isoleucine supplementation.
Collapse
|
3
|
Schloss JV, Van Dyk DE, Vasta JF, Kutny RM. Purification and properties of Salmonella typhimurium acetolactate synthase isozyme II from Escherichia coli HB101/pDU9. Biochemistry 1985; 24:4952-9. [PMID: 3907697 DOI: 10.1021/bi00339a034] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A facile purification has been devised for recombinantly produced Salmonella typhimurium acetolactate synthase isozyme II. Purification of the enzyme was made possible by determining the complex set of factors that lead to loss of enzymic activity with this rather labile enzyme. When complexed with thiamin pyrophosphate, FAD, and magnesium, acetolactate synthase is subject to oxygen-dependent inactivation, a property not shared by the enzyme-FAD complex. When divorced from all of its tightly bound cofactors, losses of the enzymic activity are encountered at low ionic strength, especially at low protein concentrations. If purified and stored as the enzyme-FAD complex, acetolactate synthase is quite stable. The enzyme is composed of two types of subunits, a result that was not anticipated from previous studies of ilvG (the gene that codes for the large subunit of acetolactate synthase). These subunits were determined to be in equal molar ratio in the purified enzyme from the distribution of radioactivity between the two subunits after carboxymethylation with iodo[14C]acetate and their respective amino acid compositions. Besides the expected ilvG gene product (59.3 kDa), purified acetolactate synthase contained a smaller subunit (9.7 kDa; designated here as the ilvM gene product). On the basis of sequence homology of the small subunit with that coded for by the corresponding Escherichia coli gene sequence [Lawther, R. P., Calhoun, D. H., Adams, C. W., Hauser, C. A., Gray, J., & Hatfield, G. W. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 922-925], it is encoded by the region between ilvG and ilvE, beginning at base-pair (bp) 1914 (relative to the point of transcription initiation).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
4
|
Abstract
The ilvB gene of Salmonella typhimurium encodes the valine-sensitive form of acetohydroxy acid synthase, acetohydroxy acid synthase I, which catalyzes the first step in the parallel biosynthesis of isoleucine and valine. Although nearly all of the other genes involved in this pathway are clustered at minute 83, ilvB was found to lie at minute 80.5. Expression of ilvB was shown to be nearly completely repressed by the end products leucine and valine. Studies in which we used strains with mutations in cya (adenylate cyclase) and crp (cAMP receptor protein) demonstrated that synthesis of acetohydroxy acid synthase I is enhanced by the cAMP-cAMP receptor protein complex. Although no stimulation was achieved by growth on poor carbon sources, introduction of crp on a multicopy plasmid led to markedly increased expression. Strains of S. typhimurium lacking valine-resistant acetohydroxy acid synthase II (ilvG) are like Escherichia coli K-12 in that they are not able to grow in the presence of L-valine owing to a conditional isoleucine auxotrophy. The valine toxicity of these ilvG mutants of S. typhimurium was overcome by increasing the level of acetohydroxy acid synthase I. Enzyme activity could be elevated either by maximally derepressing expression with severe leucine limitation, by introduction of either ilvB or crp on a multicopy plasmid, or by the presence of the ilv-513 mutation. This mutation, which is closely linked to genes encoding the phosphoenol pyruvate:sugar phosphotransferase system (pts), causes highly elevated expression of ilvB that is refractory to repression by leucine and valine, as is the major ilv operon. The response of ilvB to the cAMP-cAMP receptor protein complex was not affected by this lesion. Data obtained by using this mutant led us to propose that the two modes of regulation act independently. We also present some evidence which suggests that ilvB expression may be affected by the phosphoenol pyruvate:sugar phosphotransferase system.
Collapse
|
5
|
Berg CM, Whalen WA, Archambault LB. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant. J Bacteriol 1983; 155:1009-14. [PMID: 6309735 PMCID: PMC217793 DOI: 10.1128/jb.155.3.1009-1014.1983] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In Salmonella typhimurium, as in Escherichia coli, mutations in avtA, the gene encoding the alanine-valine transaminase (transaminase C), are silent unless they are combined with mutations involved in isoleucine-valine biosynthesis. avtA is repressed by leucine or alanine but not by valine. Transaminase C is found at reduced levels upon starvation for any one of several amino acids. We hypothesize that this is due to repression of avtA by the elevated alanine and leucine pools found in amino acid-starved cells.
