1
|
Abstract
The quinolones are potent antibacterials that act by forming complexes with DNA and either gyrase or topoisomerase IV. These ternary complexes, called cleaved complexes because the DNA moiety is broken, block replication, transcription, and bacterial growth. Cleaved complexes readily form in vitro when gyrase, plasmid DNA, and quinolone are combined and incubated; complexes are detected by the linearization of plasmid DNA, generally assayed by gel electrophoresis. The stability of the complexes can be assessed by treatment with EDTA, high temperature, or dilution to dissociate the complexes and reseal the DNA moiety. Properties of the complexes are sensitive to quinolone structure and to topoisomerase amino acid substitutions associated with quinolone resistance. Consequently, studies of cleaved complexes can be used to identify improvements in quinolone structure and to understand the biochemical basis of target-based resistance. Cleaved complexes can also be detected in quinolone-treated bacterial cells by their ability to rapidly block DNA replication and to cause chromosome fragmentation; they can even be recovered from lysed cells following CsCl density-gradient centrifugation. Thus, in vivo and cell-fractionation tests are available for assessing the biological relevance of work with purified components.
Collapse
|
2
|
Suppression of Reactive Oxygen Species Accumulation Accounts for Paradoxical Bacterial Survival at High Quinolone Concentration. Antimicrob Agents Chemother 2018; 62:AAC.01622-17. [PMID: 29229642 DOI: 10.1128/aac.01622-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
Abstract
When bacterial cells are exposed to increasing concentrations of quinolone-class antibacterials, survival drops, reaches a minimum, and then recovers, sometimes to 100%. Despite decades of study, events underlying this paradoxical high-concentration survival remain obscure. Since reactive oxygen species (ROS) have been implicated in antimicrobial lethality, conditions generating paradoxical survival were examined for diminished ROS accumulation. Escherichia coli cultures were treated with various concentrations of nalidixic acid, followed by measurements of survival, rate of protein synthesis, and ROS accumulation. The last measurement used a dye (carboxy-H2DCFDA) that fluoresces in the presence of ROS; fluorescence was assessed by microscopy (individual cells) and flow cytometry (batch cultures). High, nonlethal concentrations of nalidixic acid induced lower levels of ROS than moderate, lethal concentrations. Sublethal doses of exogenous hydrogen peroxide became lethal and eliminated the nalidixic acid-associated paradoxical survival. Thus, quinolone-mediated lesions needed for ROS-executed killing persist at high, nonlethal quinolone concentrations, thereby implicating ROS as a key factor in cell death. Chloramphenicol suppressed nalidixic acid-induced ROS accumulation and blocked lethality, further supporting a role for ROS in killing. Nalidixic acid also inhibited protein synthesis, with extensive inhibition at high concentrations correlating with lower ROS accumulation and paradoxical survival. A catalase deficiency, which elevated ROS levels, overcame the inhibitory effect of chloramphenicol on nalidixic acid-mediated killing, emphasizing the importance of ROS. The data collectively indicate that ROS play a dominant role in the lethal action of narrow-spectrum quinolone-class compounds; a drop in ROS levels accounted for the quinolone tolerance observed at very high concentrations.
Collapse
|
3
|
Malik M, Mustaev A, Schwanz HA, Luan G, Shah N, Oppegard LM, de Souza EC, Hiasa H, Zhao X, Kerns RJ, Drlica K. Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones. Nucleic Acids Res 2016; 44:3304-16. [PMID: 26984528 PMCID: PMC4838383 DOI: 10.1093/nar/gkw161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/02/2016] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones form drug-topoisomerase-DNA complexes that rapidly block transcription and replication. Crystallographic and biochemical studies show that quinolone binding involves a water/metal-ion bridge between the quinolone C3-C4 keto-acid and amino acids in helix-4 of the target proteins, GyrA (gyrase) and ParC (topoisomerase IV). A recent cross-linking study revealed a second drug-binding mode in which the other end of the quinolone, the C7 ring system, interacts with GyrA. We report that addition of a dinitrophenyl (DNP) moiety to the C7 end of ciprofloxacin (Cip-DNP) reduced protection due to resistance substitutions in Escherichia coli GyrA helix-4, consistent with the existence of a second drug-binding mode not evident in X-ray structures of drug-topoisomerase-DNA complexes. Several other C7 aryl fluoroquinolones behaved in a similar manner with particular GyrA mutants. Treatment of E. coli cultures with Cip-DNP selectively enriched an uncommon variant, GyrA-A119E, a change that may impede binding of the dinitrophenyl group at or near the GyrA-GyrA interface. Collectively the data support the existence of a secondary quinolone-binding mode in which the quinolone C7 ring system interacts with GyrA; the data also identify C7 aryl derivatives as a new way to obtain fluoroquinolones that overcome existing GyrA-mediated quinolone resistance.
