1
|
Pagel FT, Murgola EJ. A base substitution in the amino acid acceptor stem of tRNA(Lys) causes both misacylation and altered decoding. Gene Expr 2018; 6:101-12. [PMID: 8979088 PMCID: PMC6148300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In 1984, our laboratory reported the characterization of the first misacylated tRNA missense suppressor, a mutant Escherichia coli lysine tRNA with a C70 to U base change in the amino acid acceptor stem. We suggested then that the suppressor tRNA, though still acylated to a large extent with lysine, is partially misacylated with alanine. The results reported in this article demonstrate that is the case both in vitro and in vivo. For the in vitro studies, the mutant tRNA species was isolated from the appropriate RPC-5 column fractions and shown to be acylatable with both lysine and alanine. For the in vivo demonstration, use was made of a temperature-sensitive alaS mutation, which results in decreasing acylation with Ala as the temperature is increased, resulting ultimately in lethality at 42 degrees C. The alaSts mutation was also used to demonstrate that the ability of the same missense suppressor, lysT(U70), to suppress a trpA frameshift mutation is not affected by the Ala-acylation deficiency. We conclude that the misacylation and altered decoding are two independent effects of the C70 to U mutation in tRNA(Lys). The influence of an alteration in the acceptor stem, which is in contact with the large (50S) ribosomal subunit, on decoding, which involves contact between the anticodon region of tRNA and the small (30S) ribosomal subunit, may occur intramolecularly, through the tRNA molecule. Alternatively, the U70 effect may be accomplished intermolecularly; for example, it may alter the interaction of tRNA with ribosomal RNA in the 50S subunit, which may then influence further interactions between the two subunits and between the 30S subunit and the anticodon region of the tRNA. Preliminary evidence suggesting some form of the latter explanation is presented. The influence of a single nucleotide on both tRNA identity and decoding may be related to the coevolution of tRNAs, aminoacyl-tRNA synthetases, and ribosomes.
Collapse
Affiliation(s)
- F T Pagel
- Department of Molecular Genetics, University of Texas M.D., Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
2
|
Hoffman KS, Berg MD, Shilton BH, Brandl CJ, O'Donoghue P. Genetic selection for mistranslation rescues a defective co-chaperone in yeast. Nucleic Acids Res 2017; 45:3407-3421. [PMID: 27899648 PMCID: PMC5389508 DOI: 10.1093/nar/gkw1021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
Despite the general requirement for translation fidelity, mistranslation can be an adaptive response. We selected spontaneous second site mutations that suppress the stress sensitivity caused by a Saccharomyces cerevisiae tti2 allele with a Leu to Pro mutation at residue 187, identifying a single nucleotide mutation at the same position (C70U) in four tRNAProUGG genes. Linkage analysis and suppression by SUF9G3:U70 expressed from a centromeric plasmid confirmed the causative nature of the suppressor mutation. Since the mutation incorporates the G3:U70 identity element for alanyl-tRNA synthetase into tRNAPro, we hypothesized that suppression results from mistranslation of Pro187 in Tti2L187P as Ala. A strain expressing Tti2L187A was not stress sensitive. In vitro, tRNAProUGG (C70U) was mis-aminoacylated with alanine by alanyl–tRNA synthetase, but was not a substrate for prolyl–tRNA synthetase. Mass spectrometry from protein expressed in vivo and a novel GFP reporter for mistranslation confirmed substitution of alanine for proline at a rate of ∼6%. Mistranslating cells expressing SUF9G3:U70 induce a partial heat shock response but grow nearly identically to wild-type. Introducing the same G3:U70 mutation in SUF2 (tRNAProAGG) suppressed a second tti2 allele (tti2L50P). We have thus identified a strategy that allows mistranslation to suppress deleterious missense Pro mutations in Tti2.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Brian H Shilton
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
The effects of codon context on in vivo translation speed. PLoS Genet 2014; 10:e1004392. [PMID: 24901308 PMCID: PMC4046918 DOI: 10.1371/journal.pgen.1004392] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
We developed a bacterial genetic system based on translation of the his operon leader peptide gene to determine the relative speed at which the ribosome reads single or multiple codons in vivo. Low frequency effects of so-called "silent" codon changes and codon neighbor (context) effects could be measured using this assay. An advantage of this system is that translation speed is unaffected by the primary sequence of the His leader peptide. We show that the apparent speed at which ribosomes translate synonymous codons can vary substantially even for synonymous codons read by the same tRNA species. Assaying translation through codon pairs for the 5'- and 3'- side positioning of the 64 codons relative to a specific codon revealed that the codon-pair orientation significantly affected in vivo translation speed. Codon pairs with rare arginine codons and successive proline codons were among the slowest codon pairs translated in vivo. This system allowed us to determine the effects of different factors on in vivo translation speed including Shine-Dalgarno sequence, rate of dipeptide bond formation, codon context, and charged tRNA levels.