Collapse
|
6
|
Primerano DA, Burns RO. Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium. J Bacteriol 1982; 150:1202-11. [PMID: 7042686 PMCID: PMC216341 DOI: 10.1128/jb.150.3.1202-1211.1982] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Salmonella typhimurium strain DU501, which was found to be deficient in acetohydroxy acid synthase II (AHAS II) and to possess elevated levels of transaminase B and biosynthetic threonine deaminase, required isoleucine, methionine, or pantothenate for growth. This strain accumulated alpha-ketobutyrate and, to a lesser extent, alpha-aminobutyrate. We found that alpha-ketobutyrate was a competitive substrate for ketopantoate hydroxymethyltransferase, the first enzyme in pantothenate biosynthesis. This competition with the normal substrate, alpha-ketoisovalerate, limited the supply of pantothenate, which resulted in a requirement for methionine. Evidence is presented to support the conclusion that the ambivalent requirement for either pantothenate or methionine is related to a decrease in succinyl coenzyme A, which is produced from pantothenate and which is an obligatory precursor of methionine biosynthesis. The autointoxification by endogenously produced alpha-ketobutyrate could be mimicked in wild-type S. typhimurium by exogenously supplied alpha-ketobutyrate or salicylate, a known inhibitor of pantothenate biosynthesis. The accumulation of alpha-ketobutyrate was initiated by the inability of the residual AHAS activity provided by AHAS I to efficiently remove the alpha-ketobutyrate produced by biosynthetic threonine deaminase. The accumulation of alpha-ketobutyrate was amplified by the action of transaminase B, which decreased the isoleucine pool by catalyzing the formation of alpha-keto-beta-methylvalerate and aminobutyrate from isoleucine and alpha-ketobutyrate; this resulted in release of threonine deaminase from end product inhibition and unbridled production of alpha-ketobutyrate. Isoleucine satisfied the auxotrophic requirement of the AHAS II-deficient strain by curtailing the activity of threonine deaminase. Additional lines of evidence based on genetic and physiological experiments are presented to support the basis for the autointoxification of strain DU501 as well as other nonpolarigenic ilvG mutant strains.
Collapse
|
7
|
Abstract
A total of 102 isoleucine- and isoleucine-valine-requiring (ilv) mutants induced by insertion of the transposable element Tn10 have been classified to cistron by growth requirement, cross-feeding behavior, and enzyme assays. The mutations are in a polycistronic operon transcribed in the order ilvGEDA and in a monocistronic operon ilvC. Analysis of distal gene expression in these polar insertion mutants revealed the existence of two constitutive interval promoters, one preceding ilvE and the other preceding ilvD.
Collapse
|
8
|
Shaw KJ, Berg CM. Radioenzymatic assay for the acetohydroxy acid synthase-catalyzed synthesis of alpha-aceto-alpha-hydroxybutyrate. Anal Biochem 1980; 105:101-5. [PMID: 6778247 DOI: 10.1016/0003-2697(80)90429-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Fultz PN, Choung KK, Kemper J. Construction and characterization of Salmonella typhimurium strains that accumulate and excrete alpha- and beta-isopropylmalate. J Bacteriol 1980; 142:513-20. [PMID: 6991477 PMCID: PMC294015 DOI: 10.1128/jb.142.2.513-520.1980] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Two Salmonella typhimurium strains, which could be used as sources for the leucine biosynthetic intermediates alpha- and beta-isopropylmalate were constructed by a series of P22-mediated transductions. One strain, JK527 [flr-19 leuA2010 Delta(leuD-ara)798 fol-162], accumulated and excreted alpha-isopropylmalate, whereas the second strain, JK553 (flr-19 leuA2010 leuB698), accumulated and excreted alpha- and beta-isopropylmalate. The yield of alpha-isopropylmalate isolated from the culture medium of JK527 was more than five times the amount obtained from a comparable volume of medium in which Neurospora crassa strain FLR(92)-1-216 (normally used as the source for alpha- and beta-isopropylmalate) was grown. Not only was the yield greater, but S. typhimurium strains are much easier to handle and grow to saturation much faster than N. crassa strains. The combination of the two regulatory mutations flr-19, which results in constitutive expression of the leucine operon, and leuA2010, which renders the first leucine-specific biosynthetic enzyme insensitive to feedback inhibition by leucine, generated limitations in the production of valine and pantothenic acid. The efficient, irreversible, and unregulated conversion of alpha-ketoisovaleric acid into alpha-isopropylmalate (alpha-isopropylmalate synthetase K(m) for alpha-ketoisovaleric acid, 6 x 10(-5) M) severely restricted the amount of alpha-ketoisovaleric acid available for conversion into valine and pantothenic acid (ketopantoate hydroxymethyltransferase K(m) for alpha-ketoisovaleric acid, 1.1 x 10(-3) M; transaminase B K(m) for alpha-ketoisovaleric acid, 2 x 10(-3) M).