Collapse
Affiliation(s)
- Muhammad Malik
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Arkady Mustaev
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Heidi A Schwanz
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Gan Luan
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Nirali Shah
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Lisa M Oppegard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ernane C de Souza
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xilin Zhao
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Robert J Kerns
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Karl Drlica
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Cheng G, Hao H, Dai M, Liu Z, Yuan Z. Antibacterial action of quinolones: From target to network. Eur J Med Chem 2013; 66:555-62. [DOI: 10.1016/j.ejmech.2013.01.057] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 11/27/2022]
|
5
|
Effect of N-1/c-8 ring fusion and C-7 ring structure on fluoroquinolone lethality. Antimicrob Agents Chemother 2010; 54:5214-21. [PMID: 20855738 DOI: 10.1128/aac.01054-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinolones rapidly kill bacteria by two mechanisms, one that requires protein synthesis and one that does not. The latter, which is measured as lethal action in the presence of the protein synthesis inhibitor chloramphenicol, is enhanced by N-1 cyclopropyl and C-8 methoxy substituents, as seen with the highly lethal compound PD161144. In some compounds, such as levofloxacin, the N-1 and C-8 substituents are fused. To assess the effect of ring fusion on killing, structural derivatives of levofloxacin and PD161144 differing at C-7 were synthesized and examined with Escherichia coli. A fused-ring derivative of PD161144 exhibited a striking absence of lethal activity in the presence of chloramphenicol. In general, ring fusion had little effect on lethal activity when protein synthesis was allowed, but fusion reduced lethal activity in the absence of protein synthesis to extents that depended on the C-7 ring structure. Additional fused-ring fluoroquinolones, pazufloxacin, marbofloxacin, and rufloxacin, also exhibited reduced activity in the presence of chloramphenicol. Energy minimization modeling revealed that steric interactions of the trans-oriented N-1 cyclopropyl and C-8 methoxy moieties skew the quinolone core, rigidly orient these groups perpendicular to core rings, and restrict the rotational freedom of C-7 rings. These features were not observed with fused-ring derivatives. Remarkably, structural effects on quinolone lethality were not explained by the recently described X-ray crystal structures of fluoroquinolone-topoisomerase IV-DNA complexes, suggesting the existence of an additional drug-binding state.
Collapse
|
6
|
Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother 2006; 51:28-34. [PMID: 17043118 PMCID: PMC1797672 DOI: 10.1128/aac.00739-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Quinolone activity against Escherichia coli was examined during aerobic growth, aerobic treatment with chloramphenicol, and anaerobic growth. Nalidixic acid, norfloxacin, ciprofloxacin, and PD161144 were lethal for cultures growing aerobically, and the bacteriostatic activity of each quinolone was unaffected by anaerobic growth. However, lethal activity was distinct for each quinolone with cells treated aerobically with chloramphenicol or grown anaerobically. Nalidixic acid failed to kill cells under both conditions; norfloxacin killed cells when they were grown anaerobically but not when they were treated with chloramphenicol; ciprofloxacin killed cells under both conditions but required higher concentrations than those required with cells grown aerobically; and PD161144, a C-8-methoxy fluoroquinolone, was equally lethal under all conditions. Following pretreatment with nalidixic acid, a shift to anaerobic conditions or the addition of chloramphenicol rapidly blocked further cell death. Formation of quinolone-gyrase-DNA complexes, observed as a sodium dodecyl sulfate (SDS)-dependent drop in cell lysate viscosity, occurred during aerobic and anaerobic growth and in the presence and in the absence of chloramphenicol. However, lethal chromosome fragmentation, detected as a drop in viscosity in the absence of SDS, occurred with nalidixic acid treatment only under aerobic conditions in the absence of chloramphenicol. With PD161144, chromosome fragmentation was detected when the cells were grown aerobically and anaerobically and in the presence and in the absence of chloramphenicol. Thus, all quinolones tested appear to form reversible bacteriostatic complexes containing broken DNA during aerobic growth, during anaerobic growth, and when protein synthesis is blocked; however, the ability to fragment chromosomes and to rapidly kill cells under these conditions depends on quinolone structure.
Collapse
Affiliation(s)
- Muhammad Malik
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | | | |
Collapse
|
7
|
Zhao X, Malik M, Chan N, Drlica-Wagner A, Wang JY, Li X, Drlica K. Lethal action of quinolones against a temperature-sensitive dnaB replication mutant of Escherichia coli. Antimicrob Agents Chemother 2006; 50:362-4. [PMID: 16377712 PMCID: PMC1346826 DOI: 10.1128/aac.50.1.362-364.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibition of DNA replication in an Escherichia coli dnaB-22 mutant failed to block quinolone-mediated lethality. Inhibition of protein synthesis by chloramphenicol inhibited nalidixic acid lethality and, to a lesser extent, ciprofloxacin lethality in both dnaB-22 and wild-type cells. Thus, major features of quinolone-mediated lethality do not depend on ongoing replication.