Collapse
|
4
|
Pages D, Hijazi K, Murgola EJ, Finelli J, Buckingham RH. Suppression of a double missense mutation by a mutant tRNA(Phe) in Escherichia coli. Nucleic Acids Res 1991; 19:867-9. [PMID: 2017368 PMCID: PMC333723 DOI: 10.1093/nar/19.4.867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report here the isolation of a mutant tRNAPhe that suppresses a double missense auxotrophic mutation in trpA of Escherichia coli, trpA218. The doubly mutant protein product differs from wild-type TrpA by the replacements of Phe22 by Leu and Gly211 by Ser. A partial revertant TrpA phenotype can be obtained from trpA218 by changing either Leu22 back to Phe or Ser211 back to Gly. Translational suppressors were previously obtained that act at codon 211, replacing the Ser211 in the TrpA218 protein, presumably with Gly. In the present study, we selected for trpA218 suppressors caused by mutation of a cloned tRNAPhe gene, pheV. DNA sequence analysis of the suppressor isolated reveals a singular structural alteration, changing the anticodon from 5'-GAA-3' to 5'-GAG-3'. Sequencing of trpA218 confirmed the likely identity of Leu22 as CUC. The new missense suppressor, designated pheV(SuCUC), is lethal to the cell when highly expressed, as from a high copy number plasmid. This may be due to efficient replacement of Leu by Phe at CUC (and, probably, CUU) codons throughout the genome. We anticipate that pheV(SuCUC) will prove, like other missense suppressors, to be extremely useful in studies on the specificity and accuracy of decoding.
Collapse
Affiliation(s)
- D Pages
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | |
Collapse
|
5
|
Abstract
Specificity and accuracy in the decoding of genetic information during mRNA-programmed, ribosome-dependent polypeptide synthesis (translation) involves more than just hydrogen bonding between two anti-parallel trinucleotides, the mRNA codon and the tRNA anticodon. Other macromolecules are also involved, and translational suppression has been and continues to be an appropriate and effective way to identify them, as well as other parts of mRNA and tRNA, and to elucidate the structural determinants of their functions and interactions. Experimental results are presented that bear upon codon context effects, the role of tRNA structural features in aminoacyl-tRNA selection and in codon selection (reading-frame maintenance), determinants of tRNA identity, elongation factor suppressor mutants, and termination codon recognition by the ribosomal RNA of the small subunit. The examples presented illustrate the complexity of the decoding process and the interconnectedness of translational macromolecules in achieving specificity and accuracy in polypeptide synthesis.
Collapse
Affiliation(s)
- E J Murgola
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030
| |
Collapse
|
6
|
|
7
|
Mutants of translational components that alter reading frame by two steps forward or one step back. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81328-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Kirsebom LA, Isaksson LA. Functional interactions in vivo between suppressor tRNA and mutationally altered ribosomal protein S4. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:240-7. [PMID: 3543619 DOI: 10.1007/bf00430434] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ribosomal mutants (rpsD) which are associated with a generally increased translational ambiguity were investigated for their effects in vivo on individual tRNA species using suppressor tRNAs as models. It was found that nonsense suppression is either increased, unaffected or decreased depending on the codon context and the rpsD allele involved as well as the nature of the suppressor tRNA. Missense suppression of AGA and AGG by glyT(SuAGA/G) tRNA as well as UGG by glyT(SuUGG-8) tRNA is unaffected whereas suppression of UGG by glyT(SuUGA/G) or glyV(SuUGA/G) tRNA is decreased in the presence of an rpsD mutation. The effects on suppressor tRNA are thus not correlated with the ribosomal ambiguity (Ram) phenotype of the rpsD mutants used in this study. It is suggested that the mutationally altered ribosomes are changed in functional interactions with the suppressor tRNA itself rather than with the competing translational release factor(s) or cognate aminoacyl tRNA. The structure of suppressor tRNA, particularly the anticodon loop, and the suppressed codon as well as the codon context determine the allele specific functional interactions with these ribosomal mutations.
Collapse
|
9
|
Uemura H, Thorbjarnardóttir S, Gamulin V, Yano J, Andrésson OS, Söll D, Eggertsson G. supN ochre suppressor gene in Escherichia coli codes for tRNALys. J Bacteriol 1985; 163:1288-9. [PMID: 3897192 PMCID: PMC219277 DOI: 10.1128/jb.163.3.1288-1289.1985] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We describe the cloning and nucleotide sequence of a new tRNALys gene, lysV, in Escherichia coli. An ochre suppressor allele of this gene, supN, codes for a tRNALys with anticodon UUA, presumably derived by a single base change from a wild-type UUU anticodon. The sequence of the supN tRNALys is identical to the sequence of ochre suppressor tRNAs encoded by mutant alleles at the lysT locus. This locus, which contains the two previously known tRNALys genes of E. coli, is located far from the lysV locus on the chromosome.