Collapse
|
10
|
Shaw KJ, Berg CM, Sobol TJ. Salmonella typhimurium mutants defective in acetohydroxy acid synthases I and II. J Bacteriol 1980; 141:1258-63. [PMID: 6245063 PMCID: PMC293821 DOI: 10.1128/jb.141.3.1258-1263.1980] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An analysis of transposon-induced mutants shows that Salmonella typhimurium possesses two major isozymes of acetohydroxy acid synthase, the enzymes which mediate the first common step in isoleucine and valine biosynthesis. A third (minor) acetohydroxy acid synthase is present, but its significance in isoleucine and valine synthesis may be negligible. Mutants defective in acetohydroxy acid synthase II (ilvG::Tn10) require isoleucine, alpha-ketobutyrate, or threonine for growth, a mutant defective in acetohydroxy acid synthase I (ilvB::Tn5) is a prototroph, and a double mutant (ilvG::Tn10 ilvB::Tn5) requires isoleucine plus valine for growth.
Collapse
|
11
|
Blazey DL, Burns RO. Genetic organization of the Salmonella typhimurium ilv gene cluster. MOLECULAR & GENERAL GENETICS : MGG 1979; 177:1-11. [PMID: 395408 DOI: 10.1007/bf00267247] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A number of Salmonella typhimurium ilv::Tn10 insertion strains were used to analyze the Salmonella ilv gene cluster. Tn10 generated ilv deletion mutants were employed in mapping experiments to conclusively define the gene order as ilvG-E-D-A-C. Examination of ilv enzyme levels confirms that the direction of transcription of ilvGEDA is from ilvG to ilvA. The major control locus, designated ilvO, is located before ilvG forming an ilvOGEDA transcriptional unit that is multivalently repressed by isoleucine, valine and leucine. Two internal promoters, one before ilvE and anonother before ilvD, are identified and are shown to provide repressed levels of the ilvE, D and A gene products. Possible regulation of transcription from these promoters in response to isoleucine limitation is discussed in terms of attenuation.
Collapse
|
12
|
De Felice M, Levinthal M, Iaccarino M, Guardiola J. Growth inhibition as a consequence of antagonism between related amino acids: effect of valine in Escherichia coli K-12. Microbiol Rev 1979; 43:42-58. [PMID: 379577 PMCID: PMC281461 DOI: 10.1128/mr.43.1.42-58.1979] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Iaccarino M, Guardiola J, De Felice M, Favre R. Regulation of isoleucine and valine biosynthesis. CURRENT TOPICS IN CELLULAR REGULATION 1978; 14:29-73. [PMID: 365469 DOI: 10.1016/b978-0-12-152814-0.50006-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Guardiola J, De Felice M, Lamberti A, Iaccarino M. The acetolactate synthase isoenzymes of Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1977; 156:17-25. [PMID: 340888 DOI: 10.1007/bf00272247] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
De Felice M, Squires C, Levinthal M, Guardiola J, Lamberti A, Iaccarino M. Growth inhibition of Escherichia coli K-12 by L-valine: a consequence of a regulatory pattern. MOLECULAR & GENERAL GENETICS : MGG 1977; 156:1-7. [PMID: 340887 DOI: 10.1007/bf00272245] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We studied the production of the ilvG gene product, the valine resistant acetolactate synthase isoenzyme II, in an ilvO+ G+ ilvB ilvHI derivative of Escherichia coli K-12. This strain contains mutations in the structural genes for the valine sensitive acetolactate synthase isoenzymes I and III. We find that the ilvG gene is not expressed in this strain when gworn with either isoleucine and valine or with isoleucine, leucine and valine, or when limited for either isoleucine or valine. Since we previously found that the ilvG gene is expressed in an ilvO603 containing strain (Favre et al., 1976), we presume that the mechanism by which E. coli K-12 regulates the ilv gene cluster is responsible for the lack of ilvG expression in the ilvO+ strain. The valine sensitivity of E. Coli K-12 is a consequence of this regulatory pattern.