Collapse
Affiliation(s)
- Xilin Zhao
- Public Health Research Institute, 225 Warren St., Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 727] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
9
|
Affiliation(s)
- K Drlica
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
10
|
Li S, Waters R. Escherichia coli strains lacking protein HU are UV sensitive due to a role for HU in homologous recombination. J Bacteriol 1998; 180:3750-6. [PMID: 9683467 PMCID: PMC107354 DOI: 10.1128/jb.180.15.3750-3756.1998] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
hupA and hupB encode the alpha and beta subunits of the Escherichia coli histone-like protein HU. Here we show that E. coli hup mutants are sensitive to UV in the rec+ sbc+, recBC sbcA, recBC sbcBC, umuDC, recF, and recD backgrounds. However, hupAB mutations do not enhance the UV sensitivity of resolvase-deficient recG ruvA strains. hupAB uvrA and hupAB recG strains are supersensitive to UV. hup mutations enhance the UV sensitivity of ruvA strains to a much lesser extent but enhance that of rus-1 ruvA strains to the same extent as for rus+ ruv+ strains. Our results suggest that HU plays a role in recombinational DNA repair that is not specifically limited to double-strand break repair or daughter strand gap repair; the lack of HU affects the RecG RusA and RuvABC pathways for Holliday junction processing equally if the two pathways are equally active in recombinational repair; the function of HU is not in the substrate processing step or in the RecFOR-directed synapsis action during recombinational repair. Furthermore, the UV sensitivity of hup mutants cannot be suppressed by overexpression of wild-type or mutant gyrB, which confers novobiocin resistance, or by different concentrations of a gyrase inhibitor that can increase or decrease the supercoiling of chromosomal DNA.
Collapse
Affiliation(s)
- S Li
- School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, United Kingdom
| | | |
Collapse
|
11
|
Wang JY. Mathematical relationships among DNA supercoiling, cation concentration, and temperature for prokaryotic transcription. Math Biosci 1998; 151:155-63. [PMID: 9711047 DOI: 10.1016/s0025-5564(98)10012-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA twist has been proposed to affect transcription from some promoters of Escherichia coli, but involvement of twist has been difficult to test because it cannot be measured in transcription reaction mixtures. However, changes in other factors affect both DNA twist and transcription. These parameters are expected to be related when maximum transcription initiation is considered. In the present work, mathematical relationships among supercoiling, cation concentration, and temperature are derived for prokaryotic transcription initiation. The relationships indicate that as DNA becomes more negatively supercoiled, maximal initiation occurs at a higher cation concentration and at a lower temperature. For example, when superhelical density becomes more negative by 0.0025, a 1.6-fold increase in potassium concentration is predicted to be required to maintain transcription initiation at its maximum rate. Experimental verification of the relationships should provide a useful test of the idea that transcription initiation is sensitive to DNA twist.
Collapse
Affiliation(s)
- J Y Wang
- Public Health Research Institute, New York, NY 10016, USA.
| |
Collapse
|
12
|
Abstract
For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases.
Collapse
Affiliation(s)
- K Drlica
- Public Health Research Institute, New York, New York 10016, USA.
| | | |
Collapse
|
13
|
Abstract
Inhibiting the progress of replication forks in E. coli makes them susceptible to breakage. Broken replication forks are evidently reassembled by the RecBCD recombinational repair pathway. These findings explain a particular pattern of DNA degradation during inhibition of chromosomal replication, the role of recombination in the viability of mutants with displaced replication origin, and hyper-recombination observed in the Terminus of the E. coli chromosome in rnh mutants. Breakage and repair of inhibited replication forks could be the reason for the recombination-dependence of inducible stable DNA replication. A mechanism by which RecABCD-dependent recombination between very short inverted repeats may help E. coli to invert an operon, transcribed in the direction opposite to that of DNA replication, is discussed.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA
| |
Collapse
|
14
|
Free A, Dorman CJ. Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function. Mol Microbiol 1994; 14:151-61. [PMID: 7830553 DOI: 10.1111/j.1365-2958.1994.tb01275.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated the in vivo DNA supercoiling sensitivity of the Escherichia coli tRNA(1tyr) gene (tyrT) promoter in its normal chromosomal location. Here, the native tyrT promoter is found to be exquisitely sensitive to mutations and to drugs which alter the level of DNA supercoiling. We show that the response of the tyrT promoter to supercoiling is qualitatively similar to that of a known supercoiling-sensitive tRNA gene promoter, hisR. Specifically, treatments which increase in vivo DNA supercoiling levels enhance transcription of these tRNA genes. Particularly striking is the strong enhancement of expression from both promoters by a transposon insertion mutation in the topA gene encoding DNA toposisomerase I. This phenotypic effect can be complemented by providing active topoisomerase I in trans from a recombinant plasmid. Interestingly, it can also be complemented by overexpression of the genes encoding the subunits of DNA topoisomerase IV. We believe that this is the first demonstration that DNA topoisomerase IV can influence gene expression and it suggests that DNA topoisomerase I is partially redundant, at least in E. coli.