Collapse
|
10
|
Mims BH, Prather NE, Murgola EJ. Isolation and nucleotide sequence analysis of tRNAAlaGGC from Escherichia coli K-12. J Bacteriol 1985; 162:837-9. [PMID: 3886638 PMCID: PMC218931 DOI: 10.1128/jb.162.2.837-839.1985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
An alanine tRNA with the anticodon 5'-GGC-3' has been identified in Escherichia coli K-12. It is the first sequenced alanine tRNA with G in the 5' position of the anticodon. tRNAAlaGGC has A in the "semi-invariant" position 32. At the "invariant" position 8 we observed both U and another, unknown, nucleoside.
Collapse
|
11
|
Yoshimura M, Kimura M, Ohno M, Inokuchi H, Ozeki H. Identification of transfer RNA suppressors in Escherichia coli. III. Ochre suppressors of lysine tRNA. J Mol Biol 1984; 177:609-25. [PMID: 6207301 DOI: 10.1016/0022-2836(84)90040-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transducing phages of lambda carrying suppressors, lysT (Su+ beta), supG and and supL, were isolated in vivo. Upon infection with each of these phages, the production of tRNALys and tRNAVal1 was markedly enhanced. Fingerprint analysis of these tRNAs revealed that they consisted of normal tRNALys, mutant tRNALys and tRNAVal1 in equimolar ratios. The mutant tRNALys carried a single-base alteration at the anticodon, from 5'-UUU-3' to 5'-UUA-3', which makes it an ochre suppressor. DNA sequence analysis of the entire transducing fragment (730 base-pairs) of lambda pSu+ beta revealed that three tRNA genes are tightly clustered within a transcription unit in the following order; i.e. promoter-(48 base-pairs)-wild-type tRNALys-(132 base-pairs)-tRNAVal1-(2 base-pairs)-Su+ beta tRNALys-. In wild-type bacteria there are two identical tRNALys genes in one operon. Although we have shown that in Su+ beta it is the distal tRNALys that has been mutated to the ochre suppressor by a single base change at the anticodon (U36 to A36), we have not determined which of the two genes bears the supG or the supL mutation. The sequences following both tRNALys genes are highly homologous: both are about 100 base-pairs long and both terminate with an 18 base-pair sequence homologous to the last 18 bases of each tRNA. The sequences of tRNALys and tRNAVal1 are also very similar. Thus, including the 3'-portions of these tRNA genes, the 18 base-pair sequence is more or less periodically repeated five times in the DNA sequence.
Collapse
|
12
|
Abstract
After our first observation of codon context effects in missense suppression ( Murgola & Pagel , 1983), we measured the suppression of missense mutations at two positions in trpA in Escherichia coli. The suppressible codons in the trpA messenger RNA were the lysine codons, AAA and AAG, and the glutamic acid codons, GAA and GAG. The mRNA sites of the codons correspond to amino acids 211 and 234 of the trpA polypeptide, positions at which glycine is the wild-type amino acid. Our data demonstrated codon context effects with both pairs of codons. The results indicate that suppression of AAA and AAG by mutant lysine transfer RNAs was more efficient at 211 than at 234, whereas suppression of GAA and GAG by two different mutant glycine tRNAs was more efficient at 234 than at 211. In general, the context effects were more pronounced with GAG and AAG than with GAA and AAA. (In some instances it appeared that suppression of GAA or AAA at a given position was more effective than suppression of GAG or AAG.) By contrast, no context effects were observed with a glyT suppressor of AAA and AAG, a glyT GAA/G-suppressor, and a glyU suppressor of GAG. Our observation of this phenomenon in missense suppression demonstrates that codon context can affect polypeptide elongation and that the effects can be different depending on the codons and tRNAs examined. It is suggested that tRNA-tRNA interaction on the ribosome is involved in the observed context effects.
Collapse
|
13
|
Prather NE, Murgola EJ, Mims BH. Nucleotide substitution in the amino acid acceptor stem of lysine transfer RNA causes missense suppression. J Mol Biol 1984; 172:177-84. [PMID: 6363714 DOI: 10.1016/s0022-2836(84)80036-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Previous results from this laboratory indicated that, in Escherichia coli K12, a new class of missense suppressors, which read the lysine codons AAA and AAG, may be misacylated lysine transfer RNAs. We therefore isolated and determined the nucleotide sequence of the lysine tRNA from two of the suppressor strains. In each case, we found both wild-type and mutant species of lysine tRNA, a result consistent with evidence that there are two genes for lysine tRNA in the E coli genome. The wild-type sequence was essentially identical to that reported for lysine tRNA from E. coli B. The mutant species isolated from each suppressor strain had a U for C70 nucleotide substitution, demonstrating that the AAG suppressor is a mutant lysine tRNA. The nucleotide substitution in the amino acid acceptor stem is consistent with the in vivo evidence that the suppressor corrects AAA and AAG missense mutations by inserting an amino acid other than lysine during polypeptide synthesis. This report represents the first verification of missense suppression caused by misacylation of a mutant tRNA.
Collapse
|