1
|
Wenk S, Rainaldi V, Schann K, He H, Bouzon M, Döring V, Lindner SN, Bar-Even A. Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO 2 via the Serine Threonine Cycle. Metab Eng 2025; 88:14-24. [PMID: 39447836 DOI: 10.1016/j.ymben.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Atmospheric CO2 poses a major threat to life on Earth by causing global warming and climate change. On the other hand, it can be considered as a resource that is scalable enough to establish a circular carbon economy. Accordingly, technologies to capture and convert CO2 into reduced one-carbon (C1) compounds (e.g. formic acid) are developing and improving fast. Driven by the idea of creating sustainable bioproduction platforms, natural and synthetic C1-utilization pathways are engineered into industrially relevant microbes. The realization of synthetic C1-assimilation cycles in living organisms is a promising but challenging endeavour. Here, we engineer the Serine Threonine Cycle, a synthetic C1-assimilation cycle in Escherichia coli to achieve growth on formic acid. Our stepwise engineering approach in tailored selection strains combined with adaptive laboratory evolution experiments enabled formatotrophic growth of the organism. Whole genome sequencing and reverse engineering allowed us to determine the key mutations linked to pathway activity. The Serine Threonine Cycle strains created in this work use formic acid as sole carbon and energy source and can grow at ambient CO2 cultivation conditions. This work sets an example for the engineering of complex C1-assimilation cycles in heterotrophic microbes.
Collapse
Affiliation(s)
- Sebastian Wenk
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Vittorio Rainaldi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Karin Schann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hai He
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay-4, 91057, Evry-Courcouronnes, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay-4, 91057, Evry-Courcouronnes, France
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Department of Biochemistry, Charité Universitätsmedizin, Virchowweg 6, 10117, Berlin, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Jin X, Wang S, Wang Y, Qi Q, Liang Q. Metabolic engineering strategies for L-Homoserine production in Escherichia coli. Microb Cell Fact 2024; 23:338. [PMID: 39702271 DOI: 10.1186/s12934-024-02623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
L-Homoserine, serves as a non-essential precursor for the essential amino acids derived from L-aspartate in both animals and humans. It finds widespread applications across the food, cosmetics, pharmaceutical, and animal feed industries. Microbial fermentation, primarily utilizing Escherichia coli, is the dominant approach for L-Homoserine production. However, despite recent advancements in fermentative processes employing E. coli strains, low production efficiency remains a significant barrier to its commercial viability. This review explores the biosynthesis, secretion, and regulatory mechanisms of L-Homoserine in E. coli while assessing various metabolic engineering strategies aimed at improving production efficiency.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Sumeng Wang
- Qingdao Agricultural University, Qingdao, 266100, China
| | - Yanbing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China.
| |
Collapse
|
3
|
Alkim C, Farias D, Fredonnet J, Serrano-Bataille H, Herviou P, Picot M, Slama N, Dejean S, Morin N, Enjalbert B, François JM. Toxic effect and inability of L-homoserine to be a nitrogen source for growth of Escherichia coli resolved by a combination of in vivo evolution engineering and omics analyses. Front Microbiol 2022; 13:1051425. [PMID: 36583047 PMCID: PMC9792984 DOI: 10.3389/fmicb.2022.1051425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
L-homoserine is a pivotal intermediate in the carbon and nitrogen metabolism of E. coli. However, this non-canonical amino acid cannot be used as a nitrogen source for growth. Furthermore, growth of this bacterium in a synthetic media is potently inhibited by L-homoserine. To understand this dual effect, an adapted laboratory evolution (ALE) was applied, which allowed the isolation of a strain able to grow with L-homoserine as the nitrogen source and was, at the same time, desensitized to growth inhibition by this amino acid. Sequencing of this evolved strain identified only four genomic modifications, including a 49 bp truncation starting from the stop codon of thrL. This mutation resulted in a modified thrL locus carrying a thrL* allele encoding a polypeptide 9 amino acids longer than the thrL encoded leader peptide. Remarkably, the replacement of thrL with thrL* in the original strain MG1655 alleviated L-homoserine inhibition to the same extent as strain 4E, but did not allow growth with this amino acid as a nitrogen source. The loss of L-homoserine toxic effect could be explained by the rapid conversion of L-homoserine into threonine via the thrL*-dependent transcriptional activation of the threonine operon thrABC. On the other hand, the growth of E. coli on a mineral medium with L-homoserine required an activation of the threonine degradation pathway II and glycine cleavage system, resulting in the release of ammonium ions that were likely recaptured by NAD(P)-dependent glutamate dehydrogenase. To infer about the direct molecular targets of L-homoserine toxicity, a transcriptomic analysis of wild-type MG1655 in the presence of 10 mM L-homoserine was performed, which notably identified a potent repression of locomotion-motility-chemotaxis process and of branched-chain amino acids synthesis. Since the magnitude of these effects was lower in a ΔthrL mutant, concomitant with a twofold lower sensitivity of this mutant to L-homoserine, it could be argued that growth inhibition by L-homoserine is due to the repression of these biological processes. In addition, L-homoserine induced a strong upregulation of genes in the sulfate reductive assimilation pathway, including those encoding its transport. How this non-canonical amino acid triggers these transcriptomic changes is discussed.