Collapse
Affiliation(s)
- A Free
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Republic of Ireland
| | | |
Collapse
|
15
|
Tse-Dinh YC. Biochemistry of bacterial type I DNA topoisomerases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:21-37. [PMID: 7826860 DOI: 10.1016/s1054-3589(08)60538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Y C Tse-Dinh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595
| |
Collapse
|
16
|
Drlica K, Kreiswirth B. 4-quinolones and the physiology of DNA gyrase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:263-83. [PMID: 7826862 DOI: 10.1016/s1054-3589(08)60549-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- K Drlica
- Public Health Research Institute, New York University School of Medicine, New York 10016
| | | |
Collapse
|
17
|
Karem K, Foster JW. The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol Microbiol 1993; 10:75-86. [PMID: 7968521 DOI: 10.1111/j.1365-2958.1993.tb00905.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Salmonella typhimurium is exposed to major shifts in H+ concentration both in its natural and pathogenic environments. The organism undergoes extensive changes in gene expression in response to these pH fluctuations. A current question of regulatory biology is how a change in external pH selectively modulates transcription. We have analysed the expression of one such pH-regulated locus, aniG, and found it is controlled by several additional environmental conditions including osmolarity and oxygen. For factors such as osmolarity and anaerobiosis, an environmentally triggered change in DNA supercoiling has been suggested as a means for controlling gene expression. Thus, environmentally induced changes in DNA topology were explored as a possible common means for establishing the multiple controls on aniG. The involvement of DNA supercoiling in the genetic response of S. typhimurium to external pH has not previously been defined. This report establishes that alkaline environments lower the linking number of reporter plasmids when compared to acidic environments. A consistent pattern was then established whereby conditions or mutations leading to either increased or decreased negative supercoiling were associated with altered expression of aniG. A similar relationship was observed for another environmentally regulated locus, proU. The DNA topology effects on aniG expression were dependent on the presence of EarA, the negative regulator of aniG. These data can be explained by a model in which repressor-operator interactions are very sensitive to changes in operator conformation. These environmentally induced topological influences on operator DNA structure contribute to the magnitude of pH control exerted upon aniG.
Collapse
Affiliation(s)
- K Karem
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688
| | | |
Collapse
|
18
|
Condee CW, Summers AO. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol 1992; 174:8094-101. [PMID: 1334070 PMCID: PMC207548 DOI: 10.1128/jb.174.24.8094-8101.1992] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We constructed mercury resistance operon-luciferase (mer-lux) transcriptional fusion plasmids to evaluate in vivo gene expression rates of the mer structural gene promoter (PTPCAD) of transposon Tn21. In vivo gene expression kinetics corresponded well with those previously determined in vitro, yielding an apparent K0.5 for Hg(II)-stimulated induction by MerR of 9.3 x 10(-8) M with the same ultrasensitive threshold effect seen in vitro. We also used the mer-lux fusions to elucidate subtle variations in promoter activity brought about by altered superhelicity. Binding of inducer [Hg(II)] to the transcriptional activator MerR is known to result in DNA distortion and transcriptional activation of the mer operon; it has recently been demonstrated that this distortion is a consequence of MerR-Hg(II)-induced local DNA unwinding to facilitate RNA polymerase open complex formation at PTPCAD. Since negative supercoiling results in DNA unwinding similar to this MerR activation, we hypothesized that a global increase in plasmid supercoiling would facilitate MerR-mediated activation and compromise MerR-mediated repression, while removal of plasmid supercoils would compromise MerR's ability to induce transcription and facilitate its ability to repress transcription. Indeed, we found that increased negative supercoiling results in increased gene expression rates and decreased supercoiling results in reduced gene expression rates for the induced, repressed, and derepressed conditions of PTPCAD. Thus, luciferase transcriptional fusions can detect subtle variations in initial rates of gene expression in a real-time, nondestructive assay.
Collapse
Affiliation(s)
- C W Condee
- Department of Microbiology, University of Georgia, Athens 30605
| | | |
Collapse
|
19
|
Abstract
Two DNA topoisomerases control the level of negative supercoiling in bacterial cells. DNA gyrase introduces supercoils, and DNA topoisomerase I prevents supercoiling from reaching unacceptably high levels. Perturbations of supercoiling are corrected by the substrate preferences of these topoisomerases with respect to DNA topology and by changes in expression of the genes encoding the enzymes. However, supercoiling changes when the growth environment is altered in ways that also affect cellular energetics. The ratio of [ATP] to [ADP], to which gyrase is sensitive, may be involved in the response of supercoiling to growth conditions. Inside cells, supercoiling is partitioned into two components, superhelical tension and restrained supercoils. Shifts in superhelical tension elicited by nicking or by salt shock do not rapidly change the level of restrained supercoiling. However, a steady-state change in supercoiling caused by mutation of topA does alter both tension and restrained supercoils. This communication between the two compartments may play a role in the control of supercoiling.
Collapse
Affiliation(s)
- K Drlica
- Public Health Research Institute, New York, New York 10016
| |
Collapse
|
20
|
|
21
|
Hammond GG, Cassidy PJ, Overbye KM. Novobiocin-dependent topA deletion mutants of Escherichia coli. J Bacteriol 1991; 173:5564-7. [PMID: 1653212 PMCID: PMC208273 DOI: 10.1128/jb.173.17.5564-5567.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous reports of the transduction of topA deletions in Escherichia coli suggested that delta top A transductants grow normally only if they acquire spontaneous mutations that compensate for the topoisomerase I defect. We show that P1-mediated transduction of delta topA in the presence of sublethal concentrations of novobiocin, an inhibitor of the DNA gyrase B subunit, yields uncompensated Top- isolates which are dependent on novobiocin for optimum growth. In the absence of novobiocin these delta topA strains grow slowly, indicating that topA deletions are deleterious but not lethal to the cell. We propose that inhibitors of DNA gyrase B, presumably by lowering intracellular levels of DNA supercoiling, can phenotypically suppress a topoisomerase I defect in E. coli.