Collapse
|
16
|
Favre R, Wiater A, Puppo S, Iaccarino M. Expression of a valine-resistant acetolactate synthase activity mediated by the ilv O and ilv G genes of Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1976; 143:243-52. [PMID: 765758 DOI: 10.1007/bf00269400] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A strain carrying the ilv0603 mutation has been isolated in E. coli K-12 and its characteristics were found to be very similar to those previously reported by Ramakrishnan and Adelberg (1965a) for other ilv0 mutants. The strain carrying the ilv0603 mutation is resistant to valine inhibition (Valr) and we show that this resistance depends on the expression of a newly recognized gene, ilvG, which is located at min 75, between ilvE and ilvD on the E. coli K-12 map. The ilvG gene causes the expression of a Valr acetolactate synthase, which is detectable only when the ilv0603 mutation is also present in cis on the same chromosome. Under these conditions the Valr acetolactate synthase activity is eluted, on a hydroxylapatite column, at an ionic strength slightly lower than that required for elution of the remaining acetolactate synthase activity (sensitive to valine inhibition). The Valr peak is missing in a strain carrying an ilvG (amber) mutation.
Collapse
|
17
|
De Felice M, Guardiola J, Esposito B, Iaccarino M. Structural genes for a newly recognized acetolactate synthase in Escherichia coli K-12. J Bacteriol 1974; 120:1068-77. [PMID: 4612003 PMCID: PMC245884 DOI: 10.1128/jb.120.3.1068-1077.1974] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Evidence is reported that shows the presence in Escherichia coli K-12 of a newly found acetolactate synthase. This enzyme is the product of two genes, ilvH and ilvI, both located very close to leu. Amber mutations have been found in both genes and therefore their products are polypeptides. Mutations in the ilvH gene cause the appearance of an acetolactate synthase activity which is relatively resistant to valine inhibition and can be separated by adsorption on hydroxylapatite from another activity present in the extract and more sensitive to valine inhibition than the former. A mutant altered in the ilvI gene was isolated among the revertants sensitive to valine inhibition of an ilvH mutant. Such a mutant lacks the resistant acetolactate synthase. A temperature-sensitive revertant of the ilvI mutant contained a temperature-sensitive acetolactate synthase. Thus ilvI is the structural gene for a specific acetolactate synthase. The activity of the ilvH gene product has been measured by adding an extract containing it to a purified ilvI acetolactate synthase, which, upon incubation, became more sensitive to valine inhibition. Conversely, a valine-sensitive acetolactate synthase (the product of the ilvH and the ilvI genes) became more resistant to valine inhibition upon incubation with an extract of a strain containing a missense ilvH gene product.
Collapse
|
18
|
Guardiola J, De Felice M, Iaccarino M. Mutant of Escherichia coli K-12 missing acetolactate synthase activity. J Bacteriol 1974; 120:536-8. [PMID: 4608700 PMCID: PMC245796 DOI: 10.1128/jb.120.1.536-538.1974] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A mutant requiring isoleucine and valine for growth, because of the absence of acetolactate synthase activity, has been isolated. At least one of three different genes (ilvG, ilvB, ilvI) is required for the expression of acetolactate synthase activity, thus suggesting the presence of three different acetolactate synthase isoenzymes.
Collapse
|
19
|
Müller PJ, Bergter F, Günther HH, Knorre WA. [pH-induced growth inhibition in turbidostat cultures of Escherichia coli 2000]. ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE 1974; 14:707-12. [PMID: 4619520 DOI: 10.1002/jobm.3630140808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|