Collapse
Affiliation(s)
- Ceren Alkim
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Daniele Farias
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Julie Fredonnet
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Pauline Herviou
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Marc Picot
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Nawel Slama
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Nicolas Morin
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Brice Enjalbert
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France,*Correspondence: Jean M. François,
| |
Collapse
|
4
|
Jeanneau S, Jacques PÉ, Lafontaine DA. Investigating the role of RNA structures in transcriptional pausing using in vitro assays and in silico analyses. RNA Biol 2022; 19:916-927. [PMID: 35833713 PMCID: PMC9291695 DOI: 10.1080/15476286.2022.2096794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Transcriptional pausing occurs across the bacterial genome but the importance of this mechanism is still poorly understood. Only few pauses were observed during the previous decades, leaving an important gap in understanding transcription mechanisms. Using the well-known Escherichia coli hisL and trpL pause sites as models, we describe here the relation of pause sites with upstream RNA structures suspected to stabilize pausing. We find that the transcription factor NusA influences the pause half-life at leuL, pheL and thrL pause sites. Using a mutagenesis approach, we observe that transcriptional pausing is affected in all tested pause sites, suggesting that the upstream RNA sequence is important for transcriptional pausing. Compensatory mutations assessing the presence of RNA hairpins did not yield clear conclusions, indicating that complex RNA structures or transcriptional features may be playing a role in pausing. Moreover, using a bioinformatic approach, we explored the relation between a DNA consensus sequence important for pausing and putative hairpins among thousands of pause sites in E. coli. We identified 2125 sites presenting hairpin-dependent transcriptional pausing without consensus sequence, suggesting that this mechanism is widespread across E. coli. This study paves the way to understand the role of RNA structures in transcriptional pausing.
Collapse
Affiliation(s)
- Simon Jeanneau
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Conserved Pyridoxal 5'-Phosphate-Binding Protein YggS Impacts Amino Acid Metabolism through Pyridoxine 5'-Phosphate in Escherichia coli. Appl Environ Microbiol 2019; 85:AEM.00430-19. [PMID: 30902856 DOI: 10.1128/aem.00430-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli YggS (COG0325) is a member of the highly conserved pyridoxal 5'-phosphate (PLP)-binding protein (PLPBP) family. Recent studies suggested a role for this protein family in the homeostasis of vitamin B6 and amino acids. The deletion or mutation of a member of this protein family causes pleiotropic effects in many organisms and is causative of vitamin B6-dependent epilepsy in humans. To date, little has been known about the mechanism by which lack of YggS results in these diverse phenotypes. In this study, we determined that the pyridoxine (PN) sensitivity observed in yggS-deficient E. coli was caused by the pyridoxine 5'-phosphate (PNP)-dependent overproduction of Val, which is toxic to E. coli The data suggest that the yggS mutation impacts Val accumulation by perturbing the biosynthetic of Thr from homoserine (Hse). Exogenous Hse inhibited the growth of the yggS mutant, caused further accumulation of PNP, and increased the levels of some intermediates in the Thr-Ile-Val metabolic pathways. Blocking the Thr biosynthetic pathway or decreasing the intracellular PNP levels abolished the perturbations of amino acid metabolism caused by the exogenous PN and Hse. Our data showed that a high concentration of intracellular PNP is the root cause of at least some of the pleiotropic phenotypes described for a yggS mutant of E. coli IMPORTANCE Recent studies showed that deletion or mutation of members of the YggS protein family causes pleiotropic effects in many organisms. Little is known about the causes, mechanisms, and consequences of these diverse phenotypes. It was previously shown that yggS mutations in E. coli result in the accumulation of PNP and some metabolites in the Ile/Val biosynthetic pathway. This work revealed that some exogenous stresses increase the aberrant accumulation of PNP in the yggS mutant. In addition, the current report provides evidence indicating that some, but not all, of the phenotypes of the yggS mutant in E. coli are due to the elevated PNP level. These results will contribute to continuing efforts to determine the molecular functions of the members of the YggS protein family.
Collapse
|
6
|
Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat Commun 2019; 10:935. [PMID: 30804335 PMCID: PMC6389913 DOI: 10.1038/s41467-019-08888-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology aims to design and construct bacterial genomes harboring the minimum number of genes required for self-replicable life. However, the genome-reduced bacteria often show impaired growth under laboratory conditions that cannot be understood based on the removed genes. The unexpected phenotypes highlight our limited understanding of bacterial genomes. Here, we deploy adaptive laboratory evolution (ALE) to re-optimize growth performance of a genome-reduced strain. The basis for suboptimal growth is the imbalanced metabolism that is rewired during ALE. The metabolic rewiring is globally orchestrated by mutations in rpoD altering promoter binding of RNA polymerase. Lastly, the evolved strain has no translational buffering capacity, enabling effective translation of abundant mRNAs. Multi-omic analysis of the evolved strain reveals transcriptome- and translatome-wide remodeling that orchestrate metabolism and growth. These results reveal that failure of prediction may not be associated with understanding individual genes, but rather from insufficient understanding of the strain's systems biology.
Collapse
|
7
|
Lin Z, Zhang Y, Yuan Q, Liu Q, Li Y, Wang Z, Ma H, Chen T, Zhao X. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microb Cell Fact 2015; 14:185. [PMID: 26589676 PMCID: PMC4654888 DOI: 10.1186/s12934-015-0369-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Poly(3-hydroxybutyrate) (PHB), have been considered to be good candidates for completely biodegradable polymers due to their similar mechanical properties to petroleum-derived polymers and complete biodegradability. Escherichia coli has been used to simulate the distribution of metabolic fluxes in recombinant E. coli producing poly(3-hydroxybutyrate) (PHB). Genome-scale metabolic network analysis can reveal unexpected metabolic engineering strategies to improve the production of biochemicals and biofuels. RESULTS In this study, we reported the discovery of a new pathway called threonine bypass by flux balance analysis of the genome-scale metabolic model of E. coli. This pathway, mainly containing the reactions for threonine synthesis and degradation, can potentially increase the yield of PHB and other acetyl-CoA derived products by reutilizing the CO2 released at the pyruvate dehydrogenase step. To implement the threonine bypass for PHB production in E. coli, we deregulated the threonine and serine degradation pathway and enhanced the threonine synthesis, resulting in 2.23-fold improvement of PHB titer. Then, we overexpressed glyA to enhance the conversion of glycine to serine and activated transhydrogenase to generate NADPH required in the threonine bypass. CONCLUSIONS The result strain TB17 (pBHR68) produced 6.82 g/L PHB with the yield of 0.36 g/g glucose in the shake flask fermentation and 35.92 g/L PHB with the yield of 0.23 g/g glucose in the fed-batch fermentation, which was almost 3.3-fold higher than the parent strain. The work outlined here shows that genome-scale metabolic network analysis can reveal novel metabolic engineering strategies for developing efficient microbial cell factories.
Collapse
Affiliation(s)
- Zhenquan Lin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Edinburg-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Yan Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Edinburg-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Qianqian Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Edinburg-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Qiaojie Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Edinburg-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Yifan Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Edinburg-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Edinburg-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Edinburg-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, 300072, China. .,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Edinburg-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
8
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
9
|
Falls KC, Williams AL, Bryksin AV, Matsumura I. Escherichia coli deletion mutants illuminate trade-offs between growth rate and flux through a foreign anabolic pathway. PLoS One 2014; 9:e88159. [PMID: 24505410 PMCID: PMC3913754 DOI: 10.1371/journal.pone.0088159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022] Open
Abstract
Metabolic engineers strive to improve the production yields of microbial fermentations, sometimes by mutating the genomes of production strains. Some mutations are detrimental to the health of the organism, so a quantitative and mechanistic understanding of the trade-offs could inform better designs. We employed the bacterial luciferase operon (luxABCDE), which uses ubiquitous energetic cofactors (NADPH, ATP, FMNH2, acetyl-CoA) from the host cell, as a proxy for a novel anabolic pathway. The strains in the Escherichia coli Keio collection, each of which contains a single deletion of a non-essential gene, represent mutational choices that an engineer might make to optimize fermentation yields. The Keio strains and the parental BW25113 strain were transformed with a luxABCDE expression vector. Each transformant was propagated in defined M9 medium at 37°C for 48 hours; the cell density (optical density at 600 nanometers, OD600) and luminescence were measured every 30 minutes. The trade-offs were visualized by plotting the maximum growth rate and luminescence/OD600 of each transformant across a “production possibility frontier”. Our results show that some loss-of-function mutations enhance growth in vitro or light production, but that improvement in one trait generally comes at the expense of the other.
Collapse
Affiliation(s)
- Kelly C. Falls
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Aimee L. Williams
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anton V. Bryksin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ichiro Matsumura
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
10
|
New insights into small RNA-dependent translational regulation in prokaryotes. Trends Genet 2013; 29:92-8. [DOI: 10.1016/j.tig.2012.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/14/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022]
|
11
|
Sharma CM, Papenfort K, Pernitzsch SR, Mollenkopf HJ, Hinton JCD, Vogel J. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol 2011; 81:1144-65. [PMID: 21696468 DOI: 10.1111/j.1365-2958.2011.07751.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GcvB is one of the most highly conserved Hfq-associated small RNAs in Gram-negative bacteria and was previously reported to repress several ABC transporters for amino acids. To determine the full extent of GcvB-mediated regulation in Salmonella, we combined a genome-wide experimental approach with biocomputational target prediction. Comparative pulse expression of wild-type versus mutant sRNA variants revealed that GcvB governs a large post-transcriptional regulon, impacting ~1% of all Salmonella genes via its conserved G/U-rich domain R1. Complementary predictions of C/A-rich binding sites in mRNAs and gfp reporter fusion experiments increased the number of validated GcvB targets to more than 20, and doubled the number of regulated amino acid transporters. Unlike the previously described targeting via the single R1 domain, GcvB represses the glycine transporter CycA by exceptionally redundant base-pairing. This novel ability of GcvB is focused upon the one target that could feedback-regulate the glycine-responsive synthesis of GcvB. Several newly discovered mRNA targets involved in amino acid metabolism, including the global regulator Lrp, question the previous assumption that GcvB simply acts to limit unnecessary amino acid uptake. Rather, GcvB rewires primary transcriptional control circuits and seems to act as a distinct regulatory node in amino acid metabolism.
Collapse
Affiliation(s)
- Cynthia M Sharma
- Institute for Molecular Infection Biology, Research Centre of Infectious Diseases, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Chen LJ, Liang YJ, Jeng ST, Orozco EM, Gumport RI, Lin CH, Yang MT. Transcription termination at the Escherichia coli thra terminator by spinach chloroplast RNA polymerase in vitro is influenced by downstream DNA sequences. Nucleic Acids Res 1995; 23:4690-7. [PMID: 8524662 PMCID: PMC307445 DOI: 10.1093/nar/23.22.4690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have investigated the mechanism of transcription termination in vitro by spinach chloroplast RNA polymerase using templates encoding variants of the transcription-termination structure (attenuator) of the regulatory region of the threonine (thr) operon of Escherichia coli. Fourteen sequence variants located within its d(G+C) stem-loop and d(A+T)-rich regions were studied. We found that the helix integrity in the stem-loop structure is necessary for termination but that its stability is not directly correlated with termination efficiency. The sequence of the G+C stem-loop itself also influences termination. Moreover, the dA template stretch at the 3' end of the terminator plays a major role in termination efficiency, but base pairing between the A and U tract of the transcript does not. From the studies using deletion variants and a series of mutants that alter the sequences immediately downstream from the transcription termination site, we found that termination of transcription by spinach chloroplast RNA polymerase was also modulated by downstream DNA sequences in a sequence-specific manner. The second base immediately following the poly(T) tract is crucial for determining the termination efficiency by chloroplast RNA polymerase, but not of the T7 or E.coli enzymes.