Collapse
Affiliation(s)
- G G Hammond
- Merck Sharp and Dohme Research Laboratories, Merck and Co., Inc., Rahway, New Jersey 07065-0900
| | | | | |
Collapse
|
22
|
Watanabe H, Inaba H, Hastings JW. Effects of aldehyde and internal ions on bioluminescence expression of Photobacterium phosphoreum. Arch Microbiol 1991. [DOI: 10.1007/bf00418179] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Hsieh LS, Burger RM, Drlica K. Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth. J Mol Biol 1991; 219:443-50. [PMID: 1646892 DOI: 10.1016/0022-2836(91)90185-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Shifting Escherichia coli from aerobic to anaerobic growth caused changes in the ratio of [ATP]/[ADP] and in negative supercoiling of chromosomal and plasmid DNA. Shortly after lowering oxygen tension, both [ATP]/[ADP] and supercoiling transiently decreased. Under conditions of exponential anaerobic growth, both were higher than under aerobic conditions. These correlations may reflect an effect of [ATP]/[ADP] on DNA gyrase, since in vitro [ATP]/[ADP] influences the level of plasmid supercoiling attained when gyrase is either introducing or removing supercoils. When the supercoiling activity of gyrase was perturbed by a mutation in gyrB, a shift to anaerobic conditions resulted in plasmid supercoil relaxation similar to that seen with wild-type. However, the low level of supercoiling in the mutant persisted during a time when supercoiling in wild-type recovered and then exceeded aerobic levels. Thus, changes in oxygen tension can alter DNA supercoiling through an effect on gyrase, and correlations exist between changes in supercoiling and changes in the intracellular ratio of [ATP]/[ADP].
Collapse
Affiliation(s)
- L S Hsieh
- Public Health Research Institute, New York, NY 10016
| | | | | |
Collapse
|
24
|
Expression of bacterial luminescence is stimulated by nalidixic acid in a nalidixic acid resistant mutant. Arch Microbiol 1990. [DOI: 10.1007/bf00248961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Zimmer C, Störl K, Störl J. Microbial DNA topoisomerases and their inhibition by antibiotics. J Basic Microbiol 1990; 30:209-24. [PMID: 2164580 DOI: 10.1002/jobm.3620300312] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Supercoiling of bacterial DNA is regulated by topoisomerases and influences most of the metabolic processes involving DNA. The present review is devoted to a brief outline of the supercoiled state of DNA in bacteria and to all microbial topoisomerases hitherto described. Recent studies on topoisomerases of archaebacteria led to the discovery of a so-called reverse gyrase, the properties of which are also discussed. Special emphasis is given to a selective treatment of the effects of those antibiotics which act as gyrase inhibitors.
Collapse
Affiliation(s)
- C Zimmer
- Akademie der Wissenschaften der DDR
| | | | | |
Collapse
|
26
|
Abstract
Treatment of bacterial cells with inhibitors of gyrase at high concentration leads to relaxation of DNA supercoils, presumably through interference with the supercoiling activity of gyrase. Under certain conditions, however, the inhibitors can also increase supercoiling. In the case of coumermycin A1, this increase occurs at low drug concentrations. Oxolinic acid increases supercoiling in a partially resistant mutant. We found that increases in chromosomal DNA supercoiling, which were blocked by treatment with chloramphenicol, were accompanied by an increased expression rate of gyrA. This result is consistent with gyrase being responsible for the increase in supercoiling. In wild-type cells, increases in gyrA expression were transient, suggesting that when supercoiling reaches sufficiently high levels, gyrase expression declines. Oxolinic acid studies carried out with a delta topA strain showed that drug treatment also increased plasmid supercoiling. The levels of supercoiling and topoisomer heterogeneity were much higher when the plasmid contained one of several promoters fused to galK. Since oxolinic acid causes an increase in gyrA expression, it appears that gyrase levels may be important in transcription-mediated changes in supercoiling even when topoisomerase I is absent.
Collapse
Affiliation(s)
- R J Franco
- Public Health Research Institute, New York, New York
| | | |
Collapse
|
27
|
Novak PD, Maier RJ. Hydrogenase synthesis in Bradyrhizobium japonicum Hupc mutants is altered in sensitivity to DNA gyrase inhibitors. Appl Environ Microbiol 1989; 55:1157-64. [PMID: 2547335 PMCID: PMC184270 DOI: 10.1128/aem.55.5.1157-1164.1989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the Hupc mutants of Bradyrhizobium japonicum SR, regulation of expression of hydrogenase is altered; the mutants synthesize hydrogenase constitutively in the presence of atmospheric levels of oxygen. The DNA gyrase inhibitors nalidixic acid, novobiocin, and coumermycin were used to inhibit growth of wild-type and mutant cells. For each inhibitor tested, growth of mutant and wild-type strains was equally sensitive. However, in contrast to the wild type, the Hupc mutants synthesized hydrogenase in the presence of high levels of any inhibitor. Cells were incubated with the drugs and simultaneously labeled with 14C-labeled amino acids, and hydrogenase was immunoprecipitated with antibody to the large subunit of the enzyme. Fluorograms of antibody blots then were scanned to determine the relative amount of hydrogenase (large subunit) synthesized in the presence or absence of the gyrase inhibitors. The amount of hydrogenase synthesized by the Hupc mutants in the presence of 300 micrograms of nalidixic acid per ml was near the level of enzyme synthesized in the absence of the inhibitor. No hydrogenase was detected in antibody blots of wild-type cultures which were derepressed for hydrogenase in the presence of 100 micrograms of coumermycin or novobiocin per ml. In contrast, hydrogenase was synthesized by the Hupc mutants in the presence of 100 micrograms of either drug per ml. The amount synthesized ranged from 5 to 32% and 20 to 49%, respectively, of that in the absence of those inhibitors, but nevertheless, hydrogenase synthesis was detected in all of the mutants examined.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P D Novak
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
28
|
Affiliation(s)
- K Drlica
- Public Health Research Institute, New York, NY 10016
| | | |
Collapse
|
29
|
Drlica K, Franco RJ, Steck TR. Rifampin and rpoB mutations can alter DNA supercoiling in Escherichia coli. J Bacteriol 1988; 170:4983-5. [PMID: 2844734 PMCID: PMC211554 DOI: 10.1128/jb.170.10.4983-4985.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two cases are described which indicate that RNA polymerase could alter DNA supercoiling. One occurred in a topA mutant in which abnormally high levels of plasmid supercoiling were lowered by rifampin, an inhibitor of the beta subunit of RNA polymerase. The second case involves suppression of a temperature-sensitive gyrB mutation by a rifampin-resistant allele of rpoB, the gene encoding the beta subunit of RNA polymerase. Measurements of chromosomal DNA supercoiling show that the rpoB mutation reduced DNA relaxation.
Collapse
Affiliation(s)
- K Drlica
- Department of Biology, University of Rochester, New York 14627
| | | | | |
Collapse
|
30
|
Tse-Dinh YC, Beran RK. Multiple promoters for transcription of the Escherichia coli DNA topoisomerase I gene and their regulation by DNA supercoiling. J Mol Biol 1988; 202:735-42. [PMID: 2845101 DOI: 10.1016/0022-2836(88)90554-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There are four transcriptional promoters present in the 5' control region of the Escherichia coli DNA topoisomerase I (topA) gene. These were identified with Bal31 nuclease-generated deletions and mapping of the 5' ends of the mRNAs with avian reverse transcriptase. Recombinant plasmids with all or some of these promoters fused to the galactokinase (galK) gene-coding region have been constructed and used to study transcription from the promoters both in vitro and in vivo. The promoter (P1) closest to the starting ATG codon has a near consensus -35 sequence (GTTGATA) but unusual -10 (CATATCG) sequence. The other three promoters (P2, P3 and P4) are clustered together 60 base-pairs further upstream. Negative DNA supercoiling is required for efficient transcription from P1, P1 + P2 + P3 + P4, P2 + P3 + P4, P3 + P4 and P4 alone. The combination of all four promoters demonstrates greater supercoiling dependence than does any of the other subsets tested.
Collapse
Affiliation(s)
- Y C Tse-Dinh
- E. I. du Pont de Nemours and Co. Central Research and Development Department, Wilmington, DE 19898
| | | |
Collapse
|
31
|
Albright LM, Kassavetis GA, Geiduschek EP. Bacteriophage T4 late transcription from plasmid templates is enhanced by negative supercoiling. J Bacteriol 1988; 170:1279-89. [PMID: 2830234 PMCID: PMC210904 DOI: 10.1128/jb.170.3.1279-1289.1988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Concurrent viral replication is normally required to activate bacteriophage T4 late promoters; replication is thought to provide a template structure which is competent for late transcription. Transcription from plasmid-borne T4 late promoters, however, is independent of replication in vivo and in vitro. In this work, we have shown that, when the late gene 23 promoter is located on a plasmid, its utilization in vivo depends upon the ability of host DNA gyrase to maintain some degree of negative superhelicity. This suggests that an alternative pathway exists for activation of late promoters: DNA which is under sufficient negative torsional stress is already competent for late transcription. We also describe a method for isolating ternary complexes of plasmid DNA, RNA polymerase, and nascent RNA which have initiated transcription in vivo. The topoisomer distribution of such ternary complexes prepared from T4-infected cells showed that, late in infection, transcriptional activity resides primarily in the subset of the plasmid population with the most negatively supercoiled topoisomers. However, the overall transcriptional pattern in these ternary complexes indicated that both vector and T4 sequences are actively transcribed. Much of this transcriptional activity could be independent of gp55, the T4-specific RNA polymerase-binding protein that confers late promoter recognition.
Collapse
Affiliation(s)
- L M Albright
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
32
|
Page WJ, Patrick J. The DNA gyrase inhibitors, nalidixic acid and oxolinic acid, prevent iron-mediated repression of catechol siderophore synthesis in Azotobacter vinelandii. BIOLOGY OF METALS 1988; 1:57-61. [PMID: 2856355 DOI: 10.1007/bf01128018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Low concentrations of nalidixic acid and oxolinic acid that were just inhibitory to Azotobacter vinelandii growth promoted the production of the catechol siderophores azotochelin and aminochelin, in the presence of normally repressive concentrations of Fe3+. There was a limited effect on the pyoverdin siderophore, azotobactin, where low concentrations of Fe3+ were rendered less repressive, but the repression by higher concentrations of Fe3+ was normal. These drugs did not induce high-molecular-mass iron-repressible outer-membrane proteins and similar effects on the regulation of catechol siderophore synthesis were not produced by novobiocin, coumermycin, or ethidium bromide. The timing of nalidixic acid and Fe3+ addition to iron-limited cells was critical. Nalidixic acid had to be added before iron-repression of catechol siderophore synthesis and before the onset of iron-sufficient growth. Continued production of the catechol siderophores, however, was not due to interference with normal iron uptake. These data indicated that nalidixic acid prevented normal iron-repression of catechol siderophore synthesis but could not reverse iron repression once it had occurred. The possible roles of DNA gyrase activity in the regulation of catechol siderophore synthesis is discussed.
Collapse
Affiliation(s)
- W J Page
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
33
|
Jovanovich SB, Lebowitz J. Estimation of the effect of coumermycin A1 on Salmonella typhimurium promoters by using random operon fusions. J Bacteriol 1987; 169:4431-5. [PMID: 2820924 PMCID: PMC213804 DOI: 10.1128/jb.169.10.4431-4435.1987] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have estimated the extent to which relaxation of supercoiling by the DNA gyrase inhibitor coumermycin A1 affects gene expression in vivo in Salmonella typhimurium. We isolated a set of Mu d1-8 Lac+ operon fusions to random promoters and measured the effect of coumermycin A1 on the expression of 67 fusions. The differential rate of synthesis was increased for 70% of the fusions and decreased for 16%, and 13% of the fusions had less than a 25% change in expression. The coumermycin A1 response was found to correlate well (P = 0.067) with the basal level of expression such that coumermycin A1 tended to stimulate fusions with low expression and inhibit those with high expression. Since the vast majority of the fusions were sensitive to coumermycin A1 addition and, therefore, to the level of supercoiling, these results indicate that if the level of supercoiling were to vary under physiological conditions, then major readjustments in the cellular economy would occur.
Collapse
Affiliation(s)
- S B Jovanovich
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
34
|
|
35
|
Pruss GJ, Franco RJ, Chevalier SG, Manes SH, Drlica K. Effects of DNA gyrase inhibitors in Escherichia coli topoisomerase I mutants. J Bacteriol 1986; 168:276-82. [PMID: 3019999 PMCID: PMC213448 DOI: 10.1128/jb.168.1.276-282.1986] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Relaxation of titratable supercoils in bacterial nucleoids was measured following treatment of topA mutants with coumermycin or oxolinic acid, inhibitors of DNA gyrase. Relaxation occurred after treatment of the mutants with either inhibitor. We detected no significant difference in relaxation between topA- and topA+ strains treated with coumermycin. This finding, together with previous observations, supports the idea that relaxation caused by coumermycin probably arises from the relaxing activity of gyrase itself. The source of DNA relaxation caused by oxolinic acid was not identified. Nucleoid supercoiling can be increased by adding oxolinic acid to a strain that carries three topoisomerase mutations: delta topA, gyrB225, and gyrA (Nalr) (S. H. Manes, G. J. Pruss, and K. Drlica, J. Bacteriol. 155:420-423, 1983). We found that this increase in supercoiling requires partial sensitivity to the drug and at the delta topA and gyrA mutations. Full resistance to oxolinic acid in the presence of the delta topA, gyrB225, and gyrA mutations was conferred by an additional mutation that maps at or near gyrB.
Collapse
|
36
|
Helmstetter CE, Krajewski CA, Leonard AC, Weinberger M. Discontinuity in DNA replication during expression of accumulated initiation potential in dnaA mutants of Escherichia coli. J Bacteriol 1986; 165:631-7. [PMID: 3511039 PMCID: PMC214466 DOI: 10.1128/jb.165.2.631-637.1986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Potential for initiation of chromosome replication present in temperature-sensitive, initiation-defective dnaA5 mutants of Escherichia coli B/r incubated at nonpermissive temperature was expressed by shifting to a more permissive temperature (25 degrees C). Upon expression of initiation potential, the rate of [3H]thymidine incorporation varied in a bimodal fashion, i.e., there was an initial burst of incorporation, which lasted 10 to 20 min, then a sudden decrease in incorporation, and finally a second rapid increase in incorporation. Analyses of this incorporation pattern indicated that a round of replication initiated upon expression of initiation potential, but DNA polymerization stopped after replication of 5 to 10% of the chromosome. This round of replication appeared to resume about 30 min later coincident with initiation of a second round of replication. The second initiation was unusually sensitive to low concentrations of novobiocin (ca. 1 microgram/ml) when this inhibitor was added in the presence of chloramphenicol. In the absence of chloramphenicol, novobiocin at this concentration had no detectable effect on DNA replication. It is suggested that cis-acting inhibition, attributable to an attempted second initiation immediately after the first, caused the first round to stall until both it and the second round could resume simultaneously. This DNA replication inhibition, probably caused by overinitiation, could be a consequence of restraints on replication in the vicinity of oriC, possibly topological in nature, which limit the minimum interinitiation interval in E. coli.
Collapse
|
37
|
|
38
|
Thompson RJ, Mosig G. An ATP-dependent supercoiling topoisomerase of Chlamydomonas reinhardtii affects accumulation of specific chloroplast transcripts. Nucleic Acids Res 1985; 13:873-91. [PMID: 2987813 PMCID: PMC341040 DOI: 10.1093/nar/13.3.873] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have found that Chlamydomonas reinhardtii cells contain an ATP-dependent topoisomerase activity that supercoils circular DNA in vitro. Subsequent addition of a type I topoisomerase eliminates the supercoils. Like bacterial gyrase, this activity is inhibited by low concentrations of novobiocin (less than 0.1 microM) and by nalidixic acid (less than 0.1 microM). We have examined the effects of these topoisomerase inhibitors on accumulation of various chloroplast transcripts in vivo. Novobiocin differentially affected such transcripts; some transcripts became more abundant while many others were reduced in the presence of this drug. Nalidixic acid on the other hand caused many transcripts to become more abundant albeit to varying degrees. Inhibitors of this algal topoisomerase specifically stimulate a family of related transcripts which we have previously shown to be under light-dark control. We discuss how the inhibitors of this topoisomerase might exert their in vivo effects.
Collapse
|
39
|
Lockshon D, Morris DR. Sites of reaction of Escherichia coli DNA gyrase on pBR322 in vivo as revealed by oxolinic acid-induced plasmid linearization. J Mol Biol 1985; 181:63-74. [PMID: 2984430 DOI: 10.1016/0022-2836(85)90324-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
pBR322 DNA, linearized by lysis of an oxolinic acid-treated culture of Escherichia coli strain DK6recA- (pBR322) with sodium dodecyl sulfate, was purified, treated with DNA polymerase in the presence of the four deoxynucleoside triphosphates, and ligated to DNA linkers containing the XhoI recognition sequence. Most of the drug-resistant colonies resulting from transformation of E. coli with this material bore plasmids that appeared by restriction enzyme analysis to differ from pBR322 only by the introduction of an XhoI site. The XhoI sites in plasmids from 93 transformants were distributed unevenly around the pBR322 map. Maxam-Gilbert DNA sequence analysis of 36 of these plasmids, labeled at the 5' termini of the XhoI sites, revealed that 29 of them contained, in addition to the XhoI linker, a duplication of four base-pairs of the pBR322 sequence surrounding the linker. Therefore, oxolinic acid-induced linearization must have resulted in 5'-terminal extensions of four bases, the configuration known to result from oxolinic acid-induced DNA cleavage by DNA gyrase in vitro. The sequence data thus allowed the determination of the precise point at which linearization occurred, apparently by the abortion of a gyrase-DNA covalent intermediate that existed in vivo. When the 19 different sites of the 29 plasmids were compared, the following set of rules could be derived: (formula; see text) where N is any nucleotide, R is a purine, and Y is a pyrimidine. Cleavage occurred at the line between the eighth and ninth positions from the left. The parenthetical G and T were preferred secondarily to T and G, respectively, whereas T and G in the 13th position from the left were equally preferred. Several of these rules are similar to those proposed previously based on several in vitro gyrase cleavage sites. Some of our rules show dyad symmetry around the axis midway between the cleavage points in the two strands, while others are distinctly asymmetric.
Collapse
|
40
|
|
41
|
Goldstein E, Drlica K. Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proc Natl Acad Sci U S A 1984; 81:4046-50. [PMID: 6377307 PMCID: PMC345365 DOI: 10.1073/pnas.81.13.4046] [Citation(s) in RCA: 159] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The level of DNA supercoiling can be altered either by breaking-rejoining reactions that change the DNA linking number or by environmental changes that alter the helical pitch of DNA. In vitro, temperature changes alter helical pitch and, thus, supercoiling. We find that plasmids isolated from bacteria grown at different temperatures exhibit differences in DNA linking numbers. The differences in plasmid linking numbers offset the effect temperature is expected to have on supercoiling. These results are consistent with the hypothesis that fine control of DNA topology in bacterial cells is brought about by changes in linking number to maintain a constant value for supercoiling.
Collapse
|
42
|
Abstract
Nucleoids isolated from Escherichia coli strains carrying temperature-sensitive gyrA or gyrB mutations were examined by sedimentation in ethidium bromide-containing sucrose density gradients. A shift to restrictive temperature resulted in nucleoid DNA relaxation in all of the mutant strains. Three of these mutants exhibited reversible nucleoid relaxation: when cultures incubated at restrictive temperature were cooled to 0 degree C over a 4- to 5-min period, supercoiling returned to levels observed with cells grown at permissive temperature. Incubation of these three mutants at restrictive temperature also caused nucleoid sedimentation rates to increase by about 50%.
Collapse
|
43
|
Abstract
Nucleoids isolated from a temperature-sensitive gyrB mutant of E. coli, incubated at restrictive temperatures, exhibit increased sedimentation rates and an abnormal doublet or dumbbell-shaped morphology. Shifting cells from restrictive to permissive temperature prior to nucleoid isolation leads to decreases in the percentage of doublet nucleoids and in nucleoid sedimentation rates. When nucleoids isolated from mutant cells exposed to restrictive temperature are incubated with purified gyrase, the percentage of doublet nucleoids decreases as the total number of nucleoids increases. These results, together with the demonstrated ability of gyrase to decatenate small circular DNA molecules in vitro, suggest that gyrase participates in bacterial chromosome segregation through its decatenating activity.
Collapse
|