Collapse
Affiliation(s)
- L J Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Han KS, Archer JA, Sinskey AJ. The molecular structure of the Corynebacterium glutamicum threonine synthase gene. Mol Microbiol 1990; 4:1693-702. [PMID: 2127631 DOI: 10.1111/j.1365-2958.1990.tb00546.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The minimal region encoding the Corynebacterium glutamicum threonine synthase structural gene and its promoter was mapped by deletion analysis and complementation of the C. glutamicum thrC allele to a 1.6 kb region of the recombinant plasmid pFS80. The nucleotide sequence of this and flanking DNA was determined. The transcription and translation start points were identified by S1 mapping analysis and amino-terminal protein sequencing, respectively. The thrC gene encodes a 54481-Dalton polypeptide product. Translation of the thrC mRNA initiates only six nucleotides downstream from transcription. The length of the mRNA transcript is consistent with a single gene transcription unit. The C. glutamicum thrC gene is expressed independently of the other threonine-specific genes hom and thrB.
Collapse
Affiliation(s)
- K S Han
- Seoul Miwon Co. Ltd, Dobong-ku, Korea
| | | | | |
Collapse
|
14
|
Chen LJ, Orozco EM. Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase. Nucleic Acids Res 1988; 16:8411-31. [PMID: 2843817 PMCID: PMC338567 DOI: 10.1093/nar/16.17.8411] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To determine whether chloroplast RNA polymerase will accurately terminate transcription in vitro, we have fused the spinach chloroplast rbcL promoter to the 3' end of the rbcL gene as well as to various factor independent transcription terminators from E. coli. Transcription of the rbcL minigene did not result in production of the expected 265 nucleotide RNA. However, the spinach chloroplast RNA polymerase did terminate transcription with varying efficiency at the thra, rrnB, rrnC and gene 32 terminators. The most efficient transcription termination was observed for the threonine attenuator. For each of the prokaryotic terminators, the chloroplast enzyme ceased transcription at essentially the same position as the E. coli RNA polymerase. These data indicate that the transcription termination process in chloroplasts has some features in common with the mechanism used in prokaryotes.
Collapse
Affiliation(s)
- L J Chen
- Department of Agronomy, University of Illinois, Urbana 61801
| | | |
Collapse
|
15
|
Follettie MT, Shin HK, Sinskey AJ. Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol Microbiol 1988; 2:53-62. [PMID: 2835590 DOI: 10.1111/j.1365-2958.1988.tb00006.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genes encoding the three terminal enzymes in the threonine biosynthetic pathway, homoserine dehydrogenase (hom), homoserine kinase (thrB) and threonine synthase (thrC) have been isolated from Corynebacterium glutamicum. The C. glutamicum hom and thrB genes were subcloned on a 3.6 kb SalI-generated chromosomal fragment. The C. glutamicum thrC gene was shown not to be linked to the hom-thrB locus. L-methionine represses the cloned homoserine dehydrogenase and homoserine kinase similar to that of the chromosomally encoded hom and thrB gene products. Northern hybridization analysis demonstrates that this repression is mediated at the level of transcription and that hom-thrB represents an operon in C. glutamicum.
Collapse
Affiliation(s)
- M T Follettie
- Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
16
|
Contributions of RNA secondary structure and length of the thymidine tract to transcription termination at the thr operon attenuator. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57417-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Abstract
A physical map of a genome is the structure of its DNA. Construction of such a map is a first step in the complete characterization of that DNA. The restriction endonuclease Not I cuts the genome of Escherichia coli K12 into 22 DNA fragments ranging from 20 kilobases (20,000 base pairs) to 1000 kilobases. These can be separated by pulsed field gel electrophoresis. The order of the fragments in the genome was determined from available E. coli genetic information and analysis of partial digest patterns. The resulting ordered set of fragments is a macrorestriction map. This map facilitates genetic and molecular studies on E. coli, and its construction serves as a model for further endeavors on larger genomes.
Collapse
|
18
|
Lynn SP, Burton WS, Donohue TJ, Gould RM, Gumport RI, Gardner JF. Specificity of the attenuation response of the threonine operon of Escherichia coli is determined by the threonine and isoleucine codons in the leader transcript. J Mol Biol 1987; 194:59-69. [PMID: 3112412 DOI: 10.1016/0022-2836(87)90715-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Expression of the threonine (thr) operon enzymes of Escherichia coli is regulated by an attenuation mechanism. The regulatory portion of the operon contains a region coding for a leader peptide that contains consecutive threonine and isoleucine codons. It is thought that translation of the leader peptide controls the frequency of transcription termination at the attenuator site. Using oligonucleotide-directed site-specific mutagenesis we have altered the putative control codons of the leader peptide coding region. In two of the mutants the threonine and isoleucine codons were changed to produce peptides containing histidine and tyrosine codons. Both mutants showed loss of regulation by threonine and isoleucine. A hisT mutation, which leads to an undermodification of tRNA(His), increased thr operon expression in the mutants threefold but did not affect expression of the wild-type thr operon. Two other mutants were constructed that contained two histidine codons early in the leader peptide. Expression in both of these mutants was unaltered by the presence of the hisT allele or by the addition of threonine and isoleucine to the growth medium. In addition, a wild-type strain containing a temperature-sensitive threonyl-tRNA synthetase mutation showed increased thr operon expression at the non-permissive temperature, whereas none of the mutants showed any change. Taken together these data indicate that the specificity of the attenuation response is effected by specific control codons within the thr leader peptide coding region. We have also directly demonstrated thr leader peptide synthesis in vitro using a plasmid encoding the wild-type thr leader region to direct the synthesis of a peptide of the appropriate molecular weight when labeled with [3H]threonine but not with [3H]histidine or [3H]tyrosine. Conversely, when extracts were incubated with templates containing the mutated DNAs, peptides were labeled that showed patterns consistent with the expected amino acid compositions. These data indicate that the thr leader RNA is translated into the predicted leader peptide.
Collapse
|
19
|
Lynn SP, Bauer CE, Chapman K, Gardner JF. Identification and characterization of mutants affecting transcription termination at the threonine operon attenuator. J Mol Biol 1985; 183:529-41. [PMID: 2410621 DOI: 10.1016/0022-2836(85)90169-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations that map in or delete the attenuator of the threonine (thr) operon of Escherichia coli were isolated and characterized. These mutations disrupt or delete the transcription termination structure encoded by the attenuator leading to increased transcriptional readthrough into the thr operon structural genes. Most of the base substitutions and single base-pair insertions and deletions map in the G + C-rich region of dyad symmetry in the attenuator and decrease the calculated stabilities of the attenuator RNA secondary structures to similar extents (from -30.8 kcal/mol to approximately -21 kcal/mol). Most of the mutants showed a three- to fourfold increase in homoserine dehydrogenase (thrA gene product) synthesis relative to the wild-type parent strain. The mutation in one mutant (thrL153 + G) lowered the calculated stability of the RNA secondary structure only slightly (from -30.8 to 27.8 kcal/mol) but the mutant still exhibited high levels of homoserine dehydrogenase synthesis. In addition, three base substitution mutants (thrL135U, thrL139A and thrL156U) showed only slightly (1.5 to 2-fold) elevated levels of homoserine dehydrogenase activity, even though the calculated stabilities of the attenuator RNA secondary structures were reduced as much as most of the other mutants. Two of the mutations (thrL135U and thrL156U) mapped in the G + C-rich-A + T-rich junction of the attenuator. The third mutation (thrL139A) creates an A X C pair in the center of the G + C-rich region of the attenuator stem. The results obtained for these mutants show that the stability of the RNA secondary structure does not always correlate with the efficiency of transcription termination. Finally, analysis of the base changes in the substitution mutations showed that the mutational changes do not appear to be random.
Collapse
|
20
|
Shames SL, Ash DE, Wedler FC, Villafranca JJ. Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42554-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Makino K, Shinagawa H, Nakata A. Cloning and characterization of the alkaline phosphatase positive regulatory gene (phoM) of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1984; 195:381-90. [PMID: 6381964 DOI: 10.1007/bf00341438] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The positive regulatory gene (phoM) for alkaline phosphatase of Escherichia coli was cloned on a mini-F plasmid pMF3 from the E. coli chromosome by a shotgun method. The hybrid plasmid pTHR32, which carries 10.8 kb chromosomal DNA, complemented both phoM and thrB mutations. The restriction map was constructed. Based upon this information, several PhoM- deletion plasmids and smaller PhoM+ plasmids were constructed in vitro. By examining the phenotypes and the physical maps of these plasmids, we could define the phoM gene locus in a 2.5 kb region on the restriction map of the cloned chromosomal DNA fragment. The PhoM+ plasmid not only enabled a phoM- -phoR- double mutant to express phoA (the structural gene for the alkaline phosphatase) but also phoB (another positive regulatory gene for phoA). These results are consistent with a model for genetic regulation of phoA expression that proposes that both the phoM and phoR gene products activate phoB expression under phosphate starved conditions, and PhoB protein, in turn, activates phoA expression. The phoM gene product was identified by the maxicell method as a protein with a molecular weight of 60,000. A hybrid plasmid that carries a phoM'-'lacZ fused gene on mini-F vector pMF3 was constructed in vitro. This plasmid enabled us to study phoM gene expression by measuring the beta-galactosidase level in the cells. The plasmid was introduced into various regulatory mutants related to the phosphate regulon, and phoM gene expression in these strains was studied under conditions of limited or excess phosphate. It was found that phoM expression was not regulated by phosphate nor by any of the pho genes. The transcriptional direction of phoM was found to be clockwise toward the thr operon on the E. coli genetic map. The fusion gene product interfered with phoB and phoA expression in the phoR mutants. Overproduction of PhoM protein increased phoB and phoA expression only in the phoR mutants. The implications of these findings are discussed.
Collapse
|
22
|
Specificity and kinetics defining the interaction between a murine monoclonal autoantibody and DNA. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43121-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Grogan DW, Cronan JE. Use of lambda phasmids for deletion mapping of non-selectable markers cloned in plasmids. Gene X 1983; 22:75-83. [PMID: 6305773 DOI: 10.1016/0378-1119(83)90066-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A nonselectable gene carried on a poorly selectable recombinant plasmid has been physically mapped by deletion analysis. Our method involved cloning the plasmid into a coliphage lambda vector and treating the recombinant phage with a chelator. Virtually all particles surviving this treatment carried large deletions within the plasmid insert. Further deletion analysis was done by inserting a selectable lambda sequence into one such deletion derivative and repeating the chelator selection. Chelator selection was also used to isolate deletions constructed in vitro. The deleted phage are readily characterized by restriction mapping, and the gene in question scored after infection of a mutant host strain. These techniques have enabled us to physically assign the cyclopropane fatty acid synthase gene of Escherichia coli to 0.8 kb of a 16-kb segment after characterizing only a small number of isolates. This approach should be generally useful in the mapping of plasmids for which no convenient method exists for selecting or scoring the gene in question.
Collapse
|
24
|
Salyers AA, Lynn SP, Gardner JF. Use of randomly cloned DNA fragments for identification of Bacteroides thetaiotaomicron. J Bacteriol 1983; 154:287-93. [PMID: 6833179 PMCID: PMC217458 DOI: 10.1128/jb.154.1.287-293.1983] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Randomly cloned fragments of DNA from Bacteroides thetaiotaomicron were used as hybridization probes for differentiation of B. thetaiotaomicron from closely related Bacteroides species. HindIII digestion fragments of DNA from B. thetaiotaomicron (type strain) were inserted into plasmid pBR322 and labeled with [alpha-32P]dCTP by nick translation. These labeled plasmids were screened for hybridization to HindIII digests of chromosomal DNA from type strains of the following human colonic Bacteroides species: B. thetaiotaomicron, Bacteroides ovatus, reference strain 3452-A (formerly part of B. distasonis), Bacteroides uniformis, Bacteroides fragilis, Bacteroides vulgatus, Bacteroides distasonis, Bacteroides eggerthii, and reference strain B5-21 (formerly B. fragilis subsp. a). Two of the five cloned fragments hybridized only to DNA from B. thetaiotaomicron. Each of these two fragments hybridized to the same DNA restriction fragment in five strains of B. thetaiotaomicron other than the strain from which the DNA was cloned. One of the cloned fragments (pBT2) was further tested for specificity by determining its ability to hybridize to DNA from 65 additional strains of colonic Bacteroides.
Collapse